Abstract Interpretation: a
Semantics-Based Tool for Program
Analysis

Neil D. Jones
DIKU, University of Copenhagen, Denmark

Flemming Nielson
Computer Science Department, Aarhus University, Denmark

June 30, 1994

Contents

1 Introduction. 2
1.1 Goals and Motivations 2
1.2 Relation to Program Verification and Transformation 9
1.3 The Origins of Abstract Interpretation 10
1.4 A Sampling of Data-flow Analyses 11
1.5 Qutline 12

2 Basic Concepts and Problems to be Solved 14
2.1 A Naive Analysis of the Simple Program 15
2.2 Accumulating Semantics for Imperative Programs 17
2.3 Correctness and Safety 23
2.4 Scott Domains, Lattice Duality, and Meet versus Join . . . 31
2.5 Abstract Values Viewed as Relations or Predicates 32
2.6 Important Points from Earlier Sections 36
2.7 Towards Generalizing the Cousot Framework 36
2.8 Proving Safety by Logical Relations 42

3 Abstract Interpretation Using a Two-Level Metalanguage 44
3.1 Syntax of Metalanguage 46
3.2 Specification of Analyses 52
3.3 Correctness of Analyses 66
3.4 Induced Analyses 74
3.5 Expected Forms of Analyses 84
3.6 Extensions and Limitations 89

4 Other Analyses, Language Properties, and Language Types . . . 90

4.1 Approaches to Abstract Interpretation 91
4.2 Examples of Instrumented Semantics 95
4.3 Analysis of Functional Languages 97
4.4 Complex Abstract Values 102
4.5 Abstract Interpretation of Logic Programs 104
5 Glossary 109

1 Introduction

Desirable mathematical background for this chapter includes

e basic concepts such as lattices, complete partial orders, homomor-
phisms, etc.

o the elements of domain theory, e.g. as in the chapter by Abramsky
or the books [Schmidt, 1986] or [Nielson, 1992a].

e the elements of denotational semantics, e.g. as in the chapter by

Tennent or the books [Schmidt, 1986] or [Nielson, 1992a].

e interpretations as used in logic.

There will be some use of structural operational semantics [Kahn, 1987],
[Plotkin, 1981], [Nielson, 1992a], for example deduction rules for a pro-
gram’s semantics and type system. The use of category theory will be kept
to a minimum but would be a useful background for the domain-related
parts of Section 3.

1.1 Goals and Motivations

Our primary goal is to obtain as much information as possible about a
program’s possible run time behaviour without actually having to run it
on all input data; and to do this automatically. A widely used technique
for such program analysis is nonstandard execution, which amounts to
performing the program’s computations using value descriptions or abstract
values in place of the actual computed values. The results of the analysis
must describe all possible program ezecutions, in contrast to profiling and
other run-time instrumentation which describe only one run at a time.
We use the term “abstract interpretation” for a semantics-based version of
nonstandard execution.
Nonstandard execution can be roughly described as follows:

e perform commands (or evaluate expressions, satisfy goals etc.) using
stores, values, ... drawn from abstract value domains instead of the
actual stores, values, ... used in computations.

3

e deduce information about the program’s computations on actual in-
put data from the resulting abstract descriptions of stores, values,

One reason for using abstract stores, values, ... instead of the actual ones
is for computability: to ensure that analysis results are obtained in finite
time. Another is to obtain results that describe the result of computations
on a set of possible inputs. The “rule of signs” is a simple, familiar abstract
interpretation using abstract values “positive”, “negative” and “?” (the
latter is needed to express, for example, the result of adding a positive and
a negative number).

Another classical example is to check arithmetic computations by “cast-
ing out nines”, a method using abstract values 0, 1,..., 8 to detect errors
in hand computations. The idea is to perform a series of additions, sub-
tractions and multiplications with the following twist: whenever a result
exceeds 9, it is replaced by the sum of its digits (repeatedly if necessary).
The result obtained this way should equal the sum modulo 9 of the digits
of the result obtained by the standard arithmetic operations. For example
consider the alleged calculation

123 + 457 + 76543 =7= 132654

This is checked by reducing 123 to 6, 457 to 7 and 76543 to 7, and then
reducing 6 * 7 to 42 and so further to 6, and finally 6 + 7 is reduced to
4. This differs from 3, the sum modulo 9 of the digits of 132654, so the
calculation was incorrect. That the method is correct follows from:

(10a+b)mod 9 = (a=xb)mod 9
a*xb (mod9) = (amod 9xbmod 9) (mod9)
a+bmod 9 = (eamod 9+ bmod 9) (mod9)

The method abstracts the actual computation by only recording values
modulo 9. Even though much information is lost, useful results are still
obtained since this implication holds: if the alleged answer modulo 9 differs
from the answer got by casting out nines, there is definitely an error.

On the need for approximation Due to the unsolvability of the halting
problem (and nearly any other question concerning program behaviour), no
analysis that always terminates can be exact. Therefore we have only three
alternatives:

o Consider systems with a finite number of finite behaviours (e.g. pro-
grams without loops) or decidable properties (e.g. type checking as
in Pascal). Unfortunately, many interesting problems are not so ex-
pressible.

o Ask interactively for help in case of doubt. But experience has shown
that users are often unable to infer useful conclusions from the myr-
iads of esoteric facts provided by a machine. This is one reason why
interactive program proving systems have turned out to be less useful
in practice than hoped.

o Accept approximate but correct information.

Consequently most research in abstract interpretation has been concerned
with effectively finding “safe” descriptions of program behaviour, yielding
answers which, though sometimes too conservative in relation to the pro-
gram’s actual behaviour, never yield unreliable information. In a formal
sense we seek a C relation instead of equality. The effect is that the price
paid for exact computability is loss of precision.

A natural analogy: abstract interpretation is to formal semantics as
numerical analysis is to mathematical analysis. Problems with no known
analytic solution can be solved numerically, giving approximate solutions,
for example a numerical result » and an error estimate €. Such a result is
reliable if it is certain that the correct result lies within the interval [r-¢,
r+e¢]. The solution is acceptable for practical usage if € is small enough. In
general more precision can be obtained at greater computational cost.

Safety Abstract interpretation usually deals with discrete non-numerical
objects that require a different idea of approximation than the numerical
analyst’s. By analogy, the results produced by abstract interpretation of
programs should be considered as correct by a pure semantician, as long
as the answers are “safe” in the following sense. A boolean question can
be answered “true”, “false” or “I don’t know”, while answers for the rule
of signs could be “positive”, “negative” or “?”. This apparently crude
approach is analogous to the numerical analyst’s, and for practical usage
the problem is not to give uninformative answers too often, analogous to
the problem of obtaining a small €.

An approximate program analysis is safe if the results it gives can always
be depended on. The results are allowed to be imprecise as long as they
always err “on the safe side”, so if boolean variable J is sometimes true,
we allow it to be described as “I don’t know”, but not as “false”. Again,
in general more precision can be obtained at greater computational cost.

Defining the term “safe” is however a bit more subtle than it appears.
In applications , e.g. code optimization in a compiler, it usually means “the
result of abstract interpretation may safely be used for program transfor-
mation”, i.e. without changing the program’s semantics. To define safety
it is essential to understand precisely how the abstract values are to be
interpreted in relation to actual computations.

