
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

Process Authentication for High System
Assurance

Hussain M.J. Almohri, Member, IEEE , Danfeng (Daphne) Yao, Member, IEEE
and Dennis Kafura, Member, IEEE

Abstract—This paper points out the need in modern operating system kernels for a process authentication mechanism, where a
process of a user-level application proves its identity to the kernel. Process authentication is different from process identification.
Identification is a way to describe a principal; PIDs or process names are identifiers for processes in an OS environment.
However, the information such as process names or executable paths that is conventionally used by OS to identify a process is
not reliable. As a result, malware may impersonate other processes, thus violating system assurance. We propose a lightweight
secure application authentication framework in which user-level applications are required to present proofs at run time to be
authenticated to the kernel. To demonstrate the application of process authentication, we develop a system call monitoring
framework for preventing unauthorized use or access of system resources. It verifies the identity of processes before completing
the requested system calls. We implement and evaluate a prototype of our monitoring architecture in Linux. The results from
our extensive performance evaluation shows that our prototype incurs reasonably low overhead, indicating the feasibility of our
approach for cryptographically authenticating applications and their processes in the operating system.

Index Terms—Operating system security, process authentication, secret application credential, system call monitoring

F

1 INTRODUCTION
Typical operating system kernels often enforce mini-
mal restrictions on the applications permitted to ex-
ecute, resulting in the ability of malicious programs
to abuse system resources. Stealthy malware running
as stand-alone processes, once installed, usually can
freely execute privileges provided to the user account
running the process.

A well-known approach to protecting systems from
malicious activities is through the deployment of
mandatory access control (MAC) systems. Such sys-
tems often provide the kernel with access monitoring
mechanisms as well as policy specification platforms.
The user decides on the policies and the various access
rights on system resources. Existing MAC systems
such as SELinux [2], grsecurity [3], and AppArmor
[4] enable the user (or the system administrator) to ex-
press detailed and powerful policies. These solutions
are often implemented using the Linux Security Mod-
ules [5] to monitor access to selected system resources,
and apply the specified policies to the corresponding
processes.

The above security solutions belong to the cate-
gory of authorization. However, authorization mech-
anisms alone are not sufficient for achieving system
assurance. Our thesis in this paper is to argue and

• H. M. J. Almohri, D. Yao, and D. Kafura are with the Department
of Computer Science, Virginia Tech, Blacksburg, VA 24060. Email:
{almohri,danfeng,kafura}@cs.vt.edu.

• A preliminary version of the work appeared in the Proceedings of
ACM Conference on Data and Application Security and Privacy
(CODASPY). San Antonio, TX, USA. Feb. 2012 [1].

demonstrate that the kernel must also have secure
mechanisms for authenticating processes where the
identity of a process can be proved. User authentica-
tion through techniques such as password or public-
key cryptosystem is common in multi-user system
or network environments. Many user authentication
techniques exist in the literature. Yet, process authen-
tication, i.e., how to prove a process is indeed what it
claims to be, has never been systematically reported
in the literature.

Process authentication is different and indepen-
dent from process identification and requires stronger
properties, for example unforgeability and anti-replay.
In contrast, identification is a way to describe a prin-
cipal. Process IDs and process names are identifiers
for processes in an OS environment. Typically, these
process identifiers are generated by the system after
examining the executable file names and installation
paths of processes. This examination of executable file
names and installation paths is the simplest form of
process authentication. These simple authentication
procedures are insecure against existential forgery
attacks by malicious software, which we explain in
details in Table 1. AppArmor (based on the Linux
Security Modules) recognizes processes through the
application’s installation path, based on which access
rights are enforced. However, process authentication
based on the installation path is weak. Without secure
process authentication, malware may impersonate le-
gitimate applications and abuse system resources,
thus violating system assurance.

This paper points out secure process authentica-
tion as the missing link in achieving system security.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

Our work addresses how to authenticate processes
at runtime and bind them to appropriate application
identities. We aim to demonstrate that process authen-
tication is a crucial step to prevent malicious processes
from accessing and abusing system resources. In our
solution, which is referred to by us as Authenti-
cated Application (A2), applications with registered
credentials can authenticate to the (trusted) kernel.
The kernel can cryptographically verify the identity
of applications. We point out that the differences be-
tween process authentication and user authentication.
Our description of the unique security and system
engineering requirements for designing a process au-
thentication solution is general. It is useful beyond our
specific secret key based mechanism proposed. We
present the design of a modified challenge-response
protocol to securely authenticate applications by the
kernel. Such an application authentication mechanism
complements to the aforementioned process autho-
rization solutions.

Our process authentication mechanism has impor-
tant applications in preventing system access from
being abused by malware. It can be either used
alone in the OS as shown in this paper, or integrates
with existing system authorization solutions such as
SELinux [2] to support fine-grained process-level ac-
cess control. In this paper, we demonstrate its practical
application in preventing unauthorized system calls.
We design and implement a system call monitoring
tool in Linux that intercepts system calls made by the
running processes and verifies application identities
prior to granting the requests. Our implementation
prototype consists of two Linux kernel modules to
securely authenticate applications and to verify their
identities at the time of their requests for system
call execution. Our implementation requires minimal
modifications to legacy applications with nearly no
modification to the kernel. Our evaluation results
indicate the feasibility of our system call monitoring
approach without a significant performance penalty.

Because of the complexity of the operating system’s
tasks in managing a large number of diverse applica-
tions, ensuring the authenticity of the basic operating
data is becoming increasingly important. With mod-
ern attack models, system information whose security
is usually taken for granted needs to be re-examined
and re-evaluated. The cryptographic provenance ver-
ification work in [6] points out the need for the kernel
to ensure the authenticity of origins of data flows that
are consumed by the system. For example, the data
may be user inputs or traffic flows. Recent assured
digital signing work in [7] describes methods for the
integrity protection and authenticity verification of a
signing agent on a host for creating digital signatures.
It points out the differences between a human signer
and a program signer and the system challenges as-
sociated with realizing a trustworthy program signer.
Their solution extends the attestation service of the

hardware trust platform module (TPM). Our work
demonstrates another case of hardening the system by
re-examining the fundamental process identification
mechanism.

The contribution of our work is not only the spe-
cific A2 solution presented, but also the systematic
discussion on the requirements and challenges of pro-
cess authentication in OS environments. Even though
user authentication of various flavors is very well
understood in the network security literature, process
authentication requires careful system security design
and engineering as a process is less autonomous
compared to human.

Outline. Our model and overview are in the next
section. We present the design of Authenticated Appli-
cation framework in Section 3. In Section 4 we discuss
our security guarantees and properties of the frame-
work. Sections 5 and 6 discuss our implementation
and experimental results. In Section 7 we present the
related work and conclude in Section 8.

2 MODEL AND OVERVIEW

We give the models and definitions used in our work.
We discuss the design choices and general require-
ments for the authentication of applications and their
processes in the operating system.

2.1 Motivations
We motivate our work through discussing and distin-
guishing four pairs of concepts related to authentica-
tion below.
Process identification vs. process authentication A process
identifier may be the process ID, process name, etc.
In the context of our A2 work, we define process
identification as a naming convention to describe a
process. Process authentication, on the other hand, is
for a process to prove its identity to the operating
system. It needs to prevent identity spoofing. There is
no process authentication mechanism in the systems
security literature, even though almost all access con-
trol solutions for OS make access decisions based on
who the processes are. In these systems, installation
paths may be used to distinguish among processes.
However, such a simple mechanism is weak. We
summarize their differences from our A2 solution in
Table 1, and further explain them in Section 2.2.
Process authentication vs. user authentication Unlike the
conventional user authentication (e.g., password au-
thentication) in a client-server architecture, process
authentication imposes new and unique system and
security challenges.

