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Abstract. Application-level protocol specifications (i.e., how a protocol
should behave) are helpful for network security management, including
intrusion detection and intrusion prevention. The knowledge of proto-
col specifications is also an effective way of detecting malicious code.
However, current methods for obtaining unknown protocol specifications
highly rely on manual operations, such as reverse engineering which is
a major instrument for extracting application-level specifications but is
time-consuming and laborious. Several works have focus their attentions
on extracting protocol messages from real-world trace automatically, and
leave protocol state machine unsolved.
In this paper, we propose Veritas, a system that can automatically infer
protocol state machine from real-world network traces. The main feature
of Veritas is that it has no prior knowledge of protocol specifications, and
our technique is based on the statistical analysis on the protocol formats.
We also formally define a new model – probabilistic protocol state ma-
chine (P-PSM), which is a probabilistic generalization of protocol state
machine. In our experiments, we evaluate a text-based protocol and two
binary-based protocols to test the performance of Veritas. Our results
show that the protocol state machines that Veritas infers can accurately
represent 92% of the protocol flows on average. Our system is general
and suitable for both text-based and binary-based protocols. Veritas can
also be employed as an auxiliary tool for analyzing unknown behaviors
in real-world applications.

Keywords: Protocol Model Inference and Analysis; Probabilistic Pro-
tocol State Machine; Network Security

1 Introduction

Detailed knowledge of protocol specifications is helpful in many network securi-
ty applications, such as intrusion detection systems [16], vulnerability discovery
[14], and protocol analyzers for Internet traffic monitoring [17]. Furthermore,
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given a protocol specification, it is important for application fingerprinting [15]
and mapping traffic to applications [7]. However, many network protocols, such
as private and non-standard protocols, have no public protocol specifications
available. Therefore, it is a crucial network security problem for Internet Service
Providers (ISP) to find out these unknown protocol specifications. In the con-
text of obtaining protocol specifications, inferring protocol state machines plays
a more important role in practice. Generally, the target of protocol specification
discovery concerns not only protocol message formats (i.e., the packet encap-
sulation mechanism), but also the protocol state machine. The protocol state
machine is a finite state automaton illustrating the states in the protocol and
their transitions (i.e., the state transition manner). Discovering message format
is useful in identifying protocols in monitored network traffic and building intru-
sion detection systems; and discovering protocol state machine can depict the
behavior of an application. Much previous work [5–9] was focused on extracting
the protocol format information, without resolving any protocol state machine.
However, there are a few exceptions [3, 4]. For example, Prospex [3] is an elegant
solution for both protocol format and state machine inferencing, which is use-
ful for malware analysis. Prospex’s analysis is based on observing the dynamic
execution of the program and thus requires the binary code.

Our paper provides a novel technique for inferring protocol state machine
solely based on the real-world network trace of an application. There are several
advantages associated with our approach. First, analyzing network traffic can be
easily automated and requires less manual effort. The analysis does not require
the distinction between client and server applications. Second, up to 40% of In-
ternet traffic belongs to unknown applications [19], many of them ran by botnets.
The binary code of these applications may not be available for reverse engineer-
ing. Inferring the state machine of unknown protocol from its real world trace
can help ISPs have a better understanding to the behaviors of traffic passing
through their networks.

We propose Veritas, a system that automatically extracts protocol state ma-
chine for stateful network protocols from Internet traffic. The input to Veritas
is the network trace of a specific application. Our output is a probabilistic de-
scription of the protocol state machine. This probabilistic protocol state machine
(P-PSM) is a new and powerful model that we define for capturing and represent-
ing any protocols with incomplete knowledge. In order to test and verify Veritas,
we apply our system to several real-world applications, including a client-server
protocol SMTP, two peer-to-peer protocols PPLIVE [21] and XUNLEI [20]. The
experiment results show that our system is capable of correctly recognize and
classify 86% SMTP flows, 100% PPLIVE and 90% XUNLEI flows. Our tool has
the following features: (a) requiring no knowledge of protocol specifications, (b)
based on the statistics of protocol formats, and (c) effective for both text and
binary protocols. Our contributions are summarized as follows.

– We introduce and formalize a new model – probabilistic protocol state ma-
chine (P-PSM) – for describing the protocol state machine in a probabilis-
tic fashion when there is incomplete knowledge about the protocol. P-PSM



model is general and can be used for representing any stateful protocol with
uncertain information.