For an example suppose we have a function definition
f(X1,...,Xp) =exp

where exp is an expression in X1, ..., X,,. Two subtly different dependency
analyses associate with exp a subset of f’s arguments:

Analysis 1.

{Xi1,..., Xim} = {Xj | exp’s value depends on Xj; in at least one
computation of f(X1,...,X,) }

Analysis II.

{Xi1,..., Xim} = {Xj | exp’s value depends on X; in every
computation of f(Xi,...,Xp)}

For the example
FW, XY, Z) =if W then (X +7) else (X + 2)

analysis I yields {W, X, Y, Z}, which is the smallest variable set always
sufficient to evaluate the expression. Analysis IT yields {W, X}, signifying
that regardless of the outcome of the test, evaluation of exp requires the
values of both W and X, but not necessarily those of Y or Z.

These are both dependence analyses but have different modality. Anal-
ysis I, for possible dependence, is used in the binding time analysis phase
of partial evaluation: a program transformation which performs as much as
possible of a program’s computation, when given knowledge of only some
of its inputs. Any variable depending on at least one unknown input in at
least one computation might be unknown at specialization time. Thus if
any among W, X, Y, Z are unknown, then the value of exzp will be unknown.

Analysis 11, for definite dependence, is a need analysis identifying that
the values of W and X will always be needed to return the value. Such anal-
yses are used for to optimize program execution in lazy languages. The ba-
sis is that arguments definitely needed in a function call f(e1, eq, €3, €4, €5)
may be pre-evaluated, e.g. using “call by value” for es; and ez, instead of
the more expensive “call by need”.

Strictness. Finding needed variables involves tracing possible compu-
tation paths and variable usages. For mathematical convenience, many
researchers work with a slightly weaker notion. A function is defined to
be “strict” in variable A if whenever A’s value is undefined, the value of
exp will also be undefined, regardless of the other variables’ values. For-
mally this means: if A has the undefined value L then exp evaluates to L.
Clearly f both needs and is strict in variables W and X in the example.
For another, X is strict in a definition f(X) = f(X) + 1 since f(L1) = L,
even though it is not needed.

6

Violations of safety In practice unsafe data-flow analyses are sometimes
used on purpose. For example, highly optimizing compilers may perform
“code motion”, where code that is invariant in a loop may be moved to a
point just before the loop’s entry. This yields quite substantial speedups
for frequently iterated loops but it can also change termination properties:
the moved code will be performed once if placed before the loop, even if
the loop exit occurs without executing the body. Thus the transformed
program could go into a nonterminating computation not possible before
“optimization”.

The decision as to whether such efficiency benefits outweigh problems
of semantic differences can only be taken on pragmatic grounds. If one
takes a “completely pure view” even using the associative law to rearrange
expressions may fail on current computers.

We take a purist’s view in this chapter, insisting on safe analyses and
solid semantic foundations, and carefully defining the interpretation of the
various abstract values we use.

Abstract interpretation cannot always be homomorphic A very
well-established way to formulate the faithful simulation of one system by
another is by a homomorphism from one algebra to another. Given two
(one-sorted) algebras

(D, {a; : D* — D}ier)
and
(E,{bi : E* — E}ier)

with carriers D, E and operators a;, b;, a homomorphism is a function
B : D — E such that for each ¢ and z1,...,25, € D

Bla;(x1, ..., z5,)) = bi(Bz1, ..., frk,)

In the examples of sign analysis (to be given later) and casting out nines,
abstract interpretation is done by a homomorphic simulation of the oper-
ations 4+, — and *. Unfortunately, pure homomorphic simulation is not
always sufficient for program analysis.

To examine the problem more closely, consider the example of nonre-
cursive imperative programs. The “state” of such a program might be a
program control point, together with the values of all variables. The seman-
tics is naturally given by defining a state transition function, for instance

State = Program point x Store
Store = Variable — Value
next : State — State

7

where we omit formally specifying a language syntax and defining “next”
on grounds of familiarity.

Consider the algebra (State, next : State — State) and an abstraction
(AbState, next : AbState — AbState), where AbState is a set of abstract
descriptions of states. A truly homomorphic simulation of the computation
would be a function # : State — AbState such that the following diagram
commutes:

next
State State

\ next

AbState AbState

In this case § is a representation function mapping real states into their
abstract descriptions, and next simulates next’s effects, but is applied to
abstract descriptions.

This elegant view is, alas, not quite adequate for program analysis. For
an example, consider sign analysis of a program where

AbState = Program point x AbStore

AbStore = Variable — {+,—, 7}
next : AbState — AbState

Representation function § preserves control points and maps each variable
into its sign. (The use of abstract value “?”| representing “unknown sign”,
will be illustrated later.) If the program contains

p:Y =X+4+Y;gotoq

and the current state is (p, [X — 1,Y — —2]) then we have

ﬁ(nemt((p, [X — 1Y — _2]))) = B((q: [X =LY — _1]))
= (X =+Y—=-])

On the other hand the best that next can possibly do is:

next(A((p, [X — LY v —2))) = next(p,[X — +,¥ —)
(q, X —+,Y r—>7])

since X 4+ Y can be either positive or negative, depending on the exact
values of X, Y (unavailable in the argument of next). Thus the desired
commutativity fails.

In general the best we can hope for is a semihomomorphic simulation.
A simple way is to equip E with a partial order C, where C y intuitively
means “z is a more precise description than y”, e.g. + C 7.

In relation to safe value descriptions, as discussed in Section 1.1: if z is
a safe description of precise value v, and # C y, then we will also expect y
to be a safe description of v.

Computations involving abstract values cannot be more precise than
those involving actual values, so we weaken the homomorphism restriction
by allowing the values computed abstractly to be less precise than the result
of exact computation followed by abstraction.

We thus require that for each i and zq,..., 2, € D

Blai(x1, ..., xx,)) T bi(Bxy, ..., Pry,)

and that the operations b; be monotone. For the imperative language this
is described by:

next
State State
B B
! next Ml
AbState AbState

The monotonicity condition implies

B(next™(s)) CE next”™ (5(s))

for all states s and n > 0, so computations by sequences of state transitions
are also safely modeled.

9

Abstract interpretation in effect simulates many computations at
once A further complication is that “real world” execution steps cannot
be simulated in a one-to-one manner in the “abstract world”. In program
fragment

p: if X > Y then goto q else gotor

next((p, [X — +,Y — +])) could yield (q, [X — +,Y — +]) or (r,
[X — +,Y — +4]), since the approximate descriptions contain too lit-
tle information to determine the outcome of the test. Operationally this
amounts to nondeterminism: the argument to next does not uniquely de-
termine its result. How is such nondeterminism in the abstract world to be
treated?

One way is familiar from finite automata theory: we lift

next : State — State
to work on sets of states, namely
pnext : p(State) — p(State)

defined by
pnext (state-set) = { next(s) | s € state-set }

together with an abstraction function a: p(State) — AbState. This direc-
tion, developed by Cousot and Cousot and described in section 2.2, allows
next to remain a function.

