
Visualizing Live Software Systems in 3D

Orla Greevy1, Michele Lanza2 and Christoph Wysseier3

1 Software Composition Group - University of Berne, Switzerland
2 Faculty of Informatics - University of Lugano, Switzerland

3 netstyle.ch GmbH - Bern, Switzerland

Abstract

The analysis of the runtime behavior of a software system yields
vast amounts of information, making accurate interpretations diffi-
cult. Filtering or compression techniques are often applied to re-
duce the volume of data without loss of key information vital for
a specific analysis goal. Alternatively, visualization is generally
accepted as a means of effectively representing large amounts of
data. The challenge lies in creating effective and expressive visual
representations that not only allows for a global picture, but also
enables us to inspect the details of the large data sets. We define
the focus of our analysis to be the runtime behavior of features.
Static structural visualizations of a system are typically represented
in two dimensions. We exploit a third dimension to visually rep-
resent the dynamic information, namely object instantiations and
message sends. We introduce a novel 3D visualization technique
that supports animation of feature behavior and integrates zoom-
ing, panning, rotating and on-demand details. As proof of concept,
we apply our visualization technique to feature execution traces of
an example system.

Keywords: 3D visualization, reverse engineering, dynamic analy-
sis, feature traces

1 Introduction

Reverse engineering usually implies the abstraction of high level
views that represent different aspects of a software system. Visual
representations of software are widely accepted as comprehension
aids [Fowler 2003], [Stasko et al. 1998]. The Unified Modeling
Language for example is one of the most widely used visual lan-
guage for object-oriented software development [Fowler 2003].

Due to the complexity of software, visualizations should be de-
signed with a specific task in mind [Maletic et al. 2002]. UML
provides distinct diagrams for static and dynamic information. The
static visualizations of a system, (e.g., UML class diagrams), de-
scribe the static structure of a system in terms of software enti-
ties and their relationships. To represent dynamic aspects of a sys-
tem, UML provides object models and sequence diagrams. Their
main problem is that they do not scale beyond a certain number of
events because of physical constraints, which can however be par-
tially overcome with the help of interactive exploration techniques
[Sharp and Rountev 2005].

The context of our research [Greevy and Ducasse 2005], is feature-
centric reverse engineering, (we exercise a systems’ features on an
instrumented software system and capture traces of their runtime
behavior). We focus on how the static source artifacts contribute
to the dynamic runtime behavior of features. A feature trace is
a record of the steps a program takes during the execution of a
feature. For this paper we adopt the definition of a feature as a
user-triggerable functionality of a software system [Eisenbarth et al.
2003].

As a basis of our approach we combine static and dynamic infor-
mation to focus on how the static source artifacts contribute to the

dynamic runtime behavior of features. Therefore we need a com-
bined visualization that captures both static structural information
and dynamic runtime data.

The key question we address in this paper is: how do we visu-
ally represent and manipulate the large information space of feature
traces in a way that is intuitive and useful for the reverse engineer?

As proof of concept of our 3D visualization technique we apply it to
two software systems. We motivate our visual analysis by address-
ing the following feature-centric reverse engineering questions:

• Which parts of the code (classes and objects) are active dur-
ing the execution of a feature? Our visualizations show which
classes are instantiated and how they collaborate during the
execution of a feature.

• What are the patterns of activity that are common to features
and which activities are specific to one feature? Similar pat-
terns of activity of feature behavior, (i.e., similar sequences of
communications between objects), may give insights into the
architectural structure of a system.

Structure of the paper. In the next section we briefly describe our
approach to feature analysis. We outline the purpose and scope of
our visualization technique in Section 3. We describe the 3D vi-
sualizations and the capabilities of our technique to manipulate a
large information space. In Section 4 we provide a proof of concept
for our approach by applying it on two systems. We then evalu-
ate our technique and discuss the advantages and limitations of our
approach in section Section 5. We present our implementation in
Section 6. In Section 7 we provide an overview of related work
and compare our visualization techniques with other visualization-
based approaches. Finally present our future work in this area.

2 Combined Static and Dynamic Analysis

Two main but distinct approaches to reverse engineering dominated
the research field [Chikofsky and II 1990], namely dynamic analy-
sis approaches and static analysis approaches. In recent years the
synergies and dualities of these approaches have been recognized
[Ernst 2003]. Stroulia and Systa [Stroulia and Systa 2002] argue
that static analysis approaches, though valuable, are incomplete and
do not meet reverse engineering goals of todays object-oriented sys-
tems. Object-oriented systems are difficult to understand by brows-
ing the source code due to language features such as inheritance,
dynamic binding and polymorphism. The behavior of the system
can only be completely determined at runtime. The dynamics of
the program in terms of object interactions, associations and col-
laborations enhance system comprehension [Jerding et al. 1997].