– We design a system called Veritas, which can automatically infer the protocol
state machine of a specific protocol from its real-world trace with no prior
knowledge about the protocol specification. We propose a new technique to
extract protocol messages formats that is independent of the type of the
target protocol.

– We apply our system to verify real world applications. The applications con-
tain both text-based and binary-based protocols, which are quite complex.
Our results demonstrate that Veritas is capable of inferring protocol state
machine of good quality in practice.

The rest of the paper is organized as follows. Section 2 is dedicated to the
related work. In Section 3, we introduce the architecture of Veritas and present
each portion of the system. In Section 4, we make use of Veritas for protocol
inference and evaluate the whole system with different protocols. Finally, we
conclude our work with future research directions in Section 5.

2 Related work

We divide our discussion of related work into three areas, namely automatic
protocol reverse engineering, protocol message format extraction, and inferring
protocol state machine.

Automatic protocol reverse engineering. Accurately reversing protocols typi-
cally involves manual efforts, such as in the cases of Gaim [23] and [22]. There are
several proposals on automating this process. Lim et al. [1] proposed a method,
which automatically extracted the format from files and application data output.
Their works depend on some parameters, such as the output functions, which
may not be available. Polyglot [5] proposed a new approach for reverse engineer-
ing a protocol by using dynamic analysis of program binaries. In our work, we
assume that the program binary is not available; thus our work is orthogonal to
the above.

Protocol message format extraction. Much work in the current literature is
focused on protocol message format extraction. Kannan et al. [8] presented al-
gorithms on extracting the structure of application sessions embedded in the
connections. Haffer [7] automated the construction of protocol signatures on
traffic that contains the known instance of each protocol. Ma [9] proposed an
unexpected means of protocol inference without relying on the port numbers. His
method classify the network data belonging to the same protocol automatically.
Cui et al. [6] introduced a tool, which is for automatically reverse engineering
the protocol message format from its network trace. His method divided protocol
formats into different tokens by some experiential delimiters. In those studies,
inferencing protocol state machine was not investigated.

Inferring protocol state machine. Inferring protocol state machine plays an
important role in protocol specifications. The works that are closest to ours in-
clude ScriptGen and Prospex. ScriptGen [4] aims to infer protocol state machine



Message 

clustering

V
e
cto

riza
tio
n

fea
tu
r
e

Cluster

Centers

Feature 

Extraction

Real-world 

packets

 Packets of a specific 

application

Protocol format 

messages

Protocol state 

messages

State Inference

Message Units 

Extraction

K-S Test Filter

Units Combiner

C
a
n
d
id
a
te  

u
n
its

message 

units B

message 

units A

Packet  Analysis

Application 

Filter

Traffic Collection

Probalilistic 

Protocol 

State 

Machine

Building 

Flows

State Machine Inference

State 

Labeling

Fig. 1. The Architecture of Veritas

from network traffic. However, ScriptGen has to rebuilds TCP flows based on
several assumptions, and it can not handle each TCP session precisely. So those
limitations prevent it from emulating all possible protocols. Prospex [3] infers
protocol state machine by means of analyzing the execution trace of a program
on a stand-alone host. In comparison, our inference is based on observed network
traffic that can be performed by ISPs.

3 Architecture of Veritas

The objective of our system is to infer the specifications of a protocol that is
used for communication between different hosts. More specifically, given the
packet sequences of flows of a specific application, we investigate how protocol
state changes from one state to another in the flow. Our approach is to perform
machine learning and probabilistic/statistical analysis on the syntax of observed
network traces. In this section, we give the definitions used in Veritas and an
overview of Veritas architecture.

We define a protocol as a Markov chain model on sessions of length at most n,
which has a discrete state space. The Markov property states that the conditional
probability distribution of a system at the next time period depends only on
the current state of the system, i.e., not depending on the state of the system at
previous time periods.



Definition 1. The message that identifies the state of a protocol is referred to
by us as a protocol state message.

Protocol state messages are important for understanding the behaviors of
the protocol. However, one may not always be able to obtain the state message
directly from network traces. Our approach is to infer or estimate protocol state
messages by observing and analyzing messages that frequently occur next to
them.