Another approach is to let 3 be a relation instead of a function. This
approach is described briefly in section 2.8 and is also used in section 3.

The essentially nondeterministic nature of abstract execution implies
that abstract interpretation techniques may be used to analyse nondeter-
manistic programs as well as deterministic ones. This idea is developed
further in [Nielson, 1983].

1.2 Relation to Program Verification and Transforma-
tion

Program verification has similar goals to abstract interpretation. A major
difference is that abstract interpretation emphasizes approzimate program
descriptions obtainable by fully automatic algorithms, whereas program
verification uses deductive methods which can in principle yield more pre-
cise results, but are not guaranteed to terminate. Another difference is that
an abstract interpretation, e.g. sign detection, must work uniformly for all

10

programs in the language it is designed for. In contrast, traditional pro-
gram verification requires one to devise a new set of statement invariants
for every new program.

Abstract interpretation’s major application is to determine the appli-
cability or value of optimization and thus has similar goals to program
transformation [Darlington, 1977]. However most program transformation
as currently practiced still requires considerable human interaction and is
so significantly less automatic than abstract interpretation. Further, pro-
gram transformation often requires proofs that certain transformations can
be validly applied; abstract interpretation gives one way to obtain these.

1.3 The Origins of Abstract Interpretation

The idea of computing by means of abstract values for analysis purposes
is far from new. Peter Naur very early identified the idea and applied it in
work on the Gier Algol compiler [Naur, 1965]. He coined the term pseudo-
evaluation for what was later described as “a process which combines the
operators and operands of the source text in the manner in which an actual
evaluation would have to do it, but which operates on descriptions of the
operands, not on their values” [Jensen, 1991]. The same basic idea is found
in [Reynolds, 1969] and [Sintzoff, 1972]. Sintzoff used it for proving a num-
ber of well-formedness aspects of programs in an imperative language, and
for verifying termination properties.

These ideas were applied on a larger scale to highly optimizing com-
pilers, often under the names program flow analysis or data-flow analysis
[Hecht, 1977], [Aho, Sethi and Ullman, 1986], [Kam, 1976]. They can be
used for extraction of more general program properties [Wegbreit, 1975]
and have been used for many applications including: generating assertions
for program verifiers [Cousot, 1977b], program validation [Fosdick, 1976]
and [Foster, 1987], testing applicability of program transformations [Nielson, 1985a],
compiler generation and partial evaluation [Jones, 1989], [Nielson, 1988b],
estimating program running times [Rosendahl, 1989], and efficiently paral-
lelizing sequential programs [Masdupuy, 1991 Mercouroff, 1991].

The first papers on automatic program analysis were rather ad hoc, and
oriented almost entirely around one application: optimization of target or
intermediate code by compilers. Prime importance was placed on efficiency,
and the flow analysis algorithms used were not explicitly related to the
semantics of the language being analysed. Signs of this can be seen in the
well-known unreliability of the early highly optimizing compilers, indicating
the need for firmer theoretical foundations.

11

1.4 A Sampling of Data-flow Analyses

We now list some program analyses that have been used for efficient im-
plementation of programming languages. The aim is to show how large
the spectrum of interesting program analyses is, and how much they dif-
fer from one another. Only a few of these have been given good semantic
foundations, so the list could serve as a basis for future work. References
include [Aho, Sethi and Ullman, 1986] and [Muchnick, 1981].

All concern analysing the subject program’s behaviour at particular
program points for optimization purposes. Following is a rough classifica-
tion of the analyses, grouped according to the behavioural properties on
which they depend:

Sets of values, stores or environments that can occur at a program
point

Constant propagation finds out which assignments in a program yield con-
stant values that can be computed at compile time.

Aliasing analysis identifies those sets of variables that may refer to the
same memory cell.

Copy propagation finds those variables whose values equal those of other
variables.

Destructive updating recognizes when a new binding of a value to a variable
may safely overwrite the variable’s previous value, e.g. to reduce
the frequency of garbage collection in Lisp [Bloss and Hudak, 1985],
[Jensen, 1991], [Mycroft, 1981], [Sestoft, 1989].

Groundness analysis (in logic programming) finds out which of a Prolog
program’s variables can only be instantiated to ground terms

[Debray, 1986], [Sendergaard, 1986].

Sharing analysis (in logic programming) finds out which variable pairs can
be instantiated to terms containing shared subterms [Debray, 1986],

[Mellish, 1987], [Sgndergaard, 1986].

Circularity analysis (in logic programming) finds out which unifications in
Prolog can be safely performed without the time-consuming “oc-

cur check” [Plaisted, 1984], [Sendergaard, 1986].

Sequences of variable values

Variables invariant in loops identifies those variables in a loop that are
assigned the same values every time the loop is executed; used in
code motion, especially to optimize matrix algorithms.

12

Induction variables identifies loop variables whose values vary regularly
each time the loop is executed, also to optimize matrix algo-
rithms.

Computational past

Use-definition chains associates with a reference to X the set of all as-
signments X := ... that assign values to X that can “reach” the
reference (following the possible flow of program control).

Available expressions records the expressions whose values are implicitly
available in the values of program variables or registers.

Computational future

Liwve variables variable X is dead at program point p if its value will never
be needed after control reaches p, else live. Memory or registers
holding dead variables may be used for other purposes.

Definition-use analysis associates with any assignment X := ... the set of
all places where the value assigned to X can be referenced.

Strictness analysis given a functional language with normal order seman-
tics, the problem is to discover which parameters in a function
call can be evaluated using call by value.

Miscellaneous

Mode analysis To find out which arguments of a Prolog “procedure” are
input, i.e. will be instantiated when the procedure is entered, and
which are output, i.e. will be instantiated as the result of calling

the procedure [Mellish, 1987].

Interference analysis To find out which subsets of a of program’s com-
mands can be executed so that none in a subset changes variables
used by others in the same set. Such sets are candidates for par-
allel execution on shared memory, vector or data flow machines.

1.5 Outline

Ideally an overview article such as this one should describe its area both in
breadth and in depth - difficult goals to achieve simultaneously, given the
amount of literature and number of different methods used in abstract in-
terpretation. As a compromise section 2 emphasizes overview, breadth and
connections with other research areas, while section 3 gives a more formal

13

mathematical treatment of a domain-based approach to abstract interpre-
tation using a two-level typed lambda calculus. (The motivation is that
abstract interpretation of denotational language definitions allows approx-
imation of a wide class of programming language properties.) Section 4 is
again an overview, referencing some of the many abstract interpretations
that have been seen in the literature. Section 5 contains a glossary briefly
describing the many terms that have been introduced. Following is a more
detailed overview.

Driven by examples, section 2 introduces several fundamental analysis
concepts seen in the literature. The descriptions are informal, few theorems
are proved, and some concepts are made more precise later within the
framework of section 3.

The section begins with a list of program analyses used by compilers,
and does a parity analysis of an example program. The shortcomings of
naive analysis methods are pointed out, leading to the need for a more sys-
tematic framework. The framework used by Cousot for flow chart programs
is introduced, using what we call the “accumulating” semantics, elsewhere
the collecting or static semantics®.

