Registry Callbacks

© Copyright Microsoft Corporation, 2001. All Rights Reserved

Note: This documentation is an early release of the final product documentation. It is
meant to accompany software that is still in development. Some of the information in this
documentation may be inaccurate or may not be an accurate representation of the
functionality of the final retail product. Microsoft assumes no responsibility for any
damages that might occur either directly or indirectly from these inaccuracies.

Microsoft Corporation
Windows DDK Page 1

© Copyright Microsoft Corporation, 2001. All Rights Reserved

1. Introduction

2. Implementation Details

2.1 Callback prototype

2.2 Invocation of callbacks

2.3 Callback Registration and Deregistration

2.4 Writing a callback routine

3. Compatibility Notes

4. Appendix

Microsoft Corporation
Windows DDK Page 2

1. Introduction

This feature adds callback support to the Registry. Callback support is needed by
virus filters and other components that need to control access to the machine’s registry.
In Windows XP, the system service table is marked read-only as part of a general effort
to keep the system from being destabilized by errors in drivers. It was then discovered
that a number of kernel-mode components from third parties had been patching the
system service table in order to monitor and control application invocation of system
services. The registry APIs were one of the key areas where third parties needed to
intercept calls, so this new facility is intended to provide an alternative to patching the
system service table.

Registry callbacks provide a way for kernel-mode components to get control
whenever an application attempts to access the Registry. The callbacks provide a way to
monitor registry access as well as fail calls. Registry callbacks are a kernel-only
mechanism.

The remainder of this document describes the logic by which the Registry calls
the registered callbacks, registration/deregistration routines and data structures used to
pass call parameters between the registry and the callbacks.

Microsoft Corporation
Windows DDK Page 3

2. Implementation Details

2.1 Callback prototype

Due to the large number of registry APIs, the registry uses a single callback for all
registry APIs rather than a distinct callback for each API. The callback is based on the
general executive callback mechanism. The prototype the registry filters should
implement for the callback procedure is defined in ntddk.h as:

typedef NTSTATUS (*PEX CALLBACK FUNCTION) (
IN PVOID CallbackContext,
IN PVOID Argumentl,
IN PVOID Argument2

);

e CallbackContext is for the callback’s internal use. It is passed in at registration
time and then passed to the callback procedure every time the callback is invoked.

o Argumentl is a type selector and specifies the current registry call for which the
callback is invoked. It is of type REG NOTIFY CLASS (see below).

e Argument? is a pointer to a structure where the actual parameters are packed
together. It is of one of the PREG_* INFORMATION types (see below).

The difference between the parameters passed to a registry APl and the
parameters to the corresponding callback procedure is that instead of a handle, the
callback procedure is passed the object pointer. Handles are not safe to use in the
callbacks because they can be closed and reused asynchronously with the callbacks.
Object pointers avoid this problem because the object manager takes a reference on the
object before passing the pointer to the callback, and releases the reference after the
callback returns. The callback should not itself maintain a reference on the object.

2.2 Invocation of callbacks

Callbacks will be invoked before any internal registry work is done, providing the
callback the opportunity to fail the API before the registry operation takes place..

The registry will probe the API parameters before passing them to the callback.
However, the registry does not capture them, so the callback implementers should be
aware that data buffers could be un-trusted user mode addresses and access them only
inside a try/except block.

The registry does not hold any locks within the current thread while invoking the
callbacks. This is to reduce the possibility of deadlock or vulnerability to denial of
service attacks.

Microsoft Corporation
Windows DDK Page 4

For each registry operation, callback routine will be invoked twice. First before
any operation is performed (the ‘pre’ callback notification) and second after the operation
is performed (the ‘post’ callback notification). Operation types are prefixed with ‘Pre’
and ‘Post’ accordingly (see appendix - ReEG POST OPERATION INFORMATTION).

Below is the pseudo code for Registry invocation of ‘pre’ callbacks:

If (AreCallbacksRegistered()) {
for (all registered callbacks) {
status = callback(...);
if (INT SUCCESS(status)) {
return status to the registry API caller without doing
any registry work

/

For ‘post’ notification, the operation type, status of the operation and the object
upon which it was performed will be fed to the callback. Callback return code will be
ignored. Callback writers can match pre and post calls by recording the thread ID in the
pre notification and match against it in the post notification.