• Storage of the secret The user’s secret (e.g., pass-
word or passphrase) can be memorized by the
user. A process’ secret is stored on the host and
needs to be kept confidential with the help of the
kernel to prevent it from being accessed by other
processes.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

• Compatibility An authentication mechanism needs
to be compatible with legacy applications without
requiring customization.

Application authentication vs. process authentication The
authentication of applications is realized through the
authentication of processes of that application. By pro-
cess authentication, we refer to that the process of an
application needs to prove the application’s identity.
(We choose to perform this authentication at the start
of the process in our prototype.) We use the terms
application authentication and process authentication
interchangeably in this paper.
One-time authentication vs. runtime authentication status
One-time authentication refers to the authentication
of a process, which can be done at its creation. The
authentication status of a process needs to be recorded
and maintained by the system. At runtime, when the
process makes requests to access system resources
(e.g., system call requests), the authentication status
can be queried and used for deciding whether or not
to grant the request. Our A2 system supports both
mechanisms.

2.2 Types of Credentials

An important part of our contribution is the system-
atization of the security requirements and components
of a general process authentication framework. The
discussion on these issues is fragmented in the current
literature. With our general framework, capabilities
of various credential types can be compared. There
are various approaches to instantiate an application
credential, as explained next.

• Labels are given to binaries in SELinux as their
extended attributes 1. These labels may serve as
application credentials. Yet, additional extension
to SELinux needs to be made to ensure the
uniqueness and integrity of labels (e.g., to prevent
unauthorized relabeling or label inheritance).

• Keyed hash such as HMAC is another way to
instantiate application credential. Hash-based ap-
proaches have been used for code integrity in the
context of trusted computing [8] or buffer over-
flow prevention [9]. For example, in runtime exe-
cution monitor (REM) [9], the HMAC hash value
is computed for a small block of instructions. The
collection of HMAC values are appended to the
program. The hash values need to be recomputed
at the time of verification. Execution of malicious
code without the proper HMAC is flagged.

• In Table 1, application signing refers to a digital
signature based infrastructure that certifies the
trustworthiness of programs. Such a mechanism
has been used in Windows mobile code (e.g.,
ActiveX) and Andorid OS, where the code is
digitally signed by developers and is verified

1. Labeling is based on path names (which could be forged).

by the operating system at the time of instal-
lation and/or execution. Code from trustworthy
sources is permitted. If not designed properly, a
code certification mechanism cannot replace pro-
cess authentication. Most code certificates do not
uniquely bind to the code, which causes problems
such as stolen certificates. For example, in Win-
dows the FLAME malware spoofs the identities
of legitimate developers. In Android, researchers
found that one can copy the signature, name
the malware as the legitimate app’s name and
install the malware as an update to the originally
trusted application [10], [11]. One possible fix to
this problem is for the signer to digitally sign on
the hash of the code, and the hash value of the
code to be executed is recomputed and compared
with the signed one at the time of authentication.
Because of the collision resistance property of
cryptographic hash functions, a stolen certificate
is unusable for different programs. In code sign-
ing, the certificate is the application credential.
It is issued by code developer and is not secret.
In comparison, in our A2 design application cre-
dential is issued by the kernel where the code is
executed in.

A complete application authentication framework
needs three components: credential generation, process
authentication, and runtime monitoring. Our contribu-
tion on the runtime monitoring (in Section 3.4), in-
cluding efficiently managing the status of authenti-
cated, is useful independent of the specific credential
type.

2.3 Security Models

Security goals and assumptions Our security goal is to
ensure the system assurance, which is to verify that
a system enforces a desired set of security goals [12],
more specifically, to ensure that the operating system
correctly authenticates processes of applications at
the runtime and malware cannot impersonate the
identities of legitimate processes.

Our basic trusted components are the kernel code,
kernel data structure (e.g., PIDs), and kernel’s mem-
ory region. The kernel’s code is trustworthy and does
not contain any malicious code. The confidentiality
and integrity of the kernel’s memory are preserved.
(Such a trust can be partly established using exist-
ing techniques such as the Trusted Platform Module
(TPM) [13], [14] at boot time, assuming the exclusion
of hardware attacks.)
Attack model Stealthy malicious code on the system
may attempt to run itself as a stand-alone user-level
process. Malware may be downloaded to the victim
computer through a crafted malicious web page (e.g.,
drive-by download). Malware stores and attempts to
execute at the user space. Malware may attempt to
impersonate other (legitimate) applications, e.g., by

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

Process Authentica-
tion

Property/Weakness Possible Fix Comparison With A2

Kernel process ID
and executable path

Executable may be modified or re-
placed when freely allowing access
to the file system.

Fixed file paths and
locked installation
directories.

A2 does not trust file path but uses
file path to verify process claims to
be legitimate by checking A2 regis-
tered credentials on the file path.

SELinux Labels Based on executable names, can be
reused by malicious processes, sub-
ject to replay attack and policy mis-
configuration

Fixed file paths and
locked installation
directories.

A2 keeps track of registered apps
and verifies their legitimacy by
authenticating processes. SELinux
does not authenticate processes.

Hashes on files or
code blocks

Have to recompute hashes at au-
thentication

Storing hashes
as registered app
identities

Hash values may be used as A2
credentials (See also 4.3).

Developer-signed
applications

May be forged or stolen, e.g., Flame
and Flashback malware; expensive
to implement in kernel.

Software patches A2 implements a kernel level cre-
dential system that does not rely on
certificate signing authorities, yet
provides the desired level of secu-
rity.

Authenticated
system calls

Only capable of verifying system
call usage integrity, but not a gen-
eral application authentication.

Authenticating the
whole application

A2 authenticates the whole process.
The benefit is that an authenticated
processes can prove its interactions
with other processes, e.g., for au-
thentication of interprocess com-
munications.

TABLE 1
A comparison between the security in conventional process identification mechanisms and our application

authentication solution. See also Section 2.2.

spoofing the names of other processes. Thus, process
names alone are not reliable for distinguishing pro-
cesses. Malicious code running within the boundary
of a legitimate process (through code injection, or a
malicious browser script or extension) is out of the
scope of our attack model (See also the discussion in
Section 4).

2.4 Application Credential and Its Requirements
We define secret application credential next and explain
the requirements for realizing a specific credential
scheme in the operating system environment.

Definition 1. A secret application credential (SAC) is a
unique secret information issued to a trustworthy applica-
tion by the operating system. SAC is used for processes of
the application to prove their identities to the OS kernel
during the authentication procedure.

There are various approaches to instantiate secret
application credentials, but they need to satisfy the
following requirements. Some requirements are com-
mon in other credential systems, whereas some are
new and unique to the process authentication prob-
lem.

• Uniqueness For one executable, there is no more
than one secret application credential (SAC). If
the executable is reinstalled on the file system,
its SAC is updated.

• Secrecy SACs shall not be available to unautho-
rized userland processes.

• Unforgeability Valid SAC cannot be forged.
• Anti-replay Replaying a legitimate SAC to the

kernel will be caught.
• Binding A SAC needs to uniquely binds to all the

processes of a single executable.
• Status checking The authentication status of a pro-

cess (i.e., whether a running process has been
successfully authenticated or not) needs to be
recorded. This status information can be queried
before granting the runtime access rights of a
process.

2.5 Operations For Process Authentication

The authentication operation requires userland pro-
cesses to demonstrate the possession and knowl-
edge of kernel-issued application credentials. Pro-
cesses without valid credentials are restricted from
accessing system resources (e.g., making system calls)
and considered potentially malicious. This mechanism
provides a secure sandbox that isolates malware from
system resources. We describe the general operations
needed for process authentication solutions, including
CREDENTIAL GENERATION, PROCESS AUTHENTICA-
TION, and RUNTIME MONITORING.