Appropriate machinery is introduced to approximate the accumulating
semantics, and to prove the approximations safe. The distinction between
independent attribute and relational analyses is made, and the latter are
related to Dijkstra’s predicate transformers. Backwards analyses are then
briefly described.

It is then shown how domain-based generalizations of these ideas can
be applied to languages defined by denotational semantics, thus going far
beyond flow chart programs. The main tools used are interpretations and
logical relations, and a general technique is introduced for proving safety.

Section 3 uses representation functions and logical relations, rather than
abstraction of an accumulating semantics. The approach is metalanguage
oriented and highly systematic, emphasizing the metalanguage for denota-
tional definitions rather than particular semantic definitions of particular
languages. It emphasizes compositionality with respect to domain con-
structors, and the extension from the approximation of basic values and
functions to all the program’s domains, analogous to the construction of a
free algebra from a set of generators. The components of the following goal
are precisely formulated:

abstract interpretation = correctness
+ most precise analyses
+ implementable analyses

! There is a terminological problem here: [Cousot, 1977a] used the term “static seman-
tics”, but this has other meanings, so several researchers have used the more descriptive
“collecting semantics”. Unfortunately this term too has been used in more than one
way, so we have invented yet another term: “accumulating semantics”.

14

Section 4 illustrates the need to interpret programs over domains other
than abstractions of the accumulating semantics. Some program analy-
ses not naturally expressed by abstracting either an accumulating or an
instrumented semantics are exemplified, showing the need for more sophis-
ticated analysis techniques, and an overview is given of some alternative
approaches including tree grammars.

The idea of an “instrumented” semantics is introduced and correctness
is discussed. This section is problem-oriented, with simulation techniques
chosen ad hoc to fit the analysis problem and the language being anal-
ysed. It thus centers more around programs’ operational behaviour than
the structure of their domains, with particular attention to describing the
set of program states reachable in computations on given input data, and
to finite description of the set of all computations on given input. The
section ends by describing approaches to abstract interpretation of Prolog.

2 Basic Concepts and Problems to be Solved

We begin with parity analysis of a very simple example program, and in-
troduce basic concepts only as required. We discuss imperative programs
without procedure calls since this familiar program class has a simple se-
mantics and is most often treated in the analysis algorithms found in com-
piling textbooks. Later sections will discuss functional and logic programs,
but many of their analysis problems are also visible, and usually in sim-
pler form, in the imperative context. Throughout this section the reader
is encouraged to ask himself “what is the analogue of this concept in a
functional or logic programming framework?”.

An example program, where =+ stands for integer division (and program
points A,...,G have been indicated for future reference):

A: while n #1 do
B: if n even
then (C:n:=n=+2;D:)
else (E:n:=3xn+1;F:)
fi
od
G:

n:=n-=2

Side remark: Collatz’ problem in number theory amounts to determining
whether this program terminates for all positive initial n. To our knowledge
it is still unsolved.

2.1 A Naive Analysis of the Simple Program

Abstraction of a single execution If this program is run with initial
value n = 5, then n takes on values 5,16, 8,4, 2 at point B, values 16, 8,4, 2
at C, etc. Using T to represent “either even or odd” the results of this
single run can be abstracted as:

nat A natB natC natD natE natF natG
odd T even T odd even odd

Extension to all possible executions This result was obtained by
performing one execution completely, and then abstracting its outcome.
Such an analysis may of course not terminate, and it does not as wished
describe all executions. The question is: how to obtain even-odd informa-
tion valid for all possible computations? A natural way is to simulate the
computation, but to do the computation using the abstract values

Abs = {L, even, odd, T}

instead of natural numbers, each representing a set of possible values of n;
and to ensure that all possible control flow paths are taken.

Doing this informally, we can see that if n is odd at program entry, it
will always be even at points C and F, always odd at point E, sometimes
even and sometimes odd at points B and D, and odd at G, provided control

16

ever reaches G. Individual operations can be simulated by known properties
of numbers, e.g. 3n 4+ 1 is even if n is odd and odd if n is even, while n + 2
can be either even or odd.

Simulating the whole program is not as straightforward as simulating a
single execution. The reason was mentioned before: execution over abstract
values cannot in general be deterministic, since it must take account of
all possible execution sequences on real data satisfying the abstract data
description.

Towards a less naive analysis procedure The very earliest data-
flow analysis algorithms amounted to glorified interpreters, and proceeded
by executing the program symbolically, keeping a record of the desired
flow information (abstract values) as the interpretation proceeded. Such
algorithms, which in essence traced all possible control paths through the
program, were very slow and often incorrect. They further suffered from a
number of problems of semantic nature, for example difficulties in seeing
how to handle nondeterminism due to tests with insufficient information
to recognize their truth or falsity, convergence and divergence of control
paths, loops and nontermination.

Better methods were soon developed to solve these problems, including

e putting a partial order on the abstract data values, so they always
change in the same direction during abstract interpretation, thus re-
ducing termination problems

e storing flow information in a separate data structure, usually bound
to program points (such as entry points to “basic blocks”, i.e. maxi-
mal linear program segments)

e constructing from the program a system of “data-flow equations”,
one for each program point

e solving the data-flow equations (usually by computing their greatest
fixpoint or least fixpoint).

Much more efficient algorithms were developed and some theoretical
frameworks were developed to make the new methods more precise; [Hecht, 1977],
[Kennedy, 1981] and [Aho, Sethi and Ullman, 1986] contain good overviews.

Nomne of the “classical” approaches to program analysis can, however,
be said to be formally related to the semantics of the language whose
programs were being analysed. Rather, they formalized and tightened up
methods used in existing practice. In particular none of them was able to
include precise execution as a special case of abstract interpretation (albeit
an uncomputable one). This was first done in [Cousot, 1977a], the seminal
paper relating abstract interpretation to program semantics.

17

2.2 Accumulating Semantics for Imperative Programs

The approach of [Cousot, 1977a] is appealing because of its generality: it
expresses a large number of special program analyses in a common frame-
work. In particular, this makes questions of safety (i.e. correctness) much
easier to formulate and answer, and sets up a framework making it pos-
sible to relate and compare the precision of a range of different program
analyses. It is solidly based in semantics, and precise execution of the pro-
gram is included as a special case. This implies program verification may
also be based on the accumulating semantics, a theme developed further
in [Cousot, 1977b] and several subsequent works.

The ideas of [Cousot, 1977a] have had a considerable impact on later
work in abstract interpretation, for example [Mycroft, 1981], [Muchnick, 1981],
[Burn, 1986], [Donzeau-Gouge, 1978], [Nielson, 1982], [Nielson, 1984], [Mycroft, 1987]).

2.2.1 Overview of the Cousot Approach

The article [Cousot, 1977a] begins by presenting an operational semantics
for a simple flow chart language. It then develops the concept of what
we call the accumulating semantics (the same as Cousots’ static semantics
and some others’ collecting semantics). This associates with each program
point the set of all memory stores that can ever occur when program control
reaches that point, as the program is run on data from a given initial
data space. It was shown in [Cousot, 1977a] that a wide variety of flow
analyses (but not alll) may be realized by finding finitely computable
approximations to the accumulating semantics.