The basis of our feature analysis approach (see Figure 1) [Greevy
et al. 2005a] is to combine both static and dynamic information.
In this paper we describe how we visually represent the dynamic
behavior of features in the context of a static structural view of
the system. We apply static analysis to the source code of a sys-
tem to extract a static model of the source code entities. We then
apply dynamic analysis to obtain traces of feature executions. To

Logout

Authen

HTML
Request

Object

static model

login

Feature Trace
(dynamic model)

Source Code

Dynamic Feature Trace View
(3D rendering of Feature Behavior)

Dynamic data

Instance Collaboration View
(3D rendering of Feature Behavior)

TraceCrawler ViewsCombined Static and Dynamic Model
(MOOSE)

Static and Dynamic Analysis
of Runtime and Source code

Figure 1: Our Approach to Rendering Feature Behavior in 3D

achieve this, we instrument a system, exercise a set of features and
abstract and represent the execution data of each individual feature
as a tree of method calls or feature trace. We resolve the methods
and classes involved in the events of the trace in the context of the
static model.

Interpretation of a feature trace is difficult due to its sheer size.
Many dynamic analysis approaches apply filtering or compression
to the dynamic data to abstract high level views and reason about
the information [Greevy and Ducasse 2005; Hamou-Lhadj et al.
2005] by defining measurements to summarize the data. A purely
metrics-based approach provides us with a quantitative impression
of which objects are active during the execution of a feature-trace.
However, we lose qualitative aspects like the notion of time, as the
quantitative values do not provide information about when an ob-
ject is active during the trace. Thus, trace summarization techniques
may eliminate details that provide valuable insights into feature be-
havior of object-oriented systems.

We exploit visualization as a means of representing the dynamic
runtime information of features. Our visualization technique ren-
ders both the static structure of the software system as a class hier-
archy, and the dynamic behavior of a feature as towers of commu-
nicating instances. We describe our visualization technique in more
detail in the next section.

3 3D Visualization of Dynamic Behavior

The visualizations we propose for feature-traces are based on poly-
metric views [Lanza and Ducasse 2003] extended to 3D[Greevy
et al. 2005b]. We describe the purpose and goals of our visualiza-
tions in terms of the five dimensions of interest of software visual-
ization defined by Maletic et al. [Maletic et al. 2002].

1. Task. Why is the visualization needed? The task of our vi-
sualizations is to support the understanding of the dynamic
behavior of features. We aim to support feature-centric re-
verse engineering [Greevy and Ducasse 2005] by extracting
high level views of feature behavior and visualizing this in-
formation in the context of the static structural information of
a system.

2. Audience. Who will use the visualization? Our target audi-
ence is the software developer/reverse engineer who is faced
with the task of understanding a complex software system.
Our approach aims to support system comprehension through
visualization of features. Bug reports and modification re-
quests are usually expressed in language that reflects the fea-
tures of a system. We argue that by understanding how the
features are implemented in the system, we support mainte-
nance activities. Our approach could also be extended to sup-
port debugging tasks, and we plan to pursue this path in our
future work.

Root Class

Subclass 1

Subclass 2

Instances of
Root Class

Inheritance
Relationships

Active Instances

Active message

Figure 2: A schematic view of our 3D visualizations

3. Target. What low level aspects are visualized? We represent
data extracted from both static and dynamic analysis of a sys-
tem. We represent dynamic runtime behavior of features (i.e.,
object creations and message sends) and a static structural
view of the system (i.e., classes and inheritance relationships).

4. Representation. What form of representation that best con-
veys the target information to the reverse engineer? We ex-
ploit the software developers’ familiarity with UML class di-
agrams [Fowler 2003]. The basis of our visualizations is a
graph representation of classes (nodes) and inheritance rela-
tionships (edges) similar to a UML class diagram of inheri-
tance relationships. Our visualization engine renders the run-
time events of a feature in 3D as object instantiations (boxes)
and message sends between objects (connectors). The boxes
are displayed as towers of instances on top of their defining
classes in the class hierarchy view. We preserve information
about order of occurrence, instantiation and frequency of the
runtime events. We render the data using a 3D representation
of the dynamic and static data.

Our polymetric-based visualization is capable of represent-
ing quantitative values that affect the size of the nodes. The
user can select 3 metrics from a range of metrics supported
by our tool and map these to the width, length and color of
the nodes. The metrics enhance the expressiveness of our vi-
sualizations. For example, in Figure 4 we see that the class
HtmlWriteStream is represented with a longer box as we
mapped (NOM number of methods) to the length of the node,
and NOA number of attributes to the width of the node.