Definition 2. The protocol format message refers to the most frequent string
(i.e., the keyword) in the protocol format.

Protocol format messages are useful for both protocol format inference and
obtaining the protocol state message. Protocol format messages include protocol
state messages, which we will give more description in the following subsection.

In comparison, research on protocol format extraction typically regards a
protocol as a distribution on sessions of length at most n [9], which is static.
In other words, the existing solutions work only for extracting the format of a
protocol, and cannot be used to describe the protocol states and their transitions.

The input to our system is the network trace of an application. In application-
layer packet headers, there may be some protocol state messages. Each of these
messages has a message type, which indicates the protocol state of the packet.
The sequence of packets (belonging to the same flow) is determined by the
protocol state machine of a specific application. Meanwhile, the protocol state
machine describes how packets of different message types are transmitted in the
traces.

Our assumptions In our work, we assume that the network trace is not en-
crypted. In addition, we assume that the network trace is only composed of
flows from the application to be investigated. That is, there is no mixed traffic
of multiple protocols.

Veritas has several components as shown in Figure 1, including network data
collection, packet analysis, state message inference, and state machine inference,
which we describe in more details next.

Network data collection. In this phase, network traffic of a specific ap-
plication (such as SMTP, DNS, BitTorrent etc.) is collected carefully. There are
several ways to get packets of a specific protocol, that is the ground truth. For
example, the GT [2] method, capturing packets on a specific transport layer port,
by means of reverse engineering and so on are all widely used. In this paper, the
method of collecting packets on a specific transport layer port is adopted.

Packet analysis. During the phase of packet analysis, we first look for high
frequency message units from off-line application-layer packet headers. Then, we
employ Kolmogorov - Smirnov (K-S) test [11] to determine the optimal number
of message units. Finally, we replay each application-layer packet header and
construct protocol message formats with candidate message units.

State message inference. In this phase, we extract the feature from each
protocol format message. The feature is used to measure the similarity between



format messages. Then, the partitioning around medoids (PAM) clustering algo-
rithm [12] is applied to group similar messages into a cluster. Finally, the medoid
message of a cluster will be a protocol state message.

State machine inference. In order to infer protocol state machine, we
should be aware of the protocol state sequence of flows. In order to label protocol
state, firstly our system builds flows for a specific protocol. Then, each packet
under analysis (if it has a state) will be assigned with a state. Afterwards, by
constructing the relationship between different states, a protocol state machine is
constructed. Moreover, in each flow the transitions probabilities of diverse states
are counted. Finally, together with the protocol state messages, the probabilistic
state machine is constituted.

3.1 Packet Analysis

The first stage of Veritas is to acquire the formats of protocol messages. In
Veritas, we extract message formats by applying statistical learning methods on
protocol packets. Protocol format messages can be extracted from application-
layer packet headers by searching for frequently occurring strings (i.e., keywords).
These keywords are typically encapsulated at the beginning of application-layer
packets. Taking SMTP (Simple Mail Transfer Protocol) for example, both of
the strings “MAIL FROM:” and “RCPT TO:” are its format messages, which
usually reside in the SMTP protocol application headers. We assume that the
protocol specifications is not available to us. Next, we describe in details how we
analyze collected packets in order to infer protocol format messages.

Message Units Extraction Protocol format messages are defined by us as the
most frequently occurred strings in the traces of a protocol. From a statistical
perspective, if each protocol format can be partitioned into a set of all possible
subsequences with fixed lengths, the frequency of these subsequences can be
counted precisely.

However, there are two practical problems. The first issue is how to choose
the length l of these subsequences, which is critical to the performance of Veritas.
The second issue is that given a packet how to determine the number n of bytes
that are protocol related (i.e., not payload). The latter problem arises, as it
is unnecessary to the payload of a packet. Thus, the problem message units
extraction turns to determining proper values for l and n.

Definition 3. The l-byte subsequence originated from the first few bytes of each
packet header in network traces is referred to by us as a message unit.

We investigate several common application-layer protocols, and find that the
minimum field length of those protocols, both text and binary, is at least three
bytes. In addition, it is easy to see that the subsequences with length three will
be more differentiable than those with length two. The sequence set with three
bytes is larger than that with two characters, so high frequency of three-byte
sequences is more prominent in special subsequence seeking. On the other hand,



the subsequences with length four or more will weaken its occurrence frequency.
Therefore, in Veritas we set l = 3. Furthermore, if the packet length s is smaller
than three bytes, we regard l = s. For the other parameter n, we just give a
tentative value 12.