1) CREDENTIAL GENERATION This is a one-time
operation run by the kernel to issue the secret
application credential to a (trusted) application.
This operation may be performed at the time of
application installation.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

Determining whether an application should be
given a credential is a classification procedure,
which is independent of our focus on process au-
thentication. A classifier analyzing the trustwor-
thiness of the executable code can be deployed
for this purpose to complement A2, e.g., using
the static programming analysis tools described
in [15], [16].

2) PROCESS AUTHENTICATION This is a protocol
run by the kernel and a process for the pro-
cess to authenticate itself to the kernel. The
authentication is through the process proving
the possession of the required SAC value.

3) RUNTIME MONITORING The kernel monitors the
execution of processes so that processes that
have not been properly authenticated are caught.
A system administrator may also choose to en-
force fine-grained access control policies at the
process level (e.g., specifying what system calls
can be performed by applications), which can be
integrated with this operation.

A process is not allowed to inherit its authentication
status from its parent process in our model. Next,
we describe details of our design for a system that
supports the authentication of applications.

Classify
applications

Register
application key

Monitor
execution

Identify & bind
processes

Specify policies Enforce policies

Authenticate
applications

Fig. 2.1. A diagram showing how A2 compo-
nents/operations (in dashed line blocks) work with
each other and how they may be integrated with com-
plementary security elements.

3 AUTHENTICATED APPLICATION (A2)
SYSTEM

Our Authenticated Application (A2) design enables
the authentication of applications. It consists of three
main components: Credential Registrar, Authenticator
and Service Access Monitor (SAM). (We implement
the Authenticator and SAM as Linux kernel modules
without modifying the kernel). We describe the func-
tions of our components in the following, and describe
in details how each of three operations CREDENTIAL
GENERATION, PROCESS AUTHENTICATION, and RUN-
TIME MONITORING are realized.

Credential Registrar is for generating a credential
for the application and registering the application
with the kernel.

Authenticator is for authenticating a process when
it first starts.

Service Access Monitor (SAM) is for verifying
the authentication status of a process at runtime, i.e.,
whether the process has been successfully authenti-
cated by the Authenticator.

There are two important lists in A2, the credential
list and the status list. The credential list is the reg-
istrar’s copy of the all the current valid credentials
generated for registered applications. The status list
is the Authenticator’s record of the currently running
processes that have been successfully authenticated.

3.1 Credential Generation and Storage
The kernel, more specifically the credential registrar,
generates the secret credentials for legitimate applica-
tions. In A2, the registration operation for trustworthy
applications can be done any time between the time
of installation and the time of first execution. The
registrar and the application each maintain a copy
of the credential. The credential is no longer valid if
the application is removed, reinstalled, or modified;
and a new credential needs to be issued. There are
many algorithms to instantiate the credential value.
A simple method is to use a secret value of sufficient
length as the SAC value that is generated by a pseu-
dorandom number generator controlled by the kernel.
The random values should be hard to guess.

A key problem in credential storage is how to pro-
tect the secrecy of application credentials that is stored
by the application. (Kernel side of credential storage
is assumed to be secure in our model.) To address
that problem, we introduce a protection mechanism
referred to as the code capsule. The application’s copy
of the secret credential is stored along with the appli-
cation’s code capsule (e.g., appending to the end of
the executable). We define the code capsule as follows:

Definition 2. A code capsule is a piece of executable code
along with a secret application credential that is unique and
verifiable by the kernel. A code capsule is not read or write
accessible by any user process except by necessary kernel
helper processes.

Code capsules serve two major purposes. One pur-
pose is to protect the secret application credential from
being revealed to unauthorized processes through the
file system. The other purpose is to bind a credential
with the executable file, which is later used to verify
the identities of the running processes by the kernel.
Code capsules are accessible and maintained by a ker-
nel helper, namely the credential registrar. When the
application is executed, the credential is not loaded
into the memory.

The Registrar runs a registration function as defined
below.

Definition 3. The registration function ρ : E, s → Cs

where E is a string containing the executable code and s is
the secret application credential generated by the credential
Registrar. The function ρ produces the string Cs = E||s,

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

which is a code capsule protected by the kernel. || represents
string concatenation.

We describe the steps for a credential Registrar to
generate an application credential next. Applications
with the credentials issued by the Registrar are re-
ferred to by us as the registered applications. For
malicious applications that bypass this registration
phase, they cannot succeed in the authentication next
due to the lack of valid registered credentials. Denote
the current credential list maintained by the Registrar
by L. The list consists of (name, credential) pairs
of registered applications. The list needs to be kept
confidential with restricted read and write access.

1) The Registrar runs an external checking mecha-
nism (e.g., a classification method [15]) to verify
that the application with name app.name is
trustworthy.

2) If the external verification fails (indicating that
the application may be malicious), reports it
and halts. Otherwise, the Registrar generates a
random value of required length n as the new
credential s, and generates a code capsule Cs

using the function ρ(E, s). The Registrar writes
Cs to the file system.

3) The Registrar appends the tuple (app.name, s)
to the credential list L.

4) When the application is uninstalled, the Regis-
trar is notified and deletes the entry (p.name, s)
from the credential list L.

The credential generation operation is fully com-
patible with legacy applications and does not require
any customization. Large applications may consist of
several executable files. We register each executable
file that may create at least one independent process
with a unique credential. The purpose of having a
unique s for each executable is to be able to correctly
identify each running process and bind it to its exe-
cutable code. The registrar may also need to ensure
that the application has not been previously issued
a credential, e.g., by checking whether a credential
already exists at the end of its executable.

We point it out that the trusted registrar itself
can be given a credential (e.g., manually installed by
the system administrator). Then it can engage in the
authentication procedure with the kernel as a regular
process once it starts every time. The detailed process
authentication protocol via challenge and response is
described next.

Our work on protecting secret credentials on the
disk may bear some resemblance to existing code
integrity work (e.g., [8], [9]) or rootkit detection so-
lutions (e.g., [17]). For example, the solution in [17]
controls the access to specific regions of the disk under
the assumption of an already compromised system.
As we aim for the protection of a short secret appli-
cation credential (SAC) as opposed to general kernel
and user level code or data, the solution that we adopt

is much more specific and thus lightweight. Because
the goals of these pieces of work significantly differ,
none of the existing solutions provides a satisfying
solution for the application authentication problem as
A2 does.

3.2 Process Authentication
The process authentication protocol is to authenticate
individual processes based on the credentials of the
corresponding applications. We first discuss several
design choices for realizing process authentication,
and justify our approach next. One simple design
choice is that the kernel directly accesses the appli-
cation’s credential and verifies its identity provided
that the credential is stored in a predefined location.
However, this method does not provide the security
level that is needed in order to establish a strong
identification. The location of the credential can be
either defined in memory or the file system. Defining
the credential in the memory imposes additional risk
to stealing the credential as well as causing com-
plexity of maintaining the credential location. An
alternative design is to isolate all credentials in a
restricted storage. The kernel retrieves the credential
of corresponding process at the authentication time.
However, this design is clearly inadequate because it
does not bind a running process to the corresponding
credential file at the runtime.

In order for a process to prove its identity to the
kernel using the application’s secret credential, our
approach is for the process and the kernel to engage
in a challenge-and-response protocol. The challenge-
and-response concept is common in network security.
We tailor it for the operating system environment.
The main steps are summarized below and the details
are presented in Section 3.3. i) The kernel sends a
random nonce to the application process. ii) The pro-
cess produces the hash-based message authentication
code (HMAC) with the nonce and the secret credential
and returns the hash value to the kernel. iii) The
kernel recomputes the HMAC and compares it to
the value submitted by the process. We describe the
three technical challenges and our approaches for
addressing them next.