The (sticky) accumulating semantics maps program points to sets of
program stores. The set p(Store) of all sets of stores forms a lattice with
set inclusion C as its partial order, so any two store sets A, B have least
upper bound AU B and greatest lower bound AN B. The lattice p(Store)
is complete, meaning that any collection of sets of stores has a least upper
bound in p(Store), namely its union.

Various approximations can be expressed by simpler lattices, connected
to p(Store) by an abstraction function « : p(Store) — Abs where Abs is
a lattice of descriptions of sets of stores. Symbol U is usually used for the
least upper bound operation on Abs, M for the greatest lower bound, and
T, L for the least, resp. greatest elements of Abs.

An abstraction function is most often used together with a dual con-
cretization function v : Abs — p(Store), and the two are required to satisfy
natural conditions (given later).

For a one-variable program we could use as Abs the lattice with elements

{L, T, even, odd},

where the abstraction of any nonempty set of even numbers is lattice el-

18

ement “even”, and the concretization of lattice element “even” is the set

of all even numbers. Abstract interpretation may thus be thought of as
executing the program over a lattice of imprecise but computable abstract
store descriptions instead of the precise and uncomputable accumulating
semantics lattice.

In practice computability is often achieved by using a noetherian lat-
tice, i.e. one without infinite ascending chains. More general lattices can,
however, be used, cf. the Cousots’ “widening” techniques, or the use of
grammars to describe infinite sets finitely.

Let po be the program’s initial program point and let p be another
program point. The set of store configurations that can be reached at
program point p, starting from a set Sy of possible initial stores is defined

by:
acc, = {s | (p, s) = next™((po, so)) for some sq € Sp,n >0 }

The accumulating semantics thus associates with each program point the
set acc, C Store.

2.2.2 Accumulating Semantics of the Example Program
For the example program there is only one variable, so a set of stores has
form

{[n— ai],[n— as],[n— as],...}

For notational simplicity we can identify this with the set {a;, as, as, ...}
(an impossible simplification if the program has more than one variable).
Given initial set Sy = {5} the sets of stores reachable at each program
point are:

accy accp acco accp accg accp accq

{5} {5,16,8,4,2} {16,8,4,2} {84,2,1} {5} {16} {1}

The following data-flow equations have a unique least fixpoint by complete-
ness of p(Store), and it is easy to see that their fixpoint is exactly the tuple
of sets of reachable stores as defined above.

accy = So

accg = (acca U accp U acep)Nin| n€{0,1,2,...}\{1}}
accc = accg N {n|n€{0,2,4,...}}

accp = {n=+2|n€accc}

accg = accgN {n|n€{1,3,5,...}}

accp, = {3n+1|n€accg}

19

accg = (accqg U accp U accp) N {1}

The equation set can be derived mechanically from the given program’s
syntax, e.g. as seen in [Cousot, 1977a] or [Nielson, 1982].

2.2.3 Abstract Interpretation of the Example Program

The abstraction function « : p(Store) — Abs below may be used to abstract
a set of stores, where Abs = {L, even, odd, T}:

1 if S = {}, else

even if S C {0,2,4,...}, else
odd if S C{1,3,5,...}, else
T

a(S) =

Defining L. Ceven & T and L C odd C T makes Abs into a partially
ordered set. Least upper and greatest lower bounds U, M exist so it is also
a lattice.

AN
N/

Applying « to the sets of reachable stores yields the following:

absy absgp absc absp absg absp absg
odd T even T odd even odd

Abstraction of the set of all runs This method is still unsatisfactory
for describing all computations since the value sets involved are unbounded
and possibly infinite. But we may model the equations above by applying
a to the sets involved. The abstraction function « just given is easily seen
to be monotone, so set inclusion C in the world of actual computations is
modelled by C in the world of simulated computations over Abs. Union

20

is the least upper bound over sets, so it is natural to model U by U, and
similarly to model N by M.

The arithmetic operations are faithfully modelled as follows, using fa-
miliar properties of natural numbers:

1 ifabs =L
Fn2(abs) :{ T else

il if abs = L, else
even if abs = odd, else

Font1(abs) =0 44 if abs =

= even, else

T ifabs =T

This yields the following system of approzimate data-flow equations, de-
scribing the program’s behaviour on Abs:

absa = «(Sy)
(absal abspU absp) M T (“MT” may be omitted)

absp

absc = absg M even

absp = fnza(absg)

absg = absg M odd

absp = fany1(absg)

absg = (absal abspll absp) M odd

Remark Here f,.2 and f3,41 were defined ad hoc; a systematic way to
define them will be seen in section 2.3.

The lattice Abs is also complete. The operators M, U, fr-2 and fsn41
are monotone, so the equation system has a (unique) least fixpoint. The
abstraction function « is easily seen to be monotone, so if it also were a
homomorphism with respect to U, U and N, M, the least solution to the
approximate flow equations would be exactly

absy = a(accy),...,absg = a(accg).
It is, however, not homomorphic since for example
a({2}) M a({4}) = even # L = a({2} 1 {4})

On the other hand the following do hold:

21

®(AUB) fura(a(A) T a({n=2|ne A}
«(ANB) fari(a(4) I o({3n+1|ne A}

2
2
_
2
=
I

Using these, it is easy to see by inspection of the two equation systems
(more formally: a simple fixpoint induction) that their least fix points are
related by:

a(accy),

a(aceg),

absy,
absp

absg I afaccg)

Following is the iterative computation of the least fixpoint, assuming Sy =

{5}:

absy absp absc absp absg absp absg 1teration

L L L L L L il 0
odd L L L L L L 1
odd odd L L L L odd 2
odd odd L 4L odd 4L odd 3
odd odd L L odd even odd 4
odd T L 4L odd even odd 5
odd T even L odd even odd 6
odd T even T odd even odd 7,8, ...

The conclusion is that n is always even at points C and F, and always odd

at E and G.

2.2.4 An Optimization Using the Results of the Analysis

The flow analysis reveals that the program could be made somewhat more
efficient by “unrolling” the loop after F. The reason is that tests “n # 17
and “n even” must be both be true in the iteration after F, so they need
not be performed. The result is

while n # 1 do if n even thenn := n+2elsen := (3xn+1)=+2
fi od

which avoids the two tests every time n is odd. In practice, one of the
main reasons for doing abstract interpretation is to find out when such
optimizing transformations may be performed.

22

2.2.5 Termination

The least fixed point may (as usual) be computed by beginning with [pp; —
L,..., ppm — 1] (every program point is mapped to the least element
of Abs), and repeatedly replacing the value currently assigned to pp; by
the value of the right side of pp;’s equation. By monotonicity of M, f,-2
etc., these values can only grow or remain unchanged, so the iterations
terminate provided the approximation lattice has no ascending chains of
infinite height, as is the case here.