It should be noticed that not all of the message units obtained from the
method aforementioned are protocol relative. In order to get the high frequency
units helpful in characterizing application layer protocol, Veritas introduces the
two-sample Kolmogorov-Smirnov statistical testing method (abbr. K-S test) [11]
to tackle the resulting message units set.
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Fig. 2. Packet Analysis of Veritas

K-S Test Filter In this part, we employ a K-S test filter to obtain message
units, which are associated with protocol formats. A concrete example is illus-
trated in Figure 2. The input to K-S test filter is two groups of message units
which is obtained by packet analysis. Before conducting K-S test, Veritas will
turn message units into numeric values. The output to K-S test filter is candidate
units which are used for constructing protocol format messages.

The essence of K-S test is to estimate the similarity of two samples according
to their empirical probability distributions in a nonparametric way. Given two
samples, say Sn and Sn′ , where the subscripts represent the sample sizes, their
empirical distribution functions (denote Fn and Fn′ respectively) can be calcu-
lated as F (X) = 1

n

∑n
i=1 IXi≤x, where IXi≤x is the indicator function, equal

to 1 if Xi ≤ x and equal to 0 otherwise. Then K-S test conducts the similari-
ty measurement by quantifying the distance between Fn and Fn′ as a statistic
Dn,n′ = supx |Fn(x)− Fn′(x)|. The null hypothesis is that the samples are drawn
from the same distribution, without specifying what that common distribution
is. The null hypothesis is rejected (at level α) if

√
nn′/(n+ n′)Dn,n′ > Kα,

where Kα is the critical value which can be found from Pr(K ≤ Kα) = 1 − α
under the Kolmogorov distribution.



So, in order to apply K-S test, the packet collection of a specific protocol
should be randomly partitioned into two disjoint groups A and B with approx-
imately the same size by utilizing the units extraction strategy described in
Section 3.1, two groups will yield two message-unit sets, A and B respectively.
Then after turning message units into numeric values, the frequency fx of el-
ement x in each set can be counted easily. Then for set A, we partition those
elements with frequency higher than or equal to λ into a subset Aλ. Here, λ
is a frequency threshold. Doing the same thing on B generates Bλ. Now the
application of K-S test on Aλ and Bλ is just to choose a suitable value λ under
which the null hypothesis is acceptable. The rejection of K-S test on Aλ and Bλ

means the threshold λ is not high enough to cut off useless units.

In the circumstance of Veritas, the aim of K-S test is to filter out message
units that is not relevant to protocol formats. That is, it requires the result sets
Aλ and Bλ responsible for the reflection of protocol formats. Put it in the way of
statistical testing, the K-S test on Aλ and Bλ should be accepted at a extremely
low level (i.e., 1−α should be small enough). In Veritas, 1−α is valued less than
10−8. Then, for the purpose of accepting the K-S test under the chosen reject
level α, Veritas manipulates λ in a progressive way: it is initialized as 10−5 and
gradually increases by 10−5 till K-S test accepts.

Once the K-S test finished (i.e., been accepted), the elements in Aλ

∩
Bλ

will be called candidate message units. Then Veritas attempts to recover the
protocol format messages from these candidate message units.

Protocol Format Message Inference Obtaining protocol format messages
is important, as these messages are used for inferring protocol state messages,
which is described in Section 3.2. We design a units combiner, which is employed
to recover protocol format messages from candidate message units obtained. Here
we give a concrete example to explain the process of protocol format messages
reconstruction. As shown in Figure 2, the candidate units set ϕ is comprised
of five message units (DAT,ATA,HOS,OST and STS). The possible protocol
format message can be checked out as follows,

1. Randomly selecting a group of packets from the traffic collection, say Packet
Header 1 in Figure 2.

2. With candidate message units, the units combiner tries to rebuild all se-
quences as long as possible (maybe more than one) for each packet header.
So all of these sequences only contain possible three-byte subsequences which
are lying in ϕ.