• One technical challenge is the implementation
of an efficient and reliable communication chan-
nel between the process and the kernel. Our
authentication protocol is executed on a socket
file between the process and the kernel. This
method is realized using a memory-based socket
or shared memory, e.g., /proc file system [18].
The advantage of using the shared memory is
that it is conveniently accessible by kernel device
drivers and is under the complete control of the
kernel. More details on the implementation can
be found in Section 5.
Throughout A2 design, this communication
method via shared memory with restrictions

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

is used for all the communications between
the userspace and kernel space processes. The
userspace processes may be applications or A2
components.

• Another technical challenge is that because the
authentication protocol requires additional oper-
ations by processes, one needs to avoid having to
modify and customize existing applications. We
design and implement a piece of middleware that
assists processes with the authentication opera-
tions. As a result, A2 is completely compatible
with existing applications for process authentica-
tion. More details are given in Section 4.1.

• The third technical issue is how to minimize
the authentication overhead while ensuring the
runtime system assurance (e.g., at the system call
level of granularity). Requiring the process to
authenticate itself at every request of system call
incurs excessive runtime overhead. We choose to
perform the authentication at the time of process
creation. We have a lightweight mechanism to
maintain the authenticated status of a process dur-
ing all subsequent requests, which is conceptually
similar to session IDs in the web.

3.3 Authentication Protocol

The authentication protocol is run between the Au-
thenticator and a process at the time of process cre-
ation. The description below requires the application
to be customized to follow our protocol. We eliminate
this requirement in Section 4.1 for compatibility. The
goal of A2 authentication protocol is two-fold: i) to se-
curely authenticate running processes and ii) to record
and maintain the authentication status of processes.
The authentication status information is stored as a
kernel data structure by the Authenticator, which is
referred to as the status list. It is shared with the
Service Access Monitor (SAM) at runtime for SAM
to determine the legitimacy of processes submitting
system requests in Section 3.4.

Let A represent the Authenticator module. We de-
note the A’s credential list by L. It is a list of
(app-name, app-cred) pairs, where app-name is an
application name, and app-cred is its corresponding
application credential generated by A. The Authen-
ticator (and no one else) can submit queries to the
Registrar in the form of query(app-name), which
takes as the input an application name and returns
its corresponding credential on L. The Authentica-
tor A maintains a status list T consisting of process
IDs of successfully authenticated running processes.
The list T is made readable by the Service Access
module (SAM). Let p be a user process; p.pid is
p’s process identification; and p.name is p’s appli-
cation name. We denote p’s copy of its secret cre-
dential (stored in the code capsule) by p.cred. Let
auth-request(p.app) is the function used by p

to send an authentication request to A. Let HMAC
be a secure hash-based message authentication code
function.

1) p: Sends auth-request(p.name) to A, i.e., the
application claiming to be p.name requests to be
authenticated.

2) A: Does the following.
a) p.cred’ ← query(p.name), that

is, queries the Registrar with p.name
to retrieve its credential p.cred’ on
the credential list L. If the returned
p.cred’ is null i.e., the application
does not have a registered credential,
reports p as suspicious.

b) Generates a random nonce and sends it to
p. A also sets a timer t for the string to
expire if there is no future response from
p. The time frame to expire t is short (e.g.,
in milliseconds).

3) p: Computes h ← HMAC(nonce, p.pid
p.cred), where p.cred is p’s secret credential
obtained from its code capsule. h is sent to the
Authenticator A.

4) A: If the delay associated with the received
HMAC exceeds the required threshold t, the
authentication request is discarded and the au-
thentication of p fails.
A computes h′ ← HMAC(nonce, p.pid
p.cred’). If h == h′, then the authentication
is successful. Otherwise, it fails.
A checks to see whether p.pid ∈ T. If yes,
reports p as suspicious. Otherwise, A appends
p.pid to the list T.

5) When p terminates, A is notified, deletes p.pid
from the status list T.

The ability for an application to succeed in the
authentication protocol depends on its knowledge of
the required secret application credential. E.g., if a
process claims to be the Mozilla Firefox browser (i.e.,
with p.name being Mozilla Firefox), then it needs
to prove its knowledge of the registered credential
value of that application. The security of our protocol
is thoroughly analyzed in Section 4. Our security
guarantee is hinged on the confidentiality of the ap-
plication credentials, both the copy on the credential
list and the application’s copy in the code capsule.
The PID that is used as an identifier for querying the
status list belongs to kernel data, which is assumed to
be trustworthy and unforgeable in our security model
(in Section 2).

3.4 Runtime Verification of Authentication Status
At runtime, whenever a process makes a request for
accessing system resources through system calls, the
Secure Access Monitor (SAM) intercepts the request
and verifies the authentication status of the process,
i.e., whether the process has successfully passed the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

authentication. This verification is accomplished by
SAM through looking up the process’s PID on the
status list of the Authenticator, and verifies the PID’s
existence on the list. Our experiments show that this
runtime verification of authentication status of pro-
cesses is lightweight. PID is used an identifier for
looking up the status list. Because of our assumption
on kernel’s code and data integrity, PID values used
for this runtime verification are trustworthy, specifi-
cally unforgeable.

Our authentication system can be conveniently in-
tegrated with existing policy based access control
systems for strong system assurance. SAM can also
be integrated with a policy specification language to
benefit from existing work in policy specification such
as [19] that uses an abstracted logical language to
specify SELinux policies and Polymer [20], a runtime
policy specification framework.

4 DISCUSSION

In this section, we first present our solution for solving
the compatibility issue in the authentication protocol.
Then, we analyze in details the security guarantees
that A2 provides, as well as justify the integrity of A2
components themselves.

4.1 Compatibility Mode for Legacy Applications
Our process authentication protocol described as in
Section 3.3 requires the modification of legacy ap-
plications to support the interaction with the Au-
thenticator, raising a compatibility issue. We deign a
middleware to perform the authentication on behalf
of the application. The credential generation operation
is unchanged. We authenticate legacy applications
using a helper program referred to as the Verifier. The
Verifier has the read access to the credential list L
maintained by the registrar, but not the write access.

Executable

Secret Application
Credential

Verify SAC

Authenticator

Process Authentication
Protocol

A
2 interpositionSystem call request

System
 call

interface

System call
monitor

Verification
Request/Response

Secret
storage

A
2 K

ernel com
ponents

Check
registered SAC

Registrar

Secret Verifier

Fig. 4.1. Workflow of A2 in the compatibility mode with
the verifier.

1) To authenticate a newly started process p with
process name p.name, process ID p.pid, and
the path to the code capsule p.path (all ob-
tained from the kernel), the Authenticator checks
if the process has already been verified by
looking its p.pid up in the status list T. If

p.pid /∈ T, the Authenticator sends to the Ver-
ifier (p.path, p.name).

2) The Verifier reads p.path to retrieve the ap-
plication’s copy of the credential at the end of
its code capsule. This credential is denoted by
p.cred. It throws an error if the credential
cannot be found.

3) The Verifier looks up the credential list T by
p.name to retrieve the corresponding credential,
which is denoted by p.cred’. It throws an error
if p.cred’ is null.

4) The Verifier checks if p.cred’ == p.cred 2.
If yes, then the authentication succeeds. Other-
wise, fails. The Verifier notifies the Authenticator
with the authentication result.

5) The Authenticator updates the status list with
p.pid.

The Verifier’s main task is to access the code cap-
sule of the application on behalf of the application.
The security guarantee of the authentication protocol
using the Verifier is equivalent to the one without
it (discussed next). In our A2 prototype, the Verifier
is implemented as a userspace application. It has
a shared memory region with the Authenticator to
exchange verification messages.

The Verifier is equipped with a manually installed
credential, so that itself can be authenticated as a
bootstrapping procedure. When the Verifier’s process
starts, the Authenticator authenticates its identity to
prevent identity spoofing.