[Cousot, 1977a] describes ways to achieve termination even when infi-
nite chains exist, by inserting so-called widening operators in the data-flow
equations at each junction point of a loop. To explain the basic idea con-
sider the problem of finding the fixed point of a continuous function f.
The usual Kleene iteration sequence is dg = L, -+, dp41 = f(dy), - and
is known to converge to the least fixed point of f but the sequence need
not stabilize, i.e. it need not be the case that d,41 = d,, for some n. To
remedy this one may introduce a widening operator 57 that dominates the
least upper bound operation, i.e. d'Ud” T d’<7d”, and such that the chain
do =1, -+, dpy1 = dn v f(d,) always stabilizes. This leads to overshoot-
ing the least fixed point but always gives a safe solution. By iterating down
from the stabilization-value (perhaps by using the technique of narrowing)
one may then be able to recover some of the information lost.

Constant propagation This is an example of a lattice which is infinite
but has finite height (three). It is used for detecting variables that don’t
vary,and has Abs ={T, L,0,1,2,...} where LCnETforn=0,1,2,...

e
N | S

The corresponding abstraction function is:

1L ifv={}
a(Vy=<¢ n ifV={n}

T otherwise

There also exist lattices in which all ascending chains have finite height,
even though the lattice as a whole has unbounded vertical extent. An
example: let Abs = (N, >).

23

2.2.6 Safety: First Discussion

The analysis of the Collatz-sequence program is clearly “safe” in the follow-
ing sense: if control reaches point C then the value of n will be even, and
similarly for the other program points and abstract values. Correctness (or
soundness) of the even-odd analysis for all possible programs and program
points is also fairly easy to establish, given the close connection of the flow
equations to those defining the accumulating semantics.

Reachable program points A similar but simpler reachability analysis
(e.g. for dead code elimination) serves to illustrate a point concerning
safety. It uses Abs = {T, L} with L C T and abstraction function «
defined as follows (where a € Abs and S C Store):

a(S) = L1 ifS={} elseT
faz2(a) = L ifa=1 | elseT
fang1(a) = L ifa=1 elseT

Intuitively, 1 abstracts only the empty set of stores and so appropriately
describes unreachable program points, while T describes reachable program
points. Computing the fixpoint as above we get:

absy absp absc absp absg absp absg
T T T T T T T

This might be thought to imply that all program points including G
are reachable, regardless of the initial value of n. On the other hand,
reachability of G for input n implies termination, and it is a well-known
open question whether the program does in fact terminate for all n.

A more careful analysis reveals that L at program point p represents
“p cannot be reached”, while T represents “p might be reached” and so
does not necessarily imply termination. The example shows that we must
examine the questions of correctness and safety more carefully, which we
now proceed to do.

2.3 Correctness and Safety

In this and remaining parts of section 2, we describe informally several dif-
ferent approaches to formulating safety and correctness, and discuss some
advantages and disadvantages. A more detailed domain-based framework
will be set up in section 3.

24

2.3.1 Desirable Properties of the Abstract Value Set Abs

In order to model the accumulating semantics equations, Abs could be a
complete lattice: a set with a partial order C, with least upper and greatest
lower bounds U and M to model U and N, and such that any collection of
sets of stores has a least upper bound in Abs. Note: any lattice of finite
height is complete. In the following we sometimes write a J @’ in place of
a' Ca.

2.3.2 Desirable Properties of the Abstraction Function

Intuitively “even” represents the set of all even numbers. This viewpoint
is made explicit in [Cousot, 1977a] by relating complete lattices Conc and
Abs to each other by a pair «, v of abstraction and concretization functions
with types

a: Conc — Abs
v: Abs — Conc

In the even-odd example above the lattice of concrete values is Conc =
p(Store), and the natural concretization function is

v = {}

v(even) = {0,2,4,..}
y(odd) = {1,3,5,...}
7T) = {0,1,2,3,..} =N

Cousot and Cousot impose natural conditions on « and = (satisfied by the
examples):

1. a and 7 are monotonic

2. Ya € Abs, a = a(y(a))

3. Ve € Conc, ¢ Ceone 7((c))

For the accumulating semantics, larger abstract values represent larger
sets of stores by condition 1. Condition 2 is natural, and condition 3 says
that S C y(a(S)) for any S C Store.

The conditions can be summed up as: («, v) form a Galois insertion of

Abs into p(Store), a special case of an adjunction in the sense of category
theory. It is easy to verify the following

Lemma 1 If conditions 1-3 hold, then

e Yc € Conc, a € Abs: ¢ Econe ¥(a) if and only if a(c) Caps a, and

25

e « 1s continuous

O
Thus the abstract flow equations converge to a fixpoint. If « is semihomo-
morphic on union, intersection and base functions, then the abstract flow
equations’ fixpoint will be pointwise larger than or equal to the abstraction
of the fixpoint of the accumulating semantics’ equations.
Again, note that stores are unordered, so « and v need only preserve the
subset ordering. The more complex situation that arises when modelling
nonflat domains is investigated in [Mycroft, 1983].

2.3.3 Safety: Second Discussion

Recalling the program of section 2.2, we can define the solution
(absa,...,absg) € Abs” to the abstract flow equations to be safe with
respect to the accumulating semantics (acca,...,accg) € p(Store)” if the
reachable sets of stores are represented by the abstract values:

accya C y(absa),
accg C y(absp),

accg C 7y(absg)

This is easy to verify for the even-odd abstraction given before.

Returning to the question raised after the “reachable program points”
example, we see that safety at point G only requires that accg C y(absg),
i.e. that every store that can reach G appears in y(absg). This also holds
if accg is empty, so y(absg) = T does not imply that G is reachable in any
actual computation. For any program point X, absxy = L implies accxy =
{}, which signifies that control cannot reach X. Thus abstract value L can
be used to eliminate dead code.

Safe approximation of base functions Consider a base function op :
IN— IN, and extend it, by “pointwise lifting” to sets of numbers, yielding
pop : p(IN) — p(IN) where

pop(N) = {op(n)| n € N'}

Suppose «a, v satisfy conditions 1-3. It is natural to define op : Abs — Abs
to be a safe approrimation to op if the following holds for all N C IN:

pop(N) C y(op(a(N)))

or, diagrammatically:

26

$op
p(IN) p(IN)
Al
o 7
Y Op
Abs Abs
By the conditions and lemma this is equivalent to
a(pop(N)) E op(a(N))
corresponding to diagram:
0P
p(IN) p(IN)
o !
\ op i
Abs Abs

Intuitively, for any subset N C IN, applying the induced abstract operation
op to the abstraction of N represents at least all the values obtainable by
applying op to members of N.

Induced approximations to base functions We now show how the
best possible approximation op can be extracted from op (at least in princi-
ple, although perhaps not computably; a more detailed discussion appears
in section 3.4). Recall that smaller elements of Abs abstract smaller sets of
concrete values and so are less approximate, i.e. more precise descriptions.

27

Lemma 2 Given a : p(IN) — Abs and 7 : Abs— p(IN) satisfying the
three conditions above, define the operator induced by op to be op : Abs
— Abs where

Op = w o popoYy

Then op is the most precise function on Abs satisfying a(pop(N)) C
op(a(N)) for all N.