5. Medium. Where the visualizations are rendered? We built a
tool called TraceCrawler [Wysseier 2005], a massive exten-
sion of the CodeCrawler tool[Lanza 2003] that provides ca-
pabilities to interact and navigate the visualizations (see Fig-
ure 3). It supports the animation of feature behavior (i.e., the
reverse engineer can step through a feature trace and the 3D
visualization engine of TraceCrawler renders the events in the
visualization).

According to the integrated model of comprehension [Storey et al.
1999], developers often switch between high level views of the

software and low level source code. Hence to support program
comprehension, a tool should support a wide variety of compre-
hension strategies through its visualization and navigation capabili-
bities [Storey and Müller 1995]. With this philosophy in mind, we
designed our TraceCrawler tool to generate interactive and naviga-
ble 3D visualizations, i.e., the reverse engineer can view the ‘big
picture’ of a feature trace and at the same time examine details of
objects (e.g., source code) on demand. Other capabilitiies include
(1) changing the point of view in the 3D space with zooming, pan-
ning and rotating capabilities., (2) search mechanisms to navigate to
a specific event of interest in the trace, and (3) replay mechanisms
that support navigation forwards and backwards through the events
of a feature trace.

Furthermore we tackle the problem of large amounts of data by pro-
viding filtering mechanisms to enable the developer to reconfigure
the visualizations to contain only information about specific parts
of interest of a system (i.e., a specific class hierarchy).

In the following sections we describe in detail two of the 3D views
that are possible with our tool.

3.1 Dynamic Feature-trace View

Figure 3: The Dynamic Feature View allows the user to step
through and animate the traces.

This view is a representation of a system behavior during the execu-
tion of a feature in terms of classes, object-instantiations and mes-
sage sends. In Figure 2 we see a schematic display of such a view.
The 3D visualization displays the static structure of the system (i.e.,
the class hierarchy) on a plane “floating” above the ground (the
white boxes are the classes connected by inheritance edges). When
the trace is interpreted, each instantiation of a class (the creation of
an object) generates a box (like a “floor” in a building) above the
ground level of its corresponding class representation. The more
boxes that are above a class, the more instances of this class have
been created. The currently active objects are highlighted in green.
Each time an object sends a message to another object, a message
edge is draw between the two object boxes. The message edges are
colored in red to distinguish them from the inheritance edges.

It is fundamental to our 3D visualization technique that the feature
trace, extracted during our dynamic analysis, contains unique object
identifiers of the sender and receiver of a message.

We refer to our navigable visualization as the dynamic feature inter-
action view. This view allows the reverse engineer to visually step
through the individual events of feature-traces. At each point in
time of a feature-trace, we see a visual representation of the current
state of the feature trace in terms of the active object and message
send of the current event. The navigation facilities of the tool allow
us to move backward and forward within the events of the feature-
trace. Thus we control and delve into the visualization to gain a
more fine-grained understanding of the behavior of a feature.

To illustrate the navigation of our visualization we apply our ap-
proach to a simple example system consisting of 22 classes that
models people and their roles in a university. We generate simple
feature-traces.

TraceCrawler permits the user to step through the traces and, at each
point in time of the trace, to see the current state of the trace and
also to move backward and forward within the trace: In Figure 3 we
see a small scenario generated from a simple test system, i.e., three
different points in time of the same trace. On the left hand side we
see the 3-D visualization and on the righthand side we see the cor-
responding position in the trace that is currently being processed.
This allows for an in-depth and detailed inspection of the trace.

Thus the software developer can step backward and forward
through the execution of a feature and visually observe the creation
of object instances and messages sent between objects. The inter-
active nature of our visualization (the user can click on the nodes
and edges and inspect them) allows the user to navigate to places
of interest in the system and observe in detail a certain part of a
feature. Our tool provides a search mechanism, which allows the
developer to enter a search string (e.g., the name of a method) and
then navigate to the next occurrence of the method in the trace.

Moreover, we provide direct access to the source code under obser-
vation using a pop-up menu. This visualization does not replace,
but perfectly complements, the existing practice of rendering traces
as a tree of events (see the right side of Figure 3).

3.2 The Instance Collaboration View

This view is a retrospective view of how the system behaved during
the execution of a feature in terms of classes, object-instantiations
and message sends. This view conveys the ‘big picture’ of a feature
at runtime. We can locate which parts of the system were actively
participating in the feature’s behavior at runtime and to which ex-
tent. Moreover we can visually compare the visualizations of fea-
tures to identify parts of the system that appear to be common, and

parts that are specific to a give feature. One again the interactive
capabilities of our visualization allow us to zoom in on areas of
interest and query them for more fine-grained details.