4.2 Security Guarantees
The security of A2 relies on the confidentiality of the
application credentials. Thus, we analyze our security
guarantees by discussing the confidentiality of the
application credentials and the integrity of A2 com-
ponents.
Unforgeability credentials

Forging existing secret credentials (that appear on
the credential list) by attackers is computationally
hard, as long as a strong pseudorandom number
generator is used to generate the credential. Besides
existential forgery, a malware process using a self-
generated arbitrary value as its credential cannot suc-
cessfully pass the authentication, because that self-
generated credential is not registered with the kernel
and does not appear on the credential list.
Confidentiality of code capsules and credential list

To protect the secret credential from being revealed
to other applications, A2 restricts the read access to
applications’ binaries, namely code capsules (where
the application’s copy of credential is stored). Mal-
ware may attempt to steal a credential from ap-
plication’s or A2 components’ memory at runtime,

2. Instead of the direct comparison of the two copies of cre-
dentials, an equivalent-yet-less-straightforward approach is for the
Verifier to engage in the authentication protocol of Section 3.3 with
the Authenticator (on behalf of the application process).

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

which is prevented by the standard process memory
isolation mechanism of the system.

Similarly, A2 restricts the access to the credential
list (owned by registrar) by other processes, thus
ensuring its confidentiality. More specifically, only the
registrar and the verifier have the direct access, and
the Authenticator can (indirectly) query the list.
Resistance to replay attacks

Malware may attempt to intercept the challenge-
and-response communication between the Authenti-
cator and a process during the authentication proto-
col. Because the proc file is only readable by A2 com-
ponents, messages exchanged cannot be intercepted
preventing replay. (This read restriction is enforced in
kernel by A2.)
Integrity of A2 components and data

A2 components span both the kernel space and the
user space. The kernel-level components include the
Authenticator and Service Access Module. Because
of our assumption on the kernel integrity, these two
components are trustworthy. In contrast, there is no
assumption on the integrity of the user-level Regis-
trar and Verifier, which may be targets of malware
tampering and spoofing.

For anti-spoofing, A2 requires these two programs
(namely the Registrar and Verifier) to authenticate
to the Authenticator through our A2’s authentication
protocol as they start. The authentication procedure
slightly differs from the one described in Section 3.3
in that i) their credentials are manually generated,
and ii) the kernel’s copies of their credentials are
hardcoded in the Authenticator, as opposed to be
stored on the credential list. For anti-tampering, A2
forbids the write access to the code capsules of the
Registrar and Verifier by other userland processes.

A2 data includes the credential list, status list, as
well as the intermediate communication messages
in the authentication protocols via (proc file based)
shared memory. We have discussed the confidentiality
of the credential list, which is a user-space file. In
contrast, the status list is a kernel data structure in
the memory. Thus, its integrity and confidentiality
are guaranteed as a result of our kernel integrity
assumption.

The shared memory approach is used for all the
communication between the kernel modules and user-
level processes, including: i) the authentication pro-
tocol messages between the Authenticator and the
requesting process, ii) credential queries between the
Authenticator and the Registrar, and iii) authentica-
tion status update between the Authenticator and the
Verifier. A2 secures the confidentiality and integrity
of the shared memory based communication channels
by preventing the read and write access to the shared
memory by other non-related user-level processes.

In summary, the A2 solution guarantees that the
operating system correctly authenticates processes of
applications at the runtime and malware cannot im-

personate the identities of legitimate processes, thus
satisfying our security goal specified in Section 2.

4.3 Extensions and Limitations
Updates. Handling updates and new installation in A2
is convenient and requires limited user effort. Our pol-
icy considers each installation of an application as a
new entity that needs a new credential. An upgrade in
Linux desktop systems may be upgrading a resource
file, patching the application with additional libraries
or modification of existing libraries, and providing a
modified binary. Updates may trigger A2 to generate
separate credentials for the resources, or regenerate
a new credential for the main application. The user
needs to authorize credential updates. In recent Linux
systems, software updates already require user per-
missions. These permission can also serve as the user
authorization for credential updates.

Dynamic linked libraries (DLL). Validating dynami-
cally loaded libraries is not performed during the au-
thentication of the main application. When invoked,
the library itself can be separately authenticated in A2,
which requires the library to acquire a credential of its
own. The library’s credential is examined before it is
loaded.

Limitations. A2 is capable of identifying interpreted
programs running as stand-alone processes. For in-
stance, a Java executable runs as a separate process.
The program can be given a unique credential at
registration. Each program can authenticate itself in-
dependently using our framework. Other interpreted
languages such as JavaScript, Adobe Action Script,
and Word document macros are out of our security
model, because the program runs in a container pro-
cess as opposed to a separate process ID. For a similar
reason, the detection of malicious code injected into
(vulnerable) authenticated processes – as opposed to
running as a stand-alone process – is out of the scope
of A2’s attack model.

The security of A2 partly depends on the accuracy
of the classification analysis. Classifying the trustwor-
thiness of a program is challenging, and its inaccuracy
may allow malware to obtain a legitimate secret appli-
cation credential. In practice, multiple complementary
static and dynamic analysis and monitoring tools have
to be used to improve the accuracy of classification.

5 IMPLEMENTATION

We have developed a prototype of the A2 framework
in C in Debian Linux (version 3.2.0-36), including
the implementation of the credential registrar, the
Authenticator, the Service Access Module, and the
verifier. (The verifier is introduced in Section 4.1 to
improve the compatibility of A2.)

• The Authenticator and SAM are kernel device
drivers (modules). These two modules are loaded
at boot time.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

• The credential registrar and the verifier are im-
plemented as kernel helper programs that run
in the user mode for efficiency and compatibility
considerations. We avoid the unnecessary context
switches to register an application, and can use
standard user-level libraries.
As a bootstraping procedure, we require the reg-
istrar and the verifier to authenticate themselves
to the kernel (namely the Authenticator) with
their respective secret credentials at the time of
the process creation.

Credential List
Each secret credential is a 128-bit random value

generated by the AES key generation algorithm dur-
ing the CREDENTIAL GENERATION operation by the
registrar. We describe how the credential list can be
accessed by each of the A2 components.

• The registrar can read and write to the credential
list, which is a file. The verifier can read the file
as well. No other processes can access that file.
This restriction is realized as monitoring the open
system call requests to the file. This system call
monitoring is performed by SAM.

• Because Linux kernel components do not ac-
cess file system directly, in our prototype the
Authenticator and SAM do not have the direct
read access to the file storing the credential list.
They need to communicate with the registrar to
retrieve a credential via the proc file mechanism.

As a bootstraping procedure, the registrar authen-
ticates itself to the kernel Authenticator with its own
credential. The registrar’s credential is appended to its
executable file, as specified in A2. In our prototype,
this credential is hard-coded into A2 kernel modules.

The verifier process is similarly authenticated. Both
the credential registrar and the verifier are stored in
code capsules that are protected by the kernel. The
trusted credential registrar has access to application
executables to respond to the kernel’s requests. These
requests are sent to the verifier process through the
/proc file system. We also secure the communication
channel by restricting the open system call to all other
processes.
Authenticator

To carry out the authentication protocol, the Au-
thenticator communicates with the user space ap-
plications using the /proc file system, which is a
memory-based file system controlled by the kernel.
A protocol file is created by the Authenticator in
the /proc file system. We support two functions for
reading and writing operations to the protocol file
in /proc file system. The read_protocol_file
function is executed when the user reads the file. For
writing to the challenge file, we define the function
write_protocol_file. In this function, our mod-
ule reads the data that is written by the user-level
process. The Authenticator module uses the Linux

kernel Cryptographic API [21] to perform the HMAC
operations using a number of supported hashing al-
gorithms. Our implementation of the Authenticator
can accept multiple requests from multiple processes
using the same /proc protocol file. For each process,
only one request is served at a time.
Status List and Secure Access Monitor

Secure Access Monitor (SAM) and the Authentica-
tor communicate via a shared data structure in the
memory that holds the status list, i.e., a list of PIDs
of successfully authenticated running processes. This
data structure is maintained by the Authenticator and
visible to SAM (but no other processes). To verify a
process’ identity, SAM searches through the status list.