3. All of these obtained sequences are regarded as protocol format messages,
such as ‘DATA HOSTS’ in Figure 2.

Furthermore, not all packets contain protocol format message, since some
packets only transmit data. Next, we describe our machine-learning methods for
inferring protocol state messages.
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3.2 Inferencing Protocol State Messages

As defined earlier, protocol state messages are important and can be used to
represent states of a protocol. From our packet analysis, our system obtains a
set of protocol format messages from application-layer packet headers, based on
which we derive protocol state messages. This derivation is based on a statistical
approach, namely using a clustering algorithm.

We need to assign a type to each protocol format message, which can be
accomplished in two steps. First, we define the features of a protocol format
message, as well as a similarity metric between messages. We assume that mes-
sages of the same type share a similar message format. Second, our system will
group similar format message into a cluster using machine learning methods.
Similar messages are likely to be placed in the same cluster, which is labeled
by us with the proper type. We define the center of each cluster as a protocol
state message, which can be used to represent other messages in the cluster.
The relationship between protocol state messages and protocol format messages
is illustrated in Figure 3. In Figure 3, each dot represents one protocol format
message. Furthermore, as shown in Figure 3, protocol state messages are part of
protocol format messages, and a protocol state messages is the center message
of a cluster.

However, there are two technical challenges in message clustering. First, we
have no knowledge of the similarities between messages or their types. Second, we
get no prior knowledge about how many state messages are in a certain protocol
under analysis. Next, we describe the details of our similarity computation, and
how we realize clustering and address the challenges.

Feature Extraction and Similarity Calculation In order to group similar
format messages, we need to extract the feature from each format message. In
Veritas, the feature of a protocol format message is expressed by a vector in
∈ R256, with the i-th (starting from 0) component counting the number of one-
byte character (values i) in that message. Meanwhile, we regard that two format
messages of the same type should have a similar character composition. After-



wards, our system carries out similarity calculation between different format
messages.

For the purpose of comparing the similarity between two format messages,
we make use of the Jaccard index [13], which is defined as follows:

J(a, b) =
|a ∩ b|
|a ∪ b|

, (1)

where, a is the set of elements associated with the feature of the first message,
while b is the set that stands for the same feature of the second message. J(a, b)
gains its maximum value 1 when all the items in the given set are the same
and it will achieve its minimum value 0 when all the items in the given set are
distinct.

Message Clustering Based on the feature and the similarity function intro-
duced in the previous subsection, we define the distance between two protocol
format messages, which is crucial in clustering. The distance of two protocol for-
mat messages a and b is defined as d(a, b) = 1− J(a, b), where J is the Jaccard
index in this paper.

In order to group protocol format messages, we make use of the Partitioning
Around Medoids (PAM) algorithm [12]. In contrast to the k-means algorithm,
the partitioning around medoids algorithm is more robust to noise and outliers.
Therefore, PAM algorithm are suitable for protocol state messages inferring. Just
like most other clustering algorithms, the partitioning around medoids algorithm
needs an integer value k (the number of clusters) as the input. In order to
find out a proper k value, we use a generalization of the Dunn index [18] as a
measurement. The Dunn index is a standard intrinsic measurement of clustering
quality, defined as follows.

D(k) =
min1≤i≤k{min1≤j≤k{δ(Ci, Cj)}}

max1≤i≤k{∆(Ci)}
, (2)

where Ci, .., Ck are the clusters, ∆(Ci) is the diameter of cluster Ci, and
δ(Ci, Cj) is the distance between two clusters. According to Equation 2, we may
see in a clear way that the numerator of Equation 2 is a measure of cluster sepa-
ration and denominator is a measure of cluster compactness. In our experiment,
the k, which maximizes the Dunn index, would be chosen. Finally, the format
message of each cluster center is regarded as a protocol state message, and the
type of the protocol state message is represented by π.

3.3 Probabilistic Protocol State Machine

Because our analysis is based on statistical methods, Veritas is able to represent
protocol state relations probabilistically. In this section, we introduce a novel



expression of protocol state machine – probabilistic protocol state machine (P-
PSM). P-PSM can be used to describe both protocol state transitions and their
probabilities. Moreover, the probabilistic protocol state machine is helpful for
identifying critical paths of a protocol.

