
1

PIN: Building Customized 
Program Analysis Tools with 

Dynamic Instrumentation

Presented by Godmar Back

Luk et al PLDI 2005

1/23/2007CS 6304 Spring 2007 2

PIN

• Dynamic instrumentation framework
• Goals:

– Easy-to-use
– Portable
– Transparent
– Efficient
– Robust

1/23/2007CS 6304 Spring 2007 3

PIN Architecture

1/23/2007CS 6304 Spring 2007 4

Sample

• Note: no 
architecture
-dependent 
code

1/23/2007CS 6304 Spring 2007 5

How PIN works
• Reads binary:

– Parse ELF binary same way OS would – finds entry point
• Parses machine instructions of binary (1)
• Parses machine instructions of (compiled) 

instrumentation code (2)
• Inserts (2) in (1) as directed by tool
• Translates mix to (same-architecture) machine 

instructions
– No IR is used
– Translated instructions stored in a cache

• Executes translated instructions only

1/23/2007CS 6304 Spring 2007 6

Traces

• PIN offers instrumentation at 
different levels. 

• Key concept is a trace.
• Trace: straight-line sequence of 

instructions that end with 
unconditional transfer (or if too large)

• PIN translates one trace at a time 

Entry

Exits

BB0

BB1

BB2



2

1/23/2007CS 6304 Spring 2007 7

Instrumentation Levels
• By default instrumentation done by trace
• Provides “by instrumentation” – implemented as 

convenience only
for (b : basicblocks) { 

for (i : instructions(b)) { …. }}
• Routine:

– Add instrumentation once a routine is entered
• Image:

– Perform some instrumentation when an image is 
loaded (executable, .so file, etc.)

1/23/2007CS 6304 Spring 2007 8

Techniques (1): Trace Linking

• When a trace ends
– Examples: 

• virtual method dispatch: jmp *eax
• Function call return

– First time, return to VM, examine where it ended and 
where it goes, translate subsequent trace.

– Second time, would like to jump directly to successor 
trace if at all possible

• Easy if ends with direct jump
• Need prediction if it ends with indirect jump

1/23/2007CS 6304 Spring 2007 9

Trace Linking 
(cont’d)

• Q.: what is the 
overhead 
in number of 
instructions?

1/23/2007CS 6304 Spring 2007 10

Cloning & Trace Linking

• Q. Why do 
we still 
need a 
mis-
prediction 
check 
here?

1/23/2007CS 6304 Spring 2007 11

Register Reallocation

• Virtual vs. physical registers
– “Virtual registers” are machine registers (%EAX, 

%EBX, etc.) as seen by the application program’s 
compiler

– “Physical registers” are the ones holding the actual 
values during the execution of translated code

• Must map virtual to physical
– Must guarantee that life virtual registers are not 

destroyed; spill to memory if needed.
• Register allocation problem!

1/23/2007CS 6304 Spring 2007 12

Register Allocation

• Traditional approach:
– Build CFG. Do Liveness analysis. Compute 

interference graph. Color it. Assign registers
– Won’t work here because entire CFG is not 

known – it’s incrementally built.
• Alternative:

– Linear-scan register assignment



3

1/23/2007CS 6304 Spring 2007 13

Linear Scan Allocation [Poletto’99]

• Idea: 
– Determine live ranges
– Range defined as 

instruction index
– Assign registers greedily
– When spilling, spill the one 

with the farthest end range
• Q.: What is the heuristics?

Assume:
2 physical
registers

A

A, B

B, D

D,E
D

1/23/2007CS 6304 Spring 2007 14

Register Reallocation (cont’d)

• When linking traces, would like to avoid 
rearranging registers: thus, on code cache 
miss, jit target trace with v-to-p mapping 
that origin trace ended with.

• Second time around (if target trace is 
reached from different origin): 
– need compensation code

• By comparison: valgrind always spills all 
virtual registers to memory

1/23/2007CS 6304 Spring 2007 15

Register Reconciliation (1)

1/23/2007CS 6304 Spring 2007 16

Register Reconciliation (2)

1/23/2007CS 6304 Spring 2007 17

Register Reconciliation (3)

EBX is thread-local
Location
(optimized for
single-threaded 
case)

1/23/2007CS 6304 Spring 2007 18

Other Optimizations

• Inlining vs. Bridging
• Big question: when to inline (will examine 

on Thursday)
• Inlining optimization:

– Can avoid saving caller-saved registers 
blindly (including eflags) – why?



4

1/23/2007CS 6304 Spring 2007 19

Performance Analysis

• What counts is overhead/slowdown.
– How much is acceptable? 120%? 200%? 2000%?

• Must know NULL-tool overhead/baseline 
slowdown

• Obviously, tool overhead depends on tool
– How much work is done in tool code (in common 

path?)
– How efficient is bridging code/how often could inlining

be applied?

1/23/2007CS 6304 Spring 2007 20

NULL-tool overhead

1/23/2007CS 6304 Spring 2007 21

NULL-tool: PIN vs Competition

1/23/2007CS 6304 Spring 2007 22

Count-BB Tool

1/23/2007CS 6304 Spring 2007 23

BB-tool: PIN vs Competition

1/23/2007CS 6304 Spring 2007 24

Applications

• Only few at the time PIN was published; 
many more now, see 
http://rogue.colorado.edu/pin

• Mainly used in architecture community so 
far
– Cache simulation, program phase analysis, 

etc.
• Top



5

1/23/2007CS 6304 Spring 2007 25

PIN Goals Revisited
• Easy-to-use

– Yes, but little support for accessing internals (e.g. liveness
ranges etc.); little support for accessing symbolic information

• Portable
– Yes: four architectures, 3 OS

• Transparent
– Almost completely (minus address space effects)

• Efficient
– According to their benchmarks for simple codes

• Robust
– In my experience, pretty robust

Discussion/Questions