In Figure 4 we show the instance collaboration view of a Login fea-
ture from our SmallWiki case study. This is a ‘big picture’ view of
SmallWiki as class hierarchies. We see at a glance where the run-
time activity occurred when this feature was executed. On the left
hand side we see instances of the HtmlWriteStream class. There
are edges spanning the entire view that indicate that instances of
the HtmlWriteStream class are communicating with classes in the
Template Hierarchy.

4 Proof of Concept

4.1 Applying our Approach to Feature Traces of
SmallWiki

In this section we present some of the results of applying our vi-
sualizations to features of the SmallWiki system [Ducasse et al.
2005b]. SmallWiki is an object-oriented wiki implementation writ-
ten in Smalltalk. It provides typical wiki functionalities such as
adding and editing pages and user authentication. The version we
analyzed (1.297) consists of 288 classes. We assume that each link
or button on a page triggers a distinct feature of the application.
The features we chose represent typical user interactions with the
application such as login, editing a page or searching a web site.

For our proof of concept we generated both dynamic feature views
and instance collaboration views. We used the instance collabora-
tion views for postmortem analysis of the feature behavior. We used
dynamic feature traces to observe the sequence of events (when be-
havior occurred in the trace).

The ‘big picture’ and the detailed view. In Figure 5 we show
an instance collaboration view of the login feature (4008 events).
This represents the ‘big picture’ view of the dynamic behavior af-
ter execution. We see areas of activity in the system in terms of
towers object instances and message sends, while this feature was
executing. We refer to these areas of activities as feature hotspots.
Using the zoom and rotate capabilities of our TraceCrawler tool, we
zoom in to view and inspect the right hand side of the visualization
in more detail (see Figure 5). From this perspective we see details
of feature behavior. Our visualization reveals that instances of the
Login class are created when this feature is exercised. One instance
of Login communicates heavily with instances of the Template hi-
erarchy (subclasses of TemplateBody and TemplateHead). The
developers of SmallWiki confirm that templates are used for the
composition of pages. That is why this instance renders the login
form and is executed to perform the login functionality.

Patterns of common activity in the features. Due to the nature
of SmallWIki as is a web based application, interacting with the
web browser to resolve a URL or render a page represents behavior
that is common to the user-initiated features of our analysis. Our
instance collaboration views of features confirm this characteristic
of the application by rendering visually similar execution patterns
in all our features. For example in each of our views of features we
detect instances of the Response class. This class is responsible
for handling HTTP responses sent to the web browser.

Another common pattern is that each view contains instances of
the HTMLWriteStream class. This class is responsible for the gen-

Figure 4: An Overview of the SmallWiki case study after the execution of the login feature.

eration of the necessary HTML code to be displayed in the web
browser. Therefore this implements functionality that is generic or
common to all features under analysis.

Our visualization reveals that an instance of the PageView class
communicates heavily with instances of the Template hierarchy.
The developers once again confirm that this recurring collaboration
is due to the fact that SmallWiki pages are composed of templates.

In the zoomed-in view of the Login feature in Figure 5 we detect
many of the common patterns of behavior.

Behavior that is unique to one Feature. We examine the
feature-specific runtime behavior we detected in some of the other
features of SmallWiki.

Edit Page Feature Trace (5608 events) allows the user to mod-
ify the page by entering an editing mode. Once the user is
finished editing the page, the new version gets saved and dis-
played. The visualization shown in Figure 6 reveals that in-
stances of the PageEdit class participate in this feature. This
behavior is unique to this feature. We validate our findings
with the developers and discover that the PageEdit class is
responsible for rendering the form to edit a wiki page and to
save the submitted content. As this feature is the only feature
that exercises this class, the behavior is unique to it.

Search Feature Trace (7742 events) allows the user to search all
the pages of a wiki for a specific string. Figure 7 reveals a
tower of instances of the Search class. Two of the instances
heavily communicate with other objects to perform this task.
This collaboration pattern is unique to this feature.

4.2 Applying our Approach to Feature Traces of
Moose

In this section we present the results of applying our approach to
large feature traces captured by exercising features of the Moose
system. Moose is a language-independent environment for reengi-
neering object-oriented systems[Ducasse et al. 2005a]. It provides
features for manipulating, navigating, querying and applying met-
rics to models derived from parsing source code. The version we
use for this experiment (3.0.25) consists of 782 classes.

The reason we include this case study is to illustrate how our visu-
alizations handle large traces.