Notation. Let Σ be the set of characters (256 possibilities) and Σ∗ be the
set of protocol state messages that can be built from Σ. In Σ, symbols can be
denoted as (\00, \01, \02, ... , \ff) and protocol state messages in Σ∗ will be
represented by alphabet letters (a, b, ... , z). Therefore, a protocol state transition
Tij can be denoted by (σi,σ2,... ,σj) from a starting state i to an accepting

state j, where ∀σ ∈ Σ∗. Pr(Tij) is a probability
∏j

k=i,σk∈Σ∗ σk. Moreover, the
distribution must satisfy the equation

∑
ij∈Σ∗ Pr(Tij) = 1. The distribution can

be modeled by a probabilistic protocol state machine A (defined next). The
protocol under analysis will be described by A in a probabilistic manner.

Formal Definition of P-PSM We give the formal definition for probabilis-
tic protocol state machine (P-PSM). P-PSM is a specialization of the general
probabilistic finite-state machine [10] in the (network) protocol context.

Definition 4. A P-PSM is a tuple A.

A = ⟨QA, Σ
∗, δA, IA, FA, PA⟩, where:

– QA is a finite set of states;
– Σ∗ is the set of protocol state messages;
– δA ⊆ QA ×Σ∗ ×QA is a set of transitions;
– IA : QA −→ R+ (initial-state probabilities);
– FA : QA −→ R+ (final-state probabilities);
– PA : δA −→ R+ (transition probabilities).

IA, FA, PA are function such that:

∑
q∈QA

IA = 1, (3)

and

∀q ∈ QA, FA(q) +
∑

x∈Σ∗,q′∈QA

PA(q, x, q
′) = 1. (4)

By convention, P-PSMs are illustrated by directed labeled graphs. In Figure
4, we give a concrete example of P-PSM. In what follows, the subscript A will
be dropped when there is no ambiguity. Typically, a protocol description by
means of P-PSM begins with starting states (q0 in Figure 4) and finishes with
accepting states (q2, q3 in Figure 4). In Figure 4, there are four states Q =
{q0, q1, q2, q3}, only one initial-state (I(q0) = 1) and the real numbers in the
states are the final-states probabilities. In addition, there are five protocol state
messages, Σ∗ = {a, b, c, d, e}, and real numbers in the arrows are transition
probabilities.
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3.4 State Machine Inference

Veritas constructs the protocol state machine based on protocol state mes-
sages, which are obtained from message clustering. Since each stateful packet
has its own type, a TCP or UDP flow fi, can be represented as a sequence
Fi = (π1, .., πh), where π1, .., πh ∈ M and M is the set of protocol state mes-
sages. Next, we give details on how to associate a network packet with a state
label and to construct the protocol state machine in a probabilistic fashion.

State Labeling We describe how to label each network packet with a state
type, which is assigned at message clustering. Since our state labeling method is
entirely based on a flow model, a 5-tuple of a flow, (source address, destination
address, source port, destination port, timeout), is needed as a distinction of
different flows. In a 5-tuple, the timeout value indicates the duration of a flow.
In our work, several timeout values (16s, 32s, 64s) have been examined in our
experiments. From our experiment results, we find that the timeout value is
not sensitive in our system, and different timeout values will yield the same
experiment results. As a result, in the following experiments, the timeout value
will be set to 64s.

As it is defined in previous section, πi, .., πk are cluster center messages (pro-
tocol state messages). In this phase, after aligning the two messages to be com-
pared, we denote the feature of the packet header under analysis with ρ, and
the feature of the cluster center message πi with θi. For each packet, our system
calculates the distance between ρ and θi, and labels the packet header ρ with
the type of pii, which satisfies that argmin d(ρ, θi), where i ∈ [1, k].

However, not each packet header have a state type. For example, some data
transmission packet do not contain any protocol format message, so it will be
not marked with any state type. Assuming that ∆(Ci) is the diameter of cluster
Ci, dmax can be defined as follows, dmax = max1≤i≤k{2∆(Ci)}. Ch is the cluster
that is nearest to the packet header ρ′ under analysis. If d(θh, ρ

′) > dmax, the
packet header ρ′ will be assigned with an unknown state type.