We implement the status list as a sequential dy-
namic array. In our experiments, under a normal use,
the number of running processes was under 100. As
it is shown in the evaluations, searching the status list
did not have a significant overhead in a normal usage.
However, in order to improve the overhead, one can
implement the list as a red-black tree (a special type
of balanced binary search tree [22]) that has a search
complexity of O(log n) where n is the size of the status
list in the memory.

To avoid the need to modify the kernel, SAM uses
the kprobe API to hook into system calls and monitor
process activities. Although the probes introduce extra
overhead, the produced overhead does not cause
considerable latencies to applications’ functionality,
limited by an average of 3 times more overhead (see
Section 6).

To provide a more efficient alternative realization
of SAM, we modified the Linux kernel to implement
a faster system call tracing method. In this imple-
mentation, we modify kernel’s entry assembly code to
perform the verification of identities before the system
call takes place. As the kernel prepares for jumping
to the address of the requested system call, we place
a jump to the address of our kernel function that im-
plements SAM. We store all the necessary information
before the jump and send the system call number and
the process information to SAM’s kernel function. The
system call may be allowed or disallowed according
to the value returned from our kernel function. After
the return, we check the return value and either jump
to the desired system call function or execute an exit
code to user mode.

6 PERFORMANCE EVALUATION

The strong security guarantees provided by our
A2 framework require additional computational and
management overheads in the operating system. In
order to assess the efficiency of our framework, we
answer the following questions in our experiments:
• How does A2 impact the overall system perfor-

mance?

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

• What is the performance penalty caused by A2
on various I/O and system call functions?

• What is the process creation performance under
A2?

Overview and Setup. We conducted extensive perfor-
mance evaluations using various system benchmark
suites. An overall measurement of A2’s performance
is calculated using UnixBench3, and, Phoronix test
suite4. To measure the performance of critical system
functions, such as I/O and system calls, we use lm-
bench [23] and UnixBench system benchmark suites.

Our experiments reveal efficient performance of
A2 in various system operations. The highest per-
formance downgrade is in open system calls (with
A2 being about two times slower than the generic
stock Linux). Our overall performance measurements,
process creation and general I/O operations show
reasonably fast performance of A2.

Our experiments executed on directly on a physical
Intel Core Duo 2 machine with two cores of 2.99 Mhz
speed and 3 GB of ram. The kernel version on the
testing machine was Debian Linux 3.2.0-36. At the
time of each test, there was no user interaction with
the machine except for execution of the benchmark
programs. All benchmark results show an average of
several iterations.

We tested the system’s performance twice for each
experiment. First, we experimented with the stock
generic Linux kernel (referred to as generic in Fig-
ures 6.1, 6.2, 6.3, 6.4 and Table 2) installed on the
machine. Second, we tested the system with all A2
modules loaded. Also, we developed a daemon to
simulate the authentication, by sending authentication
requests to the kernel and performing the authentica-
tion protocol, in the intervals of 60 seconds during the
course of each experiment.

Overall system performance. For an overall measure-
ment of A2’s performance, we used UnixBench and
two benchmarks from Phoronix test suite, that is
PHP compile, and Apache throughput. UnixBench
performs various system level tests and calculates an
overall performance index relative to a base score,
referred to as the BYTE index. A higher value of the
BYTE index indicates a relatively better performance.

Figure 6.1 shows the results form UnixBench tests.
The overall performance penalty with a single pro-
cessor is 0.977%. For two parallel executions, the per-
formance downgrade is 1.534%. Our tests with PHP
compile and Apache throughput show an efficient
overall performance of A2. As described in Table 2,
PHP compile time had a downgrade of 0.91% under
A2, and Apache’s requests per second downgraded
1.65% when using A2.

I/O and system call performance. UnixBench and lm-
bench perform extensive I/O and system call perfor-

3. http://code.google.com/p/byte-unixbench/
4. http://www.phoronix-test-suite.com/

Overall Syscall Overhead Proc. Creation Context Switching Pipe Throughput0

500

1000

1500

2000

2500

3000

3500

System operation

Sc
or

e

A2−Single
A2−Parallel
Generic−Single
Generic−Parallel

Student Version of MATLABFig. 6.1. UnixBench benchmark operations and re-
sults. The values are calculated according to a base
score method. For each kernel (A2 and the generic
Linux kernel) two sets of experiments are performed:
single and two parallel copies, one for each core.

Benchmark A2 Generic Decrease
PHP compile time (seconds) 75.43 74.75 0.91%

Apache throughput (requests/sec) 12324.62 12531.00 1.65%

TABLE 2
Comparison of PHP compile time and Apache

throughput (using Phoronix test suite) in A2 vs the
generic Linux.

mance measurements. The benchmarks involve con-
tinuous calls to a system function and measuring
the total processing time. For UnixBench results (in
Figure 6.2), we show the benchmark scores, whereas
for lmbench results (in Figure 6.3) we show the actual
processing time.

The file copy operations in UnixBench had an aver-
age decrease of 1.55% in performance with maximum
decrease of 2.161%. lmbench measures calls to open
followed by a close, as depicted in Figure 6.3. These
calls had the most downgrade of about 235% in
A2. This major downgrade is mainly due to various
checks that we perform at the open system call to
make sure proper access rights on protected regions
that contain application credentials (e.g., checking
access to code capsules). Other I/O operations such
as select on file descriptors, select on TCP file descrip-
tors, and sockets demonstrated statistical ties between
A2 and the generic kernel.

Process creation performance. We directly monitor
calls to fork and execve for monitoring process
creations and activities by all processes to enforce our
mandatory authentication protocol. Our monitoring
involves a check to see if the process requires authen-
tication. Thus, expect modest performance penalties
by A2. To measure process creation, we used lmbench
(Figure 6.4) and UnixBench (Figure 6.1) process cre-
ation benchmarks.

The results from lmbench show an average perfor-
mance downgrade of 2.1627% when using A2 mod-
ules and a maximum downgrade of 2.949% for the
fork, execve and shell execution results. UnixBench

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

256 bufsize 500 maxblocks 1024 bufsize 2000 maxblocks 4096 bufsize 8000 maxblocks1500

1600

1700

1800

1900

2000

2100

2200

2300

File operation

Sc
or

e

A2
Generic

Student Version of MATLABFig. 6.2. UnixBench benchmark file copy with various
sizes. The file copy is slightly affected by our permis-
sions checking in A2 with an average downgrade of
1.55%.

open/close Select/fd Select/tcp−fd pipe latency socket latency0

2

4

6

8

10

12

System operation

Ti
m

e
in

 m
ic

ro
se

co
nd

s

A2
Generic

Student Version of MATLABFig. 6.3. lmbench benchmark operations and results.
The values show time to execute the operation in
microseconds. Most operations perform efficiently and
do not suffer major performance downgrades. The
performance downgrade in open/close is due to our
permission checking before granting a file descriptor
in the open system call.

measures process creation with fork with a perfor-
mance downgrade of 0.686% in the single execution
experiment and a performance downgrade of 0.701%
in the parallel execution experiment. The correspond-
ing experiment in lmbench (calls only to fork) has a
similar performance downgrade of about 1%.

fork+exit fork+execve fork+/bin/sh0

100

200

300

400

500

600

700

800

System operation

Ti
m

e
in

 m
ic

ro
se

co
nd

s

A2
Generic

Student Version of MATLABFig. 6.4. lmbench process creation results. The values
show time to execute the operation in microseconds.
The results show process creation using fork without
running external code, process creation with a call to
execve, and process creation with running shell scripts.