Visualizing large traces. Figure 8 shows the instance collabora-
tion view of the feature that loads a model of a software system from
a file. As the information space is large we use the zooming and
scrolling features of the TraceCrawler tool to view the trace. We
highlight activities of interest. The most striking part of this view
is the large number of object instantiations on the right side. The
developers of Moose confirm this behavior is in line with the pur-
pose of the feature as each model entity is instantiated as a model
is loaded.

We also see that the class CCEntityTypeFactory has a large num-
ber of message edges. The developers confirm that this class is re-
sponsible for creating entities when a model is being loaded.

We used the dynamic feature trace view to observe the sequence of
events (when behavior occured in the trace). For this feature we
see that most of the instantiations of the MooseEntity occur at
regular intervals in the trace. This suggests a loop in the feature’s
behavior. Also we see the order of message sends which reveals
when instances of a class are communicating with other instances.

Figure 5: Zooming into the class hierarchy active during the login feature. We highlight common patterns of behavior

5 Discussion

In this section we discuss issues relevant to our approach and out-
line some of the constraints of our visualizations.

2D versus 3D. One major point of criticism is whether using a 2D
visualization would not be better, because navigating 3D visualiza-
tions is problematic. We already visualized combined static and
dynamic information previously[Ducasse et al. 2004] but the draw-
backs are the loss of the notion of time and the condensed infor-
mation: both dynamic and static information have to be rendered
in only two dimensions, while in the present approach we use two
dimensions for the static information and the third dimension for
the dynamic information.

The Interactive Visualization. Our visualizations provide an
overview of the entire collection of data that is represented. This
can often be difficult to interpret in the case of large systems with
a large number of classes. Therefore the interactive capabilities of
our visualization is an integral part of this discussion. Our visu-

alizations allow for zooming, pannning and rotation of the view.
Thus we address problems such as occlusion. The interactive capa-
bilities of our visualizations enable us to query the visualization to
obtain more fine-grained information about the key entities of inter-
est. For example, we query a node of the visualization to obtain the
class name and view the source code. It is difficult to render such
an interactive process on paper media. However, we show from
the the results of applying our approach that we reveal valuable in-
formation to support the reverse engineering process merely view-
ing the visualizations. The fine-grained details of the features are
obtained by manipulation and interaction with the visualizations.
Moreover, the user can toggle the display the edges, where in one
mode only the last message edge is displayed, while in the other
mode all message edges sent up until the moment in time the view
is in are displayed.

Naming. The evidence of analysis of the SmallWiki application re-
veals that the developers adhered to sound naming practices. The
names of key classes identified by our approach reflect the inten-
tion of the corresponding features. Thus our visualizations reveal

Figure 6: A detail of the ”Edit Page” feature revealing a unique behavioral pattern.

evidence that, in the case of the SmallWiki system, semantic anal-
ysis or regular expression matching techniques could be applied to
uncover concepts in the code.

Scalability. As discussed above, the expressiveness of the visual-
ization and the interactive capabilities of our technique support the
representation and interpretation of large amounts of data. In our
SmallWiki case study, we chose five relatively small features that
involve over 8000 interactions among classes and objects. We have
successfully applied our approach to feature traces of the Moose
application which consist of over 70’000 events.

Language Independence. Obtaining the traces from the running
application requires code instrumentation. The means of instru-
menting the application is language dependent. We abstract a fea-
ture model of the traces which is the same for every language. As
long as the traces contain events of message sends and object in-
stance information about sender and receiver instances, our visual-
izations will work for any object oriented language.

Selective Instrumentation and Garbage Collection. To limit the
amount of dynamic information, we applied selective instrumenta-
tion of SmallWiki and Moose. In other words, we did not instru-
ment the entire system. We only includes classes from the Small-

Wiki and Moose namespaces in the traces. This results in incom-
plete traces. Our approach is in the experimentation phase. We be-
lieve that with increased experience, an iterative approach to trace
collection via selective instrumentation and post-filtering will im-
prove the results. This implies that we do not model the fact that
objects are garbage collected and removed from memory.

6 Implementation

The implementation of the discussed approach in based on
three tools: Moose, TraceScraper and TraceCrawler. Moose is
a language-independent environment for representing software
models [Nierstrasz et al. 2005].

TraceScraper is our feature analysis tool. It is based on the Moose
[Ducasse et al. 2005a] reengineering platform. It provides a means
of instrumenting Smalltalk code and automatically executing
features to abstract and model feature-traces as first-class entities
in the Moose environment. Tracescraper also provides a means
of importing dynamic information, captured by instrumenting
systems written in other languages. We extend the FAMIX model

Figure 7: A detail of the ”Search” feature revealing a unique behav-
ioral pattern..

with feature-trace entities to relate the feature-trace information
with the class and method entities of the model.