After labeling all packets of a specific protocol, Veritas constructs a proba-
bilistic protocol state machine, as explained next.
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Obtaining Probabilistic Protocol State Machine After the phase of state
labeling, we are aware of the state type π of the packet in each flow. And then in
each TCP or UDP flow Fi, Fi = (π1, .., πh), our system calculate the frequency
of each state type pair, such as (πi, πi+1). Therefore, Veritas will obtain both
the order of different state types and the transition probability from state type
πi to πi+1. For the reason that network packets may be out of order in real-world
transmission environment, we employ a threshold value as a filter, which can get
rid of state type pairs that is out of order. The system only keeps the state type
pairs with a frequency above 0.005.

According to the set of state type pairs, our system is able to depict the
linkage of each state type pair with a directed labeled graph. And all linkages
of state type pairs are employed to construct a deterministic finite automaton
(DFA) of the protocol under analysis, T . Afterwards, we find the minimal DFA
that is consistent with T . In the end, probabilistic protocol state machine (P-
PSM) will be the combination of minimal DFA and the set of state transition
probabilities.

4 Experimental Evaluation

In evaluation section, in order to verify the effectiveness of Veritas, we use two
kinds of protocols, text and binary. For each protocol under analysis, the input
to our system is real-world trace of the protocol, and the output to the system
is the protocol state machine described in a probabilistic mode.

4.1 Text Protocol

In this paper, we choose SMTP (Simple Mail Transfer Protocol), which is a
stateful and text-based protocol, as a verification of text protocol for our system.
In order to infer the P-PSM of SMTP, we capture real-world packets of SMTP
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Fig. 6. Probabilistic protocol state machine of SMTP

protocol. In this paper, the data source of SMTP is real-world trace, which is
obtained from a backbone router on TCP port 25.

In message clustering phase, as it is shown in Figure 5, the optimal cluster
number k for SMTP is 12. Moreover, after several iterative clustering experi-
ments, we find that EHLO and HELO messages are grouped into a cluster. And
the probability of EHLO and HELO being the medoid of the cluster is equal.
This is due to the fact that mail clients may send an EHLO or a HELO command
to initialize a connection.

After state machine minimization, the final P-PSM of SMTP protocol we
inferred is shown in Figure 6. As it is shown in Figure 6, the P-PSM of SMTP
protocol contains two parts, one may be the state transition of client to server,
and the other is the state transition of server to client. In addition, from State
q4 to State q5, the state machines only carry on SMTP data transmission, which
does not contain any state information. Furthermore, from State q10 to State
q13, unknown protocol state message is represented by x currently.

4.2 Binary Protocols

To test the validation of our system to the binary protocol, in this part we choose
PPLIVE and XUNLEI, which are peer-to-peer and binary-based protocols.

Analysis on a P2P Streaming Video Application PPLIVE is a famous
peer-to-peer streaming video application in China. The data source of PPLIVE
protocol is obtained from our server which only runs an entertainment channel of
PPLIVE on UDP port 3987. After state message inference phase, as it is shown
in Figure 5, the optimal cluster number k for PPLIVE protocol is 8.

After state machine inference, the ultimate P-PSM of PPLIVE protocol is
shown in Figure 7. Moreover, the set of protocol state messages are illustrated
in Table 1.



Table 1. PPLIVE Protocol State Messages.

Sign Protocol State Message

a 0xe9 0x03 0x62 0x01 0x98 0xab 0x01 0x02 0x01

b 0xe9 0x03 0x61 0x01 0x98 0xab 0x01 0x02 0x01

c 0xe9 0x03 0x63 0x01 0x98 0xab 0x01 0x02 0x01

d 0xe9 0x03 0x53 0x00 0x98 0xab 0x01 0x02 0x5b

e 0xe9 0x03 0x49 0x01 0x98 0xab 0x01 0x02 0x98

f 0xe9 0x03 0x51 0x01 0x98 0xab

g 0xe9 0x03 0x50 0x00 0x98 0xab 0x01 0x02 0x9b

h 0xe9 0x03 0x4a 0x01 0x98 0xab 0x01 0x02 0x01
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Fig. 7. Probabilistic protocol state machine of PPLIVE protocol.

Analysis on a P2P File-Sharing Application XUNLEI is a popular P2P
application in China, and it holds a significant UDP Internet traffic. The data
source of XUNLEI protocol is obtained from backbone routers on UDP port
15000. In message clustering phase, as it is shown in Figure 5, the optimal cluster
number k for XUNLEI protocol is 10. However, 10 is not the final number of
protocol state messages. In the next step, the system will construct DFA and
find the minimal DFA that is consistent with it.