Proof Suppose f: Abs — Abs with a(p op(N)) E f(a(N)) for all N.
Then for any a,

op(a) = a(pop(7(a))) E f(a(y(a))) = f(a)

The definition of op as a diagram:
$op
p(IN) p(IN)

4

op
Abs Abs

For example, if op(n) = n + 2 then op is f,-2 as seen above, e.g.

op(l) =a(fn=2{nerL)}) =a({} 1
op(even) =a({n+2|né€y(even}) =«({0,1,2,...}) =T

Unfortunately the definition of op does not necessarily give a terminating
algorithm for computing it, even if op is computable. In practice the prob-
lem is solved by approximating from above, i.e. choosing op to give values
in Abs that may be larger (less informative) than implied by the above
equation. We will go deeper into this in Subsection 3.5.

28

A local condition for safe approximation of transitions A safety

condition on one-step transitions can be formulated analogously. Define

for any two control points p, q the function next, ,:p(Store) — p(Store):
next, (S) = {s' | (¢,s') = next((p, s)) for some s € S}

This is the earlier transition function, extended to include all transitions
from p to q on a set of stores. Exactly as above we can define the abstract
transition function induced by « and v to be

next, , = aonext, , 0y
This is again the most precise function satisfying

nexty ¢(a(5)) C a(nexty 4(5))

for all S.

2.3.4 An Example: the Rule of Signs

Consider the abstract values 4+, - and 0 with the natural concretization
function

v(0) = {0}
v(+) = {1,2,3,...}
(=) = {-1,-2,-3,..}

This can be made into a complete lattice by adding greatest lower and
least upper bounds in various ways. Assuming M, U should model N, U
respectively, the following is obtained:

I\,
e RN

- 0 +

29

with
v = {}
W) = {0,1,2,3,.)
7(§ 0) = {01_1;_2:_3a"'}
w7 = {..,-2,-1,0,1,2,3,..}=Z%Z
and abstraction function
1L if S ={} else
+ i SCH{L 23, . }else
) >0 ifSC{0,1,2,3,...}else
a®) =932 g C{-1-2, -3,...} else
<0 ifSC{0,-1,-2,-3,...} else
T

The induced approximation for operator + : Z x Z— % is:

+ 1L - 0 + >0 <0 T
T L L 1 1 1 I 1
L - - T T - T
0 |L — 0 4+ >0 <0 T
+ L T + 4+ + T T
>0|L T >0 4+ >0 T T
<0|L - <0 T T <0 T
Ll T T T T T T

2.3.5 Composition of Safety Diagrams
Suppose we have two diagrams for safe approximation of two base functions
op and op’:
$op
p(IN) p(IN)

Abs Abs

30

and
pop’
p(IN) p(IN)
o o
\ op’ il
Abs Abs

It is easy to see that op’o op is a safe approximation to g op’ o g op,
so the two may be composed:

fpop’ o pop
p(IN) p(IN)
« @
\ op’o op]
Abs Abs

On the other hand the diagrams for the induced approximations to
base functions cannot be so composed, since the best approximation to
gop’ o pop may be better than the composition of the best approximations
to pop and pop’. (This is precisely because « is a semihomomorphism,
not a homomorphism.) For a concrete example, let op and op’ respectively
describe the effects of the two assignments

n:=4%«xn4+2;, n:=n-=2

Then
a(pop’ o pop({0,1,2,...})) = «({1,3,5,...}) = odd

whereas

op’o op («({0,1,2,...}) = op’(even) = T.

31

2.4 Scott Domains, Lattice Duality, and Meet versus
Join

Relation to Scott-style domains The partial order C on Abs models
the set inclusion order C used for p(Store) in the accumulating seman-
tics. In abstract interpretation, larger elements of Abs correspond to more
approrimate descriptions, so if @ C a’ then a’ describes a larger set of con-
crete values. For example, “even” describes any set of even numbers, and
T describes the set of all numbers.

In contrast, Scott domains as used in denotational semantics use an
ordering by “information content” | where a larger domain element describes
a single value that is more completely calculated. During a computation L
means “not yet calculated”, intuitively a slot to be filled later in with the
final value. Appearance of L in a program’s final result signifies “was
never filled in”, and so represents nontermination (at least in languages
with eager evaluation).

A value in a Scott domain represents perhaps incomplete knowledge
about a single program value, for example a finite part of an infinite func-
tion f. The partial order f C f’ signifies that f’ is more completely
defined than f, and that f’ agrees with f where ever it is defined. T, if
used at all, indicates inconsistent values.

Clearly this order is not the same as the one used in abstract interpre-
tation, and the difference is more than just one of duality.

Least or Greatest Fixpoints? Literature on data-flow analysis as used
in compilers [Aho, Sethi and Ullman, 1986,Hecht, 1977, Kennedy, 1981] of-
ten uses abstract value lattices which are dual to the ones we consider, so
larger elements represent more precise descriptions rather than more ap-
proximate. This is mainly a matter of taste; but has the consequence that
greatest fixpoints are computed instead of least ones, and that the U and
N of the accumulating semantics are modelled by M and U, respectively.
We prefer least fixpoints due to their similarity to those naturally used in
defining the accumulating semantics.

Should U or M be Used on Converging Paths? We have argued that
U naturally models the effect of path convergence because it corresponds to
U in the accumulating semantics. On the other hand, there exist abstract
interpretations that are not approximations to the accumulating semantics,
and for some of these path convergence is properly modelled by M. To
see this, consider the two dependence analyses mentioned in section 1.1.
For analysis I, path convergence should be modelled by U since a variable
dependence is to be recorded if it occurs along at least one path. For
analysis II it should be modelled by M since a dependence is recorded only

32

if it occurs along all paths. So the choice between U and M on converging
paths is just another incarnation of the modality distinction encountered
in section 1.

2.5 Abstract Values Viewed as Relations or Predicates

The accumulating semantics binds to each program point a set of stores.
Suppose the program’s variables are Vi,...,V,, so a store is an element of
Store = {V1,...,V,} — Value. In the examples above there was only one
variable, so a set of stores was essentially a set of values, which simplified
the discussion considerably. The question arises: how can we abstract a
set of stores when n > 17

2.5.1 Independent Attribute Analyses

Suppose value sets are abstracted by ayq1 : p(Value) — A. The independent
attribute method models a set of stores S at program point p by mapping
each variable V; to an abstraction of the set of values it takes in all the
stores of S. This abstract value is thus independent of all other variables,

hence the term “independent attribute”. For example, {[X — 1,Y
2],[X — 3,Y — 1]}) would be modelled by [X — odd,Y — T] .

Formally, we model

S € p(Store) = p({V1,...,V,} — Value)

by a function

abs, € Abs ={Vi,...,V,} = A
The store abstraction function oy, : @(Store) — Abs is defined by

Oésto(S) = [Vz — aval({s(vi)l s € S})]i:l,...,n

For example, consider an even-odd analysis of a program with variables
X, Y, Z. The independent attribute method would abstract a set of two
stores as follows:

asto({[X =1,V =2, 2= 1], [X =2V —2Z—1]}) =

[X = ava({1,2}), Y = ava({2}), Z = awa({1})] =
[X — T,Y — even, Z — odd]

The independent attribute method abstracts each variable independently
of all others, and so allows “cross over” effects. An example:

33

Oz({[Xr—>1,Yr—>l],[Xr—>2,Yr—>2]}) = X—T,Y—T] =
a({[XH LY —2,[X—2Y 1]})

This loses information about relationships between X’s and Y’s values, e.g.
whether or not they always have the same parity.