Callback procedures may use any registry API. However, callbacks will not be
invoked for registry APIs called from inside a callback.

Note: For NtCreateKey and NtOpenKey post callbacks the Object field is NULL

on error. Callback writers should first check the status code to make sure it is safe to
dereference the Object.

2.3 Callback Registration and Deregistration

Callback register and un-register APIs are declared in ntddk.h. To register a
callback, callback writers would call:

NTSTATUS

CmRegisterCallback(IN PEX CALLBACK FUNCTION Function,
IN PVOID Context,
IN OUT PLARGE INTEGER Cookie
).

Function is the actual callback routine, handling the registry APIs of interest.

Context is an opaque value to be passed back to the callback every time the
callback is involved. Its interpretation is up to the callback routine.

Cookie is used to un-register the callback.

To un-register a callback:

Microsoft Corporation
Windows DDK Page 5

NTSTATUS
CmUnRegisterCallback(IN LARGE INTEGER Cookie);

Cookie should be the same as returned by the register API.

2.4 Writing a callback routine

A callback routine should immediately return STATUS SUCCESS for any
Registry operation that is not of interest. After considering the parameters to operations
that it wants to filter, a callback routine should return an error code rather than
STATUS SUCCESS for any operation it intends to fail.

When an error status is returned the corresponding registry API call is
immediately failed without any changes being made to the registry. (Except for the status
code for post-create operations, which is ignored: the create/open registry APIs can only
be failed in the pre-create callback).

Here is how a simple callback routine should look (see Appendix or ntddk.h for
type definitions):

NTSTATUS RegistryCallback(
IN PVOID CallbackContext,
IN PVOID Argumentl,
IN PVOID Argument2
)
{
REG_NOTIFY_CLASS Type;
Type = (REG_NOTIFY_CLASS)Argumentl;
switch(Type) {
case RegNtPreCreateKeyEx:

REG_ CREATE KEY INFORMATION pCreate =
(REG_ CREATE_KEY_INFORMATION)Argument2;

1
// Code to handle Pre - CreateKey
1

}

break;

case RegNtPreDeleteKey:

PREG_DELETE KEY INFORMATION pDelete
=(PREG_DELETE_KEY_INFORMATION)Argument?2;

1
// Code to handle NtDeleteKey
1

}

break;

case RegNtPreSetValueKey:

PREG_SET _VALUE_KEY INFORMATION pSetValue =
(PREG_SET VALUE KEY INFORMATION)Argument2;

//
// Code to handle NtSetValueKey
/

}

break;

case RegNtPreDeleteValueKey:

{

Microsoft Corporation
Windows DDK Page 6

PREG_DELETE VALUE KEY_ INFORMATION pDeteteValue

/
/I C
/l
}
break;
default:
/l

= (PREG_DELETE_VALUE_KEY_INFORMATION)Argument2;

ode to handle NtDeleteValueKey

// we are not interested to hook these APIs. Let the call pass through and return STATUS_SUCCESS

//
break;
}

return STATUS _SUCCESS;

}

3. Compatibility Notes

This documents refers to .Net server. Differences in prior versions are outlined

below:

Windows XP gold and service packs send only pre notifications with the
exception of NtCreateKey and NtOpenKey where both pre and post

notifications are sent. The following pairs are used:
o (RegNtPreCreateKey, REG_PRE CREATE KEY INFORMATION)
o (RegNtPreOpenKey,REG PRE OPEN KEY INFORMATION)
o (RegNtPostCreateKey, REG POST CREATE KEY INFORMATION)
o (RegNtPostOpenKey,REG POST OPEN KEY INFORMATION)

Windows .Net server doesn’t send the above pre/post notifications in the
create/open case (for backward compatibility reasons). Instead it send the
new EX versions, as below:

o (RegNtPreCreateKeyEx, REG_CREATE KEY INFORMATION)

o (RegNtPreOpenKeyEx, REG_OPEN KEY INFORMATION)

o (RegNtPostCreateKeyEx, REG POST _OPERATION INFORMATION)

o (RegNtPostOpenKeyEx, REG POST OPERATION INFORMATION)
In the post create/open notifications Windows XP sets the Object filed to
the address of the pointer to the object instead of the pointer to the object
(PVOID * instead of PVOID). Callbacks can work around this by doing

an extra dereference on the Object address. This has been fixed in .Net.