7 RELATED WORK

Existing work on protecting system’s integrity is
studied in the form of program integrity measure-
ment techniques [24], [25], [26], information flow in-
tegrity [27], mandatory access control [2], [4], virtual
machine monitors [28], [29], and application sand-
box [30], [31], [32].

The Integrity Measurement Architecture (IMA) is a
mechanism to provide attestations about the integrity
of the kernel and the running programs for a trusted
remote verifier [26]. In this architecture, the kernel
maintains an aggregation of user programs’ and files’
checksums (i.e., the hash of the file’s contents) in
the memory. The integrity of the list in the kernel’s
memory is maintained using TPM. The checksums of
user programs’ are communicated to the remote party
to perform the necessary verification. In [25] a similar
approach is taken to apply IMA on mobile operating
systems.

The work in [26] is enhanced by PRIMA [27] to take
advantage of information flow integrity for verifying
and controlling user programs’ inputs. Specifically,
PRIMA forces the flow from a low integrity program
to a higher integrity program to pass through a filter.

ReDAS approaches the problem by providing at-
testation of dynamic program features to remote par-
ties [24]. In the proposed methods, the integrity of the
kernel is assumed to be established based on TPM.
Then, the kernel keeps track of dynamic program
features by a static analysis of the program binary. For
instance, ReDAS makes sure that the return address
of a function points to the instruction following the
call instruction.

In contrast with remote program attestation meth-
ods, A2 does not require a remote verification for
program and system integrity. However, remote ver-
ification can be used in conjunction with A2, for
example when verifying the integrity of a system
running in an untrusted cloud.

Mandatory access control (MAC) systems specify
fine-grained policies for the installed applications.
These policies are typically administered by a power
user (such as the root user in UNIX-based systems)
to control the behavior of the applications. A well-
known MAC system is SELinux [2]. SELinux assigns
applications to domains and tags executable files with
their appropriate domain information. At runtime,
SELinux monitors the access by all processes and
enforces the predefined access policies by binding
the process to an appropriate domain and deciding
on the right policies. An alternative to SELinux, gr-
security [33] provides sophisticated memory protec-
tion mechanisms such as enforcing read-only memory
pages.

Policy-based systems such as SELinux are found to
be difficult to use by end users [34], and lack a gen-
eral application authentication mechanism. In A2, we

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

provide the first process authentication mechanism. It
is independent of a particular user identity and does
not rely on dynamic features such as a process ID, yet
(in its core functionality) does not depend on complex
policy specification systems.

In [35], [36], the authors propose the use of message
authentication code in monitoring system calls. By
using an automated method binary rewriting, all the
system calls functions calls are modified to include a
message authentication code as extra arguments. The
message authentication code is generated using a key
that is available to the kernel. At runtime, the kernel
uses the key to verify the code against the actual
system call made by the application in order to detect
possible modifications to the application’s behavior.
The presented work is limited to providing identities
(the HMAC) to individual function calls to system
calls in an application. Thus, it does not provide an
identity to the application itself.

System call monitoring is an ongoing research to-
wards protection against malware [37] mostly focused
on the use of virtual machine monitors (VMM) to
monitor system calls [28], [29]. We do not implement
the components of A2 within a VMM to avoid the
semantic gap introduced. This semantic gap prevents
A2 from close monitoring of the process activities as
well as proper identification of the processes. Fur-
thermore, a VMM may be used in A2 to ensure the
integrity of the kernel itself.

Application sandbox is a mechanism to allow exe-
cution of untrusted code on protected hosts. Recent
sandbox proposals include Vx32 [30], UserFS [31],
and BLADE [32]. Application sandbox methods are
useful for our A2 framework. Systems such as UserFS
that allow temporary secure execution of an untrusted
code can be coupled with A2 to perform the necessary
application checking and classification before register-
ing the application as a legitimate application.

8 CONCLUSIONS AND FUTURE WORK

Our work is the first to formally design application
and process authentication in the operating environ-
ments. We have demonstrated its feasibility by pre-
senting our architecture, implementation, and evalu-
ation of a prototype Linux system supporting process
authentication. We explained how process authentica-
tion can isolate malicious processes and thus prevent
them from abusing and accessing system resources.
The authentication model of A2 is highly portable
and can be made compatible with legacy applications
without any customization. Our evaluation results
indicate that the overhead of performing process au-
thentication at the system call level is acceptable.

A secure system needs multiple layers and com-
ponents of protections. Achieving strong software
assurance (i.e., ensuring the trustworthiness of code)
is difficult if not impossible. Thus, we believe that our

work on preventing untrusted code from running is
equally valuable. Future work of ours will be focused
on porting our A2 design to Android operating sys-
tem for mobile devices in order to support the au-
thentication of apps. Such a solution will significantly
improve the system assurance of Android devices that
may be targets of malicious and stealthy apps. We
also plan to make A2 compatible with SELinux by
extending and generalizing SELinux modules.

REFERENCES

[1] H. M. J. Almohri, D. Yao, and D. Kafura, “Identifying native
applications with high assurance,” in Proceedings of ACM Con-
ference on Data and Application Security and Privacy (CODASPY),
February 2012.

[2] P. Loscocco and S. Smalley, “Integrating flexible support for
security policies into the Linux operating system,” in Proceed-
ings of the 2001 USENIX Annual Technical Conference. Berkeley,
CA: USENIX Association, 2001.

[3] “grsecurity,” http://www.grsecurity.net/.
[4] Z. M. Hong Chen, Ninghui Li, “Analyzing and comparing the

protection quality of security enhanced operating systems,”
in Proceedings of the 16th Annual Network & Distributed System
Security Symposium, 2009.

[5] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-
Hartman, “Linux security module framework,” in Proceedings
of the 11th Ottawa Linux Symposium, 2002.

[6] K. Xu, H. Xiong, D. Stefan, C. Wu, and D. Yao, “Data-
provenance verification for secure hosts,” IEEE Transaction on
Dependable and Secure Computing (TDSC), vol. 9(2), pp. 173 –
183, March/April 2012.

[7] W. Dai, T. P. Parker, H. Jin, and S. Xu, “Enhancing data
trustworthiness via assured digital signing,” IEEE Transactions
on Dependable and Secure Computing, vol. 9 (6), pp. 838 – 851,
2012.

[8] G. Xu, C. Borcea, and L. Iftode, “Satem: Trusted service code
execution across transactions,” in Proceedings of the 25th IEEE
Symposium on Reliable Distributed Systems (SRDS). Washing-
ton, DC, USA: IEEE Computer Society, 2006, pp. 321–336.

[9] A. M. Fiskiran and R. B. Lee, “Runtime execution monitoring
(REM) to detect and prevent malicious code execution,” in
ICCD. IEEE Computer Society, 2004, pp. 452–457.

[10] D. Barrera, J. Clark, D. McCarney, and P. van Oorschot, “Un-
derstanding and improving app installation security mecha-
nisms through empirical analysis of Android,” in Proceedings of
the second ACM workshop on security and privacy in smartphones
and mobile devices (SPSM). ACM, 2012.

[11] T. Vidas, D. Votipka, and N. Christin, “All your Droid are be-
long to us: a survey of current Android attacks,” in Proceedings
of the 5th USENIX Conference on Offensive Technologies (WOOT),
2011, uSENIX Association.

[12] T. Jaeger and R. Sandhu, Operating System Security. Morgan
& Claypool, 2008.

[13] S. W. Smith, Trusted Computing Platforms: Design and Applica-
tions. Secaucus, NJ, USA: Springer-Verlag, 2004.

[14] D. Stefan, C. Wu, D. Yao, and G. Xu, “Knowing where your
input is from: Kernel-level provenance verification,” in Pro-
ceedings of the 8th International Conference on Applied Cryptogra-
phy and Network Security (ACNS). Springer-Verlag, 2010, pp.
71–87.

