From Uncertainty to Belief: Inferring the Specification Wit hin

Ted Kremenek Paul Twohey Godmar Back Andrew Y.Ng Dawson Engler

Computer Science Departmént Computer Science Departmént
Stanford University Virginia Tech
Stanford, CA, U.S.A. Blacksburg, VA, U.S.A.
Abstract a sound tool can have false negatives due to implementa-

tion bugs. In our experience this is a serious concern: if

Automatic tools for finding software errors require a set of an analvsis bud does not cause a false positive. the onl
specifications before they can check code: if they do not know y 9 P : y

what to check, they cannot find bugs. This paper presents yayto catch itis by comparison agamst regression runs.
novel framework based on factor graphs for automaticaly in ~1h€ result of all these factors is that checking tools
ferring specifications directly from programs. The keysgta ~ Miss many bugs they could catch. Unfortunately, acquir-
of the approach is that it can incorporate many disparaténg accurate specifications can be daunting at best. Even
sources of evidence, allowing us to squeeze significanthemo with state-of-the-art annotation systems, the manual la-
information from our observations than previously put#ish bor needed to specify high-level invariant properties for
techniques. large programs can be overwhelming [12, 35]. Further,
We illustrate the strengths of our approach by applying itin large, evolving codebases with many developers, in-
to the problem of inferring what functions in C programs al- terfaces may change rapidly as functions are added and
locate and release resources. We evaluated its effecéseme  removed. This churn exacerbates the problem of keeping
five codebases: SDL, OpenSSH, GIMP, and the OS kernels fog specification, if there is one, current.
Linux and Mac OS X (XNU). For each codebase, starting with  Fortunately, there are many sources of knowledge, in-
zero initially provided annotations, we observed an irdéian-  tuitions, and domain-specific observations that can be au-
notation accuracy of 80-90%, with often near perfect aagura tomatically leveraged to help infer specifications from
for functions called as little as five times. Many of the imézt programs directly. First and foremost, the behavior of
allocator and deallocator functions are functions for washie  programs is well-structured, with recognizable patterns
both lack the implementation and are rarely called — in somepf behavior implying high-level roles for the objects in
cases functions with at moshe or twocallsites. Finally, with g program. For example, functions that allocate and re-
the inferred annotations we quickly found both missing and i |ease resources (such as file handles and memory) vary
correct properties in a specification used by a commerdaéitst  widely in their implementations, but their interfaces are
bug-finding tool. used nearly identically. In essence, the behavior of a pro-
. gram reflects what the programmer intended it to do, and
1 Introduction the more we observe that one or more objects appear to
Many effective tools exist for finding software errors [4, interact in a recognizable role, the more we believe that
5,8,15,18,28,33]. While differentin many respects, theyrole reflects their true purpose. More plainly, the more
are identical in one: if they do not know what to check, something behaves like aki the more we believe it is
they cannot find bugs. In general, tools require specificaan X. Thus, leveraging such information has the desired
tions that document what a prograshould doin order  property that the amount of evidence garnered about a
for the tool to discern good program behavior from bad.program'’s specification grows in the amount of code an-
Undetected errors due to missing specifications are a sealyzed. In addition, we often have a volume of valuable,
rious form of false negatives that plague sound and unnon-numeric ad hoc information such as domain-specific
sound bug-finding tools alike. From our own experiencenaming conventions (e.g., a function name containing the
with developing such tools, we believe that legions ofword “alloc” often implies the function is an allocator).
bugs remain undetected in systems previously “vetted” This paper presents a novel, scalable, and customiz-
by checking tools simply because they lack the requiredable framework for automatically inferring specifications
specifications, and not because tools lack the necessafyom programs. The specifications we infer come in the
analysis precision. form of annotations, which are able to describe many
Furthermore, checking tools generally operate with-kinds of important program properties. The key strength
out safety nets. There is no mechanism to discover wheof our approach is that it tightly binds together many dis-
bugs in the checking tool lead to missed errors in checkegarate sources of evidence. The result is that any in-
code. Analysis bugs are a source of false negatives; whiléormation about one object becomes indirect informa-
an unsound tool may have false negatives by design, eveiion about related objects, allowing us to squeeze sig-



nificantly more information from our observations than g g « f = foper nyfile. txt", r")
previously published approaches. Our framework can infread buffer, n, 1000, fp );

corporate many sources of information: analysis resultgclose fp );

from bug-finding tools, ad hoc knowledge, and already
known annotations (when available). Moreover, becauseigure 1: Simple example involving a C file handld:open “allo-
the technique is built upon a probabilistic model called acates” the handld,r ead uses it, and cl ose releases it.

factor graph[21,36], itis fully capable of fusing multiple 2 Motivating Example

sources of information to infer specifications while han- . . o
. . S . . We now present a complete example of inferring specifi-
dling the inherent uncertainty in our information sources__. .
) . X -“cations from a small code fragment. This example, along
and the often noisy relationships between the properties . . : .
. ) . . . “Wwith the solution presented in the next section, serves to
we wish to infer. Further, inferred annotations can be im-
mediately employed to effectively find bugs evsefore

the annotations are inspected by a user. 2.1 Problem: Inferring Ownership Roles

This last feature makes our framework pragmatic eveppplication and systems code manages a myriad of re-
for rapidly evolving codebases: the process of inferringsources such as allocated heap objects, file handles, and
annotations and using those annotations to check codgatabase connections. Mismanagement of resources can
with automated tools can be integrated into a nightly reqead to bugs such as resource leaks and use-after-release
gression run. In the process of the daily inspection oferrors. Although tools exist to find such bugs [17, 18, 28,
bug reports generated by the nightly run, some of the in32], all require a list of functions that can allocate and
ferred annotations will be inspected by a user. These nowelease resources (allocators and deallocators). Unfortu
known annotations can subsequently be exploited on thfately, systems code often employs non-standard APIs to
next nightly regression to better infer the remaining Unin'manage resources, causing tools to miss bugs.
spected annotations. Thus, our framework incrementally A more general concept that subsumes knowing allo-
accrues knowledge about a project without a huge initiakation and deallocation functions is knowing what func-
investment of user labor. tions return or claim ownership of a resource. Many C