Microsoft Corporation
Windows DDK Page 7

4. Appendix

The following definitions are from from ntddk.h. Consult that file for the most
up-to-date versions. The typedefs describe how the parameters are passed to the callback
for each registry APIL. ntddk.h is the only header a callback writer needs to include in

order to get these definitions.

//

// Registry kernel mode callbacks

//

//

// Hook selector

//

typedef enum REG NOTIFY_ CLASS ({
RegNtDeleteKey,
RegNtPreDeleteKey = RegNtDeleteKey,
RegNtSetValueKey,
RegNtPreSetValueKey = RegNtSetValueKey,
RegNtDeleteValueKey,

RegNtPreDeleteValueKey = RegNtDeleteValueKey,
RegNtSetInformationKey,
RegNtPreSetInformationKey = RegNtSetInformationKey,
RegNtRenameKey,
RegNtPreRenameKey = RegNtRenameKey,
RegNtEnumerateKey,
RegNtPreEnumerateKey = RegNtEnumerateKey,
RegNtEnumerateValueKey,
RegNtPreEnumerateValueKey = RegNtEnumerateValueKey,
RegNtQueryKey,
RegNtPreQueryKey = RegNtQueryKey,
RegNtQueryValueKey,
RegNtPreQueryValueKey = RegNtQueryValueKey,
RegNtQueryMultipleValueKey,
RegNtPreQueryMultipleValueKey = RegNtQueryMultipleValueKey,
RegNtPreCreateKey,
RegNtPostCreateKey,
RegNtPreOpenKey,
RegNtPostOpenKey,
RegNtKeyHandleClose,
RegNtPreKeyHandleClose = RegNtKeyHandleClose,
//
// .Net only
//
RegNtPostDeleteKey,
RegNtPostSetValueKey,
RegNtPostDeleteValueKey,
RegNtPostSetInformationKey,
RegNtPostRenameKey,
RegNtPostEnumerateKey,
RegNtPostEnumerateValueKey,
RegNtPostQueryKey,
RegNtPostQueryValueKey,
RegNtPostQueryMultipleValueKey,
RegNtPostKeyHandleClose,
RegNtPreCreateKeyEx,
RegNtPostCreateKeyEx,
RegNtPreOpenKeyEx,
RegNtPostOpenKeyEx

} REG_NOTIFY CLASS;

//

// Parameter description for each notify class
//

typedef struct REG DELETE KEY INFORMATION {

Microsoft Corporation
Windows DDK Page 8

PVOID Object; // IN
} REG_DELETE_KEY INFORMATION, *PREG DELETE KEY INFORMATION;

typedef struct REG SET VALUE KEY INFORMATION {

PVOID Object; // IN
PUNICODE_ STRING ValueName; // IN
ULONG TitleIndex; // IN
ULONG Type; // IN
PVOID Data; // IN
ULONG DataSize; // IN

} REG_SET VALUE KEY INFORMATION, *PREG SET VALUE KEY INFORMATION;

typedef struct REG DELETE VALUE KEY INFORMATION {
PVOID Object; // IN
PUNICODE STRING ValueName; // IN
} REG DELETE VALUE KEY INFORMATION, *PREG DELETE VALUE KEY INFORMATION;

typedef struct REG SET INFORMATION KEY INFORMATION {

PVOID Object; // IN
KEY SET TINFORMATION CLASS KeySetInformationClass; // IN
PVOID KeySetInformation; // IN
ULONG KeySetInformationLength;// IN

} REG_SET_INFORMATION KEY INFORMATION, *PREG_SET_ INFORMATION_ KEY INFORMATION;

typedef struct REG ENUMERATE KEY INFORMATION {

PVOID Object; // IN
ULONG Index; // IN
KEY INFORMATION CLASS KeyInformationClass; // IN
PVOID KeyInformation; // IN
ULONG Length; // IN
PULONG ResultLength; // OUT