[15] K. O. Elish, D. Yao, and B. G. Ryder, “User-centric dependence
analysis for identifying malicious mobile apps,” in Proceedings
of the Workshop on Mobile Security Technologies (MoST), May
2012, in conjunction with the IEEE Symposium on Security
and Privacy.

[16] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing
inter-application communication in Android,” in Proceedings of
the International Conference on Mobile Systems, Applications, and
Services (MobiSys), June 2011.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

[17] K. R. Butler, S. McLaughlin, and P. D. McDaniel, “Rootkit-
resistant disks,” in Proceedings of the 15th ACM conference on
Computer and communications security, ser. CCS ’08. New
York, NY, USA: ACM, 2008, pp. 403–416. [Online]. Available:
http://doi.acm.org/10.1145/1455770.1455821

[18] M. T. Jones, “Access the Linux kernel using the /proc filesys-
tem,” 2006, http://www.ibm.com/developerworks/linux/library/l-
proc.html.

[19] B. Hicks, S. Rueda, L. St.Clair, T. Jaeger, and P. McDaniel, “A
logical specification and analysis for SELinux MLS policy,”
ACM Transactions on Information and Systems Security, vol. 13,
no. 3, pp. 26:1–26:31, Jul. 2010.

[20] L. Bauer, J. Ligatti, and D. Walker, “Composing expressive
runtime security policies,” ACM Transactions on Software Engi-
neering and Methodology, vol. 18, no. 3, pp. 9:1–9:43, Jun. 2009.

[21] J.-L. Cooke and D. Bryson, “Strong cryptography in the Linux
kernel,” in Proceedings of the 2003 Linux Symposium, 2003, pp.
139–144.

[22] D. P. Bovet and M. Cesati, Understanding the Linux kernel.
O’Reilly, 2006.

[23] L. McVoy and C. Staelin, “lmbench: portable tools for perfor-
mance analysis,” in Proceedings of the 1996 annual conference
on USENIX Annual Technical Conference. Berkeley, CA, USA:
USENIX Association, 1996, pp. 23–23. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1268299.1268322

[24] C. Kil, E. C. Sezer, A. M. Azab, P. Ning, and X. Zhang, “Remote
attestation to dynamic system properties: Towards providing
complete system integrity evidence,” in Dependable Systems and
Networks, 2009, pp. 115–124.

[25] D. Muthukumaran, A. Sawani, J. Schiffman, B. M. Jung, and
T. Jaeger, “Measuring integrity on mobile phone systems,”
in Proceedings of the 13th ACM Symposium on Access control
Models and Technologies, ser. SACMAT ’08. New York,
NY, USA: ACM, 2008, pp. 155–164. [Online]. Available:
http://doi.acm.org/10.1145/1377836.1377862

[26] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn, “Design and
implementation of a TCG-based integrity measurement archi-
tecture,” in Proceedings of the 13th USENIX Security Symposium,
ser. SSYM’04. Berkeley, CA, USA: USENIX Association, 2004,
pp. 16–16.

[27] T. Jaeger, R. Sailer, and U. Shankar, “PRIMA: policy-
reduced integrity measurement architecture,” in Proceedings
of the 11th ACM symposium on Access control models
and technologies, ser. SACMAT ’06. New York, NY,
USA: ACM, 2006, pp. 19–28. [Online]. Available:
http://doi.acm.org/10.1145/1133058.1133063

[28] B. Li, J. Li, T. Wo, C. Hu, and L. Zhong, “A VMM-based
system call interposition framework for program monitoring,”
in Proceedings of the 16th IEEE International Conference on
Parallel and Distributed Systems, ser. ICPADS ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 706–711. [Online].
Available: http://dx.doi.org/10.1109/ICPADS.2010.53

[29] X. Jiang, X. Wang, and D. Xu, “Stealthy Malware Detection and
Monitoring Through VMM-based “out-of-the-box” Semantic
View Reconstruction,” ACM Transactions on Information
Systems Security, vol. 13, pp. 12:1–12:28, March 2010. [Online].
Available: http://doi.acm.org/10.1145/1698750.1698752

[30] B. Ford and R. Cox, “Vx32: lightweight user-level
sandboxing on the x86,” in Proceedings of the 2008
USENIX Annual Technical Conference. Berkeley, CA, USA:
USENIX Association, 2008, pp. 293–306. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1404014.1404039

[31] T. Kim and N. Zeldovich, “Making Linux protection
mechanisms egalitarian with UserFS,” in Proceedings of the
19th USENIX conference on Security. Berkeley, CA, USA:
USENIX Association, 2010, pp. 13–27. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1929820.1929823

[32] L. Lu, V. Yegneswaran, P. Porras, and W. Lee, “BLADE: an
attack-agnostic approach for preventing drive-by malware
infections,” in Proceedings of the 17th ACM conference on
Computer and communications security, ser. CCS ’10. New
York, NY, USA: ACM, 2010, pp. 440–450. [Online]. Available:
http://doi.acm.org/10.1145/1866307.1866356

[33] M. Fox, J. Giordano, L. Stotler, and A. Thomas, “SELinux and
grsecurity: A Case Study Comparing Linux Security Kernel
Enhancements,” 2003.

[34] Z. C. Schreuders, T. McGill, and C. Payne, “Empowering End
Users to Confine Their Own Applications: The Results of a
Usability Study Comparing SELinux, AppArmor, and FBAC-
LSM,” ACM Trans. Inf. Syst. Secur., vol. 14, no. 2, pp. 19:1–19:28,
Sep. 2011.

[35] M. Rajagopalan, M. Hiltunen, T. Jim, and R. Schlichting, “Au-
thenticated system calls,” in Proceedings of the 2005 International
Conference on Dependable Systems and Networks, June 2005, pp.
358–367.

[36] M. Rajagopalan, M. A. Hiltunen, T. Jim, and R. D.
Schlichting, “System call monitoring using authenticated
system calls,” IEEE Transactions on Dependable and Secure
Computing, vol. 3, pp. 216–229, July 2006. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1159168.1159375

[37] S. Forrest, S. Hofmeyr, and A. Somayaji, “The
evolution of system-call monitoring,” in Proceedings
of the 2008 Annual Computer Security Applications
Conference, ser. ACSAC ’08. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 418–430. [Online]. Available:
http://dx.doi.org/10.1109/ACSAC.2008.54

Hussain M. J. Almohri received his B.S.
from Kuwait University and his M.S. from
Kansas State University. He is a Ph.D. can-
didate in Virginia Tech with a full scholarship
funded by Kuwait University. He is a member
of ACM and IEEE computer society. His re-
search focuses on systems security, mobile
systems security, and quantitative security
measurements.

Danfeng (Daphne) Yao is an assistant pro-
fessor in Department of Computer Science at
Virginia Tech. She received the PhD degree
in computer science from Brown University.
Her research interests are in system and
network assurance and anomaly detection.
She received the National Science Founda-
tion CAREER Award in 2010 for her work
on human-behavior-driven malware detec-
tion. She received best paper awards from
ICNP ’12, CollaborateCom ’10, and ICICS

’06. She received the Outstanding New Assistant Professor Award
from VT. She is a member of the IEEE and the IEEE Computer
Society.

Dennis Kafura is a professor in Depart-
ment of Computer Science at Virginia Tech.
He received his Ph.D. and M.S. degrees in
Computer Science from Purdue University in
1974 and 1972, respectively. He joined the
faculty at Virginia Tech in 1982, serving as
Head of the department from 1998 to 2008.
His research interests are broadly in systems
and software engineering. He is the author
of over 50 refereed journal and conference
publications and the author of two books on

object-oriented programming. He is a member of the ACM, the IEEE,
and the IEEE Computer Society.