TraceCrawler [Wysseier 2005] interprets the trace information
provided by TraceScraper and controls the visualization. It pro-
cesses execution traces in the Moose model and represents the
events of the trace as 3D visualizations. The visualization is cre-
ated by CCJun[Wysseier 2004] which is an extension of Code-
Crawler[Lanza 2003] and based on the 3D framework Jun.

TraceCrawler can easily be extended to interpret traces generated
from any system as long as the required information is available
in the event data, namely sender and recipient classes, sender and
recipient instance identifiers, method and instance identifier of the
method return value.

7 Related Work

The focus of this work is to show how our 3D visualization tech-
nique supports system comprehension in terms of its features.
Feature location techniques such as Software Reconnaissence de-
scribed by Wilde and Scully [Wilde and Scully 1995], and that of
Eisenbarth et al. [Eisenbarth et al. 2003] are closely related to our
feature driven analysis. We extend the focus beyond the task of
feature location in the source code to consider the object-oriented
dynamic behavior of features in terms of instantiation and message
sends. This level of information is not addressed in previous feature
location approaches.

Graphical representations of software have long been accepted as
a comprehension aid [Stasko et al. 1998]. The work of Maletic et
al. has provided important guidelines for motivating and defining
our visualizations. In their work they defined levels of interest and
the criteria of effectiveness and expressiveness of software visual-
ization[Maletic et al. 2002]. Marcus et al. also use a 3D metaphor
in their sv3D tool to represent a software system and analysis data
[Marcus et al. 2003], but they do not make a specialized use of the

3rd dimension, but use all 3 dimensions to render static informa-
tion. Our approach distinguishes clearly between the representa-
tion of static structural information and the dynamic information,
which grows as “towers’” of object instances above the structural
representation.

Substantial research has been conducted on runtime information vi-
sualization. Various tools and approaches make use of dynamic
(trace-based) information such as Program Explorer [Lange and
Nakamura 1995a], Jinsight and its ancestors [De Pauw et al. 1993],
and Graphtrace [Kleyn and Gingrich 1988]. Vion and Drury [Vion-
Dury and Santana 1994] use 3D to represent the runtime of objects
in distributed and concurrent systems. De Pauw et al. present two
visualization techniques. In their tool Jinsight, they focused on in-
teraction diagrams [De Pauw et al. 1993]. Thus all interactions
between objects are visualized. The focus of our visualizations is
to address reverse engineering dynamic behavior of features. Thus
we tackle the challenge of obtaining high level views from a large
volume of information to support reasoning about the runtime be-
havior of features.

Kleyn and Gingrich [Kleyn and Gingrich 1988] and also Lange and
Nakamura [Lange and Nakamura 1995b] chose a graph-based ap-
proach to visualize dynamic behaviour. Kleyn and Gingrich also
animate their views by highlighting and annotating nodes and edges
to represent activity in the code.

Walker et al. [Walker et al. 1998] use program animation tech-
niques to display the number of objects involved in the execution
and the interaction between them through user-defined high-level
models. Their tool uses a summary strategy to show live objects
as a histogram, and the reduction of the information space by al-
lowing the user to cluster together code elemets to create a high
level model. Our TraceCrawler tool provides a means of stepping
through the trace of a feature and to render each event in the visu-
alization.

Jerding et al. propose an approach to visualizing execution traces
as Information Murals [Jerding et al. 1997]. They define a Execu-
tion Mural as a graphical depiction an entire execution trace of the
messages sent during a program’s execution. These murals provide
a global overview of the behavior, They also define a Pattern Mural
which visually represents a summary of a trace in terms of recurring
execution patterns. Both views are interdependent.

Reiss [Reiss 2003] developed Jive to visualize the runtime activity
of Java programs. The focus of this tool was to visually repre-
sent runtime activity in real time. The goal of this work is to sup-
port software development activities such as debugging and perfor-
mance optimizations. Our focus is feature-centric reverse engineer-
ing. Feature trace data is captured from a running system and then
modeled in the context of static source code entities. However our
technique is non-restrictive and could easily be adapted to interpret
real time trace information.

Our visualization metaphor is intuitive as it exploits the developers
familiarity with graph visualizations. We emphasize the importance
of ease of interpretation of a visualization to gain acceptance by the
software developer. We preserve the sequence of events. Our ap-
proach complements the approach of De Pauw et al. [De Pauw
et al. 1993] by allowing the developer to interact with the visualiza-
tion and control the display of events in a feature-trace. Thus the
reverse engineer exploits her feature understanding of a system and
directly focus on the parts of dynamic data of interest.