After state machine minimization, the ultimate P-PSM of XUNLEI protocol
is shown in Figure 8. Moreover, the set of protocol state messages is illustrated
in Table 2. Furthermore, sign f is not depicted in Figure 8 for the reason that
state type pairs correspond with f are of very small probability. As far as we
know, f is an old version of XUNLEI protocol state message. If we analyze flows
correlated with f respectively, we will get a more comprehensive experiment
result, which we do not show here.

4.3 Quality of Protocol Specification

In order to evaluate the quality of protocol specification inferred by Veritas,
we make use of real-world network traces to test P-PSMs we inferred. In the



Table 2. XUNLEI Protocol State Messages.

Sign Protocol State Message

a 0x32 0x00 0x00 0x00 0x06 0x00 0x00

b 0x32 0x00 0x00 0x00 0x07

c 0x32 0x00 0x00 0x00 0x08

d 0x32 0x00 0x00 0x00 0x11

e 0x32 0x00 0x00 0x00 0x12

f 0x32 0x00 0x00 0x00 0x09
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Fig. 8. Probabilistic protocol state machine of XUNLEI protocol.

following experiments, we will demonstrate that the P-PSMs we inferred are
complete. Completeness is a measurement of protocol specifications accepting
valid protocol sessions.

For SMTP, there are about 100,000 SMTP flows captured from the backbone
router. Out of those flows, the SMTP protocol state machine are able to parse
the state transitions of about 86% flows successfully. The remaining SMTP flows
may use an encryption transmission, which we can not handle properly as one of
the limitations of our system is its incompetence to deal with encrypted traffic.

PPLIVE peers always employ UDP packets to communicate and transmit
data with each other. For the purpose of testing the quality of the PPLIVE
specification, about 200,000 UDP flows of PPLIVE are captured from a server
which runs a news channel of PPLIVE on September 9th, 2009. For PPLIVE
flows, we are able to parse the state transitions of all flows successfully.

In order to test and verify XUNLEI protocol specification, there are about
500,000 UDP flows of XUNLEI obtained from a backbone router. For XUNLEI
flows, we are able to parse the state transitions of about 90% flows success-
fully. The flows we parsed take up more than 99% XUNLEI protocol packets
under analysis. Since our method is based on high probability sets, it will not
be sensitive to the event of small probability.



From the above experiment results, we can find that the probabilistic pro-
tocol state machines we inferred are of good quality. The whole system can be
employed as an auxiliary tool for analyzing unknown behaviors in real-world
applications.

4.4 Summary

Our technique for inferring protocol state machine is based on a statistical model,
and it is sensitive to states which are statistically significant. Therefore, maybe
Veritas cannot cover all the paths of a protocol state machine. However, our
method is suitable for analyzing critical paths in a protocol, which is very im-
portant in intrusion detection. Moreover, our experiment results show that the
our inference method has a high degree of accuracy in practice.

5 Conclusions and Future work

Inferring protocol state machine from Internet traffic is a fundamental network
security problem, solutions to which have many practical applications. In this
paper, we presented a new solution to this problem. We proposed Veritas, a sys-
tem that can automatically extract protocol state machine for stateful network
protocols solely from Internet traffic. The input to Veritas is the real-world trace
of a specific application, and the output is the protocol state machine of that ap-
plication with a probabilistic description. Our technique proceeds mainly in the
following steps. First, the real-world trace of a specific application is extracted
from Internet traffic. Then, by analyzing each packet header, we capture the pro-
tocol message format from packet headers. Afterwards, by means of clustering
algorithms, protocol state messages will be obtained. Based on the clusters, we
assign a type to each packet of flows. Finally, we obtain the probabilistic proto-
col state machine. Our verification experiments show that Veritas is general and
suitable for both text and binary protocols. The P-PSM inferred by our system
reflects the actual applications with high degrees of accuracy.

For future work, we plan to work on semantic inference with Veritas for
better understanding of protocol specifications. Moreover, Veritas can only deal
with real-world network trace of a single application. In the future, we would
like to make it fit for the multi-protocol environment.
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