} REG_ENUMERATE KEY INFORMATION, *PREG ENUMERATE KEY INFORMATION;

typedef struct REG ENUMERATE VALUE KEY INFORMATION {

PVOID Object; // IN
ULONG Index; // IN
KEY VALUE INFORMATION CLASS KeyValueInformationClass; // IN
PVOID KeyValueInformation; // IN
ULONG Length; // IN
PULONG ResultLength; // OUT

} REG_ENUMERATE VALUE KEY INFORMATION, *PREG ENUMERATE VALUE KEY INFORMATION;

typedef struct REG QUERY KEY INFORMATION {

PVOID Object; // IN
KEY INFORMATION CLASS KeyInformationClass; // IN
PVOID KeyInformation; // IN
ULONG Length; // IN
PULONG ResultLength; // OUT

} REG_QUERY KEY INFORMATION, *PREG QUERY KEY INFORMATION;

typedef struct REG QUERY VALUE KEY INFORMATION ({

PVOID Object; // IN
PUNICODE STRING ValueName; // IN
KEY VALUE INFORMATION CLASS KeyValueInformationClass; // IN
PVOID KeyValueInformation; // IN
ULONG Length; // IN
PULONG ResultLength; // OUT

} REG QUERY VALUE KEY INFORMATION, *PREG QUERY VALUE KEY INFORMATION;

typedef struct REG QUERY MULTIPLE VALUE KEY INFORMATION {

PVOID Object; // IN
PKEY VALUE ENTRY ValueEntries; // IN
ULONG EntryCount; // IN
PVOID ValueBuffer; // IN
PULONG BufferLength; // IN OUT
PULONG RequiredBufferLength; // OUT

} REG_QUERY MULTIPLE VALUE KEY INFORMATION,
*PREG QUERY MULTIPLE VALUE KEY INFORMATION;

typedef struct REG RENAME KEY INFORMATION {
PVOID Object; // IN

Microsoft Corporation
Windows DDK Page 9

PUNICODE STRING NewName; // IN
} REG_RENAME KEY INFORMATION, *PREG_RENAME KEY INFORMATION;

typedef struct REG KEY HANDLE CLOSE INFORMATION ({
PVOID Object; // IN
} REG_KEY HANDLE CLOSE INFORMATION, *PREG KEY HANDLE CLOSE_INFORMATION;

/* .Net Only */
typedef struct REG CREATE_KEY INFORMATION {
PUNICODE_STRING CompleteName; // IN

PVOID RootObject; // IN
} REG_CREATE KEY INFORMATION,

REG_OPEN KEY INFORMATION, *PREG CREATE KEY INFORMATION, *PREG OPEN KEY INFORMATION;

typedef struct REG POST OPERATION INFORMATION {
PVOID Object; // IN
NTSTATUS Status; // IN

} REG_POST_ OPERATION INFORMATION, *PREG POST_ OPERATION INFORMATION;

/* end .Net Only */

/* XP only */
typedef struct REG PRE CREATE_KEY INFORMATION {

PUNICODE STRING CompleteName; // IN
} REG_PRE CREATE KEY INFORMATION,

REG_PRE OPEN KEY INFORMATION, *PREG PRE CREATE KEY INFORMATION,
*PREG_PRE_OPEN KEY INFORMATION;;

typedef struct REG POST CREATE KEY INFORMATION {

PUNICODE STRING CompleteName; // IN
PVOID Object; // IN
NTSTATUS Status; // IN

} REG_POST CREATE KEY INFORMATION,REG POST OPEN KEY INFORMATION,
*PREG_POST_CREATE_KEY INFORMATION, *PREG_POST OPEN KEY INFORMATION;
/* end XP only */

Microsoft Corporation
Windows DDK Page 10

	Registry Callbacks
	c Copyright Microsoft Corporation, 2001. All Rights Reserved
	1. Introduction
	2. Implementation Details
	2.1 Callback prototype
	2.2 Invocation of callbacks
	2.3 Callback Registration and Deregistration
	2.4 Writing a callback routine

	3. Compatibility Notes
	4. Appendix