Figure 8: Part of the Instance Collaboration View of the Moose ‘load model’ feature.

8 Conclusions

The large volume and complexity of dynamic information makes it
difficult to infer how a software system implements features. Our
visualization metaphor of growing towers of instances represents
large amounts of dynamic data effectively, while still maintaining
its structural context. The developer quickly obtains an overview of
the dynamic behavior of features. The trace of a whole feature can
for example be displayed as a “movie” which starts with a static and
flat visualization, and then as the trace is being executed, we can see
towers of objects grow in the different parts of the system that are
being activated. We also provide visual feedback of the currently
happening event by means of a colorisation of the active object or
sent message. We set out to show how our visualizations answer
the following the reverse engineering questions:

Which classes and objects are most active during the execution
of a feature? The classes that participate in feature behavior
are easily identifiable in our visualizations. The interactive
capabilities of the visualization allows to query the nodes to
obtain more fine-grained information about the classes and
instances involved.

What are the patterns of activity that are common in feature be-
havior and which are specific to one feature? The feature vi-
sualizations of our SmallWiki case study reveal which classes
are active in more than one feature, and recurring collabora-
tions between instances. We also detect behavior that is spe-

cific to one feature.

The main contribution of this paper is a novel approach to the vi-
sualization of large feature execution information in the context of
static structural information. Our visualization allows the devel-
oper to navigate the large information space given by the analysis
of run-time information.

Acknowledgments: We gratefully acknowledge the financial sup-
port of the Swiss National Science foundation for the projects “The
Achievement and Validation of Evolution-Oriented Software Sys-
tems” (SNF Project No. PMCD2-102511), “COSE - Controlling
Software Evolution” (SNF Project No. 200021-107584/1), and
“NOREX - Network of Reengineering Expertise” (SNF SCOPES
Project No. IB7320-110997), and the Hasler Foundation for the
project “EvoSpaces - Multi-dimensional navigation spaces for soft-
ware evolution” (Hasler Foundation Project No. MMI 1976). We
also thank Tudor Girba for his constructive comments on this work.

References

CHIKOFSKY, E. J., AND II, J. H. C. 1990. Reverse engineering
and design recovery: A taxonomy. IEEE Software (Jan.), 13–17.

DE PAUW, W., HELM, R., KIMELMAN, D., AND VLISSIDES, J.
1993. Visualizing the behavior of object-oriented systems. In
Proceedings OOPSLA ’93, 326–337.

DUCASSE, S., LANZA, M., AND BERTULI, R. 2004. High-level
polymetric views of condensed run-time information. In Pro-
ceedings of CSMR 2004 (Conference on Software Maintenance
and Reengineering), 309–318.

DUCASSE, S., G ÎRBA, T., LANZA, M., AND DEMEYER, S. 2005.
Moose: a collaborative and extensible reengineering environ-
ment. In Tools for Software Maintenance and Reengineering,
RCOST / Software Technology Series. Franco Angeli, Milano,
55–71.

DUCASSE, S., RENGGLI, L., AND WUYTS, R. 2005. SmallWiki
— a meta-described collaborative content management system.
In International Symposium on Wikis (WikiSym’05), ACM Com-
puter Society, New York, NY, USA, 75–82.

EISENBARTH, T., KOSCHKE, R., AND SIMON, D. 2003. Locating
Features in Source Code. IEEE Computer 29, 3 (Mar.), 210–224.

ERNST, E. 2003. Higher-order hierarchies. In Proceedins of the Eu-
ropean Conference on Object-Oriented Programming, Springer
Verlag, Darmstadt, Germany, LNCS.

FOWLER, M. 2003. UML Distilled. Addison Wesley.

GREEVY, O., AND DUCASSE, S. 2005. Correlating features and
code using a compact two-sided trace analysis approach. In Pro-
ceedings of CSMR 2005 (9th European Conference on Software
Maintenance and Reengineering, IEEE Computer Society Press,
314–323.

GREEVY, O., DUCASSE, S., AND G ÎRBA, T. 2005. Analyzing
feature traces to incorporate the semantics of change in software
evolution analysis. In Proceedings of ICSM 2005 (21th Interna-
tional Conference on Software Maintenance), IEEE Computer
Society Press, 347–356.

GREEVY, O., LANZA, M., AND WYSSEIER, C. 2005. Visual-
izing feature interaction in 3-d. In Proceedings of Vissoft 2005
(3th IEEE International Workshop on Visualizing Software for
Understanding).