2.5.2 Relational Analyses

Relations and predicates Abstract value abs, is an abstraction of the
set of stores acc,, so the question arises as to how to represent it by a
lattice element. An approach used in [Cousot, 1977a], [Cousot, 1977b] is
to describe acc, and its approximations abs, by predicate calculus formulas.
For instance the set of two stores {[X — 1,Y +— 1],[X — 2,Y +— 2]} above
could be approximately described by the formula:

(odd(X) A odd(Y)) V (even(X) A even(Y))

More generally, suppose Store = {V1,...,V,} — Value. Clearly Store is
isomorphic to Value™, the set of all n-tuples of values. Thus any set of
stores i.e. any element of p(Store)) can be interpreted as a set of n-tuples.
For example, store set {[X — 1,Y +— 1],[X +— 2,Y +— 2]} corresponds to
{(1,1), (2,2)}. Thus a store set is essentially a set of n-tuples or, in other
words, an n-ary predicate or relation.

For program point p, the accumulating semantics defines relation
accy(Vi,...,vy) to be true just in the case that (vi,...,v,) is a tuple of
values which can occur at p in one or more computations on the given ini-
tial input data. This is the weakest possible relation among variables that
always holds at point p.

Relational Analyses These use more sophisticated methods to approx-
imate g(Store), which can give more precise information. Examples of
practically motivated program analysis problems that require relational in-
formation include aliasing analysis in Pascal, the recognition of possible
substructure sharing in Lisp or Prolog, and interference analysis.

For an example not naturally represented by independent attributes,
suppose we wish to find out which of a program’s variables always assume
the same value at a given program point p. A suitable abstraction of a set of
stores is a partition m, that divides the program’s variables into equivalence
classes, so any one class of 7, contains all variables that have the same value
at p. The effect of an assignment such as “p: X:=Y; goto q” is that m,
is obtained from 7, by removing X from its previous equivalence class and
adding it to Y’s class.

34

Intensional versus extensional descriptions Above we represented
store set

{{X—1Y+—1], [X —2,Y+— 2]}

by the binary relation {(1,1), (2,2)}, and approximated it by the superset
{(x,¥) | x and y are both even or both odd}, denoted by the predicate
calculus formula

(odd(X) A odd(Y)) V (even(X) A even(Y))

The view of “predicate as a set of tuples” and “predicate as a formula” is
exactly the classical distinction between the extensional and the intensional
views of a predicate.

Descriptions by predicate calculus formulas must of necessity be only
approximate, since there are only countably many formulas but uncount-
ably many sets of stores (if we assume an infinite variable value set). In
terms of predicate calculus formulas, for each program point p the appro-
priate formulation of a safe approximation is that acc, logically implies
absp. In terms of sets of n-tuples: each accp, is a subset of the set of all
tuples satisfying abs,.

2.5.3 Abstract Interpretation and Predicate Transformers

The new view of the accumulating semantics is: given a program and a
predicate describing its input data, the accumulating semantics maps every
program point to the smallest relation among variables that holds whenever
control reaches that point.

From this viewpoint, the function next,, : gp(Store) — g@(Store) is
clearly the forward predicate transformer [Dijkstra, 1976] associated with
transitions from p to q. Further, acc, is clearly the strongest postcondition
holding at program point p over all computations on input data satisfying
the program’s input precondition.

Program verification amounts to proving that each acc, logically im-
plies a user-supplied program assertion for point p. Note however that this
abstract interpretation framework says nothing at all about program ter-
mination. This approach is developed further in [Cousot, 1977b] and their
subsequent works.

Backwards analyses All this can easily be dualised: the backward predi-
cate transformernext, | : p(Store) — p(Store) is just the inverse of next, 4,
and given a program postcondition one may find the weakest precondition on
program input sufficient to imply the postcondition at termination. For the
simple imperative language, a backward accumulating semantics is straight-
forward to construct. For the example program

35
A: while n #1 do

B: if n even
then (C:n:=n=+2;D:)
else (E:n:=3xn+1;F:)
fi
od
G:

the appropriate equations are:

accy = ({1}nacecg)U({0,2,3,4,...} Naccp)
accg = (acce N Evens) U (accg N Odds)

accc = {n|n+ 2€ accp}

accp = ({1}naceg)U({0,2,3,4,...} Naccp)
accg = {n|3n+1€accp}

accp. = ({1}Naccg)U({0,2,3,4,...} Nacep)
accg = Stinal

where acc, is the set of all stores at point p that cause control to reach
point G with a final store in Sinar.

Such a backward accumulating semantics can, for example, provide a
basis for an analysis that detects the set of states that may lead to an
error. More generally backward analyses (although not the one shown here)
may provide a basis for “future sensitive” analysis such as live variables,
where variable X is “semantically live” at point p if there is a computation
sequence starting at p and later referencing X’s value. This is approximated
by: X is “syntactically live” if there is a program path from p to a use of X’s
value. Section 3 contains an example of live variable analysis for functional
programs.

Many analysis problems can be solved by either a forwards or a back-
wards analysis. There can, however, be significant differences in efficiency.

Backwards analysis of functional programs The backwards accu-
mulating semantics is straightforward for imperative programs, partly be-
cause of its close connections with the well studied weakest preconditions
[Dijkstra, 1976], and because the state transition function is monadic. It is
semantically less well understood, however, for functional programs, where
recent works include [Hughes, 1987], [Dybjer, 1987], [Wadler, 1987], and
[Nielson, 1989]. Natural connections between backwards analyses and con-
tinuation semantics are seen in [Nielson, 1982] and [Hughes, 1987].

36

2.6 Important Points from Earlier Sections

In the above we have employed a rather trivial programming language so
as to motivate and illustrate one way to approximate real computations
by computations over a domain of abstract values: Cousot’s accumulating
semantics. Before proceeding to abstract interpretation of more interesting
languages we recapitulate what has been learned so far.

¢ Computations in the abstract world are at best semihomomorphic
models of corresponding computations in the world of actual values.

e Safety of an abstract interpretation is analogous to reliability of a nu-
merical analyst’s results: the obtained results must always lie within
specified confidence intervals (usually “one-sided intervals” in the case
of program analysis).

e To obtain safe results for specific applications it is essential to un-
derstand the interpretation of the abstract values and their relation
to actual computational values. One example is modality, e.g. “all
computations” versus “some computations”.

o Abstract values often do not contain enough information to determine
the outcome of tests, so abstract interpretation must achieve the effect
of simulating a set of real computations.

e Computations on complete lattices of abstract values appropriately
model computations on real values.

e The partial order on these lattices expresses the degree of precision in
an approximate description, and is quite different from the traditional
Scott-style ordering based on filling in incomplete information.

e Termination can be achieved by choosing lattices without infinite
ascending chains.

e Best approximations to real computations exist in principle, but may
be uncomputable.

e There are close connections between the “accumulating semantics”
and the predicates and predicate transformers (both forwards and
backwards) used in program verification.

2.7 Towards Generalizing the Cousot Framework

Abstract interpretation is a semantics-based approach to program analy-
sis, but so far we have only dealt with a single, rather trivial language.