HAMOU-LHADJ, A., BRAUN, E., AMYOT, D., AND LETH-
BRIDGE, T. 2005. Recovering behavioral design models from
execution traces. In Proceedings of CSMR 2005 (9th European
Conference on Software Maintenance and Reengineering, IEEE
Computer Society Press.

JERDING, D. J., STASKO, J. T., AND BALL, T. 1997. Visualizing
interactions in program executions. In Proceedings of ICSE ’97,
360–370.

KLEYN, M. F., AND GINGRICH, P. C. 1988. GraphTrace —
understanding object-oriented systems using concurrently ani-
mated views. In Proceedings OOPSLA ’88 (International Con-
ference on Object-Oriented Programming Systems, Languages,
and Applications, ACM Press, vol. 23, 191–205.

LANGE, D. B., AND NAKAMURA, Y. 1995. Interactive Visual-
ization of Design Patterns can help in Framework Understand-
ing. In Proceedings of OOPSLA ’95 (International Conference
on Object-Oriented Programming Systems, Languages and Ap-
plications), ACM Press, 342–357.

LANGE, D., AND NAKAMURA, Y. 1995. Object-oriented pro-
gram tracing and visualization. Research Report RT0111, IBM
Research, Tokyo Research Laboratory.

LANZA, M., AND DUCASSE, S. 2003. Polymetric views—a
lightweight visual approach to reverse engineering. IEEE Trans-
actions on Software Engineering 29, 9 (Sept.), 782–795.

LANZA, M. 2003. Codecrawler — lessons learned in building a
software visualization tool. In Proceedings of CSMR 2003, IEEE
Press, 409–418.

MALETIC, J. I., MARCUS, A., AND COLLARD, M. 2002. A
task oriented view of software visualization. In Proceedings of
the 1st Workshop on Visualizing Software for Understanding and
Analysis (VISSOFT 2002), IEEE, 32–40.

MARCUS, A., FENG, L., AND MALETIC, J. I. 2003. 3d represen-
tations for software visualization. In Proceedings of the ACM
Symposium on Software Visualization, IEEE, 27–ff.

NIERSTRASZ, O., DUCASSE, S., AND G ÎRBA, T. 2005. The story
of Moose: an agile reengineering environment. In Proceedings
of the European Software Engineering Conference (ESEC/FSE
2005), ACM Press, New York NY, 1–10. Invited paper.

REISS, S. P. 2003. Visualizing Java in action. In Proceedings of
SoftVis 2003 (ACM Symposium on Software Visualization), 57–
66.

SHARP, R., AND ROUNTEV, A. 2005. Interactive exploration of
uml sequence diagrams. In Proceedings of VISSOFT 2005 (3rd
IEEE Workshop on Visualizing Software for Understanding and
Analysis, IEEE CS Press, 8–13.

STASKO, J. T., DOMINGUE, J., BROWN, M. H., AND PRICE,
B. A., Eds. 1998. Software Visualization — Programming as
a Multimedia Experience. The MIT Press.

STOREY, M.-A. D., AND MÜLLER, H. A. 1995. Manipulating
and Documenting Software Structures using SHriMP Views. In
Proceedings of ICSM ’95 (International Conference on Software
Maintenance), IEEE Computer Society Press, 275–284.

STOREY, M.-A. D., FRACCHIA, F. D., AND MÜLLER, H. A.
1999. Cognitive Design Elements to Support the Construction of
a Mental Model during Software Exploration. Journal of Soft-
ware Systems 44, 171–185.

STROULIA, E., AND SYSTA, T. 2002. Dynamic analysis for re-
verse engineering and program understanding. SIGAPP. Appl.
Comput. Rev. 10, 1, 8–17.

VION-DURY, J.-Y., AND SANTANA, M. 1994. Virtual images:
Interactive visualization of distributed object-oriented systems.
In Proceedings of OOPSLA 1994, A. Press, Ed., 65–84.

WALKER, R. J., MURPHY, G. C., FREEMAN-BENSON, B.,
WRIGHT, D., SWANSON, D., AND ISAAK, J. 1998. Visual-
izing dynamic software system information through high-level
models. In Proceedings OOPSLA ’98, ACM, 271–283.

WILDE, N., AND SCULLY, M. C. 1995. Software reconnaisance:
Mapping program features to code. Software Maintenance: Re-
search and Practice 7, 1, 49–62.

WYSSEIER, C. 2004. CCJun – polymetric views in three-
dimensional space. Informatikprojekt, University of Berne, June.

WYSSEIER, C. 2005. Interactive 3-D Visualization of Feature-
Traces. MSc. thesis, University of Berne, Switzerland.