This paper makes the following contributions. programs use the ownership idiom: a resource has at any

1. We present Annotation Factor GraphsFGs), a  time exactly onewningpointer, which must release the
group of probabilistic graphical models that we haveresource. Ownership can be transferred from a pointer
architected specifically for inferring annotations. by storing it into a data structure or by passing it to a

2. We illustrate how information from program analysis function that claims it. A function that returns an owning

as well as different kinds of ad hoc knowledge can bePQiNter has the annotatiom (returns ownershipasso-
readily incorporated into aAFG ciated with its interface. A function that claims a pointer

. . _ .. passed as an argument has the properticlaims own-
3. We reduce the process of inferring annotgnons W'thershig associated with the corresponding formal param-
anAFG to factor graph inference and describe impor-

R p . o eter. In this model, allocators ar® functions, while
tant optimizations specific to incorporating informa-

tion from static program analysis into &G deallocators areo functions.
prog y ' Manyro functions have a contract similar to an alloca-

4. We provide a thorough evaluation of the techniqueyor, hut do not directly allocate resources. For example, a
using the example of inferring resource managemennction that dequeues an object from a linked list and re-
functions, and illustrate how our technique scalesyrs it to the caller. Once the object is removed from the
to large codebases with high accuracy. Further, weist, the caller must ensure the object is fully processed.
show that with our results we have found both miss-a gimilar narrative applies too functions.
ing and incorrect properties in a specification used by - consider the task of inferring what functions in a pro-
acommercial bug-finding tool (Coverity Prevent[7]). gram return and claim ownership of resources. For ex-

Section 2 presents a complete example of inferring specample, assume we are given the code fragment in Fig-

ifications from a small code fragment, which introducesure 1 and are asked to determinédfpen is anro and if

the key ideas of our approach. Section 3 uses the exaneitherf r ead or f cl ose areco’s. Without prior knowl-

ple to lay the theoretical foundations, which Section 4edge about these functions, what can we conclude by

further formalizes. Section 5 refines the approach andooking at this fragment alone?

shows more advancesFG modeling techniques. Sec-  While we cannot reach a definitive conclusion, simple

tion 6 discusses the computational mechanics of our inintuition renders some possibilities more likely than oth-

ference technique. We evaluate the effectiveness of owgrs. Because programs generally behave correctly, a per-
approach in Section 7, discuss related work in Section 8son might first make the assumption that the code frag-
and then conclude. ment islikely to be bug-free. This assumption elevates

introduce many of the core ideas of our technique.



the reader will have a basic arsenal for inferring annota-
tions, which the next sections extend.

Our goal is to provide a framework (a probabilistic
model) that (1) allows users to easily express every in-
tuition and domain-specific observation they have that is
useful for inferring annotations and then (2) reduces such
knowledge in a sound way to meaningful probabilities.

) _ o ) ) ) In the process, the framework squeezes out all available
Figure 2: DFA summarizing b§5|c ownership rules. A pointer returned information about the annotations we are inferring.
from a function call enters either th@wned or ~Owned state de- .
pending on whether the called function has the propestgr —ro re- The inference framework must solve two common
spectively. Function calls involving the pointer cause EHeA to tran- challenges. First, it must robustly handle noise. Other-
sition states based on te or ~co property associated with the called \yise jts prittleness will prevent the exploitation of many
function. An “end-of-path” indicates no further uses of theinter b . h v “often” her th |
within the function. The two final states for the DFA indicaterrect observations that are qn y “often”true rat .ert an always
(OK) or incorrect use of the pointeB(g). true (e.g., an observation that an annotation obeys a fea-
the likelihood of two conclusions over all others. ture 51% of the time). Second, it must soundly combine

First,f open may be ano, f r ead a function that uses Uncertain information. Treated independently, a fact of
f p but does not claim ownership of the resoureed), ~ Which we are only partially certain is only marginally
andf cl ose aco. For this case, the code fragment canuseful. However, aggregated with other sources of

be logically rewritten as: knowledge, one fact can be the missing link in a chain
of evidence we would not otherwise be able to exploit.
fp = ro(); —co(£p); co(fp) Our annotation inference has three steps:

This conclusion follows if we assume the code fragment 1- Definethe set of possible annotations to infer.

is correct. Iff open is anro, then this assignment is 2. Model domain-specific knowledge and intuitions in

the only one to all three functions that does not induce a  our probabilistic model.

bug. To avoid a resource-leak, eitlferead or f cl ose 3. Compute annotation probabilities using the model.

must be ao. To avoid a use-after-release error, however, These probabilities are then used to rank, from most-

fread cannot be ao. This leaves cl ose being aco. to-least probable: entire specifications, individual an-
Here we have assumed that an owned pointer cannot notations, or errors.

be used after being claimed. This strict interpretation of \\a nhow apply these three steps to our motivating ex-

the ownership idiom assumes that alls are deallo_ca- ample. In general, annotations are implicitly defined by a
tors. For now, the c_orrectness rules_ for_ownersh|p that o rectness property that we wish to check in a program;
we use are summarized by the DFA in Figure 2, and W&o pyriefly describe it for our examplé 8.1). We then
discuss refinements in Section 5.1 describe the fundamental mechanics of our probabilistic
Continuing, the second likely assignment of owner-pq4e| 6 3.2), and how to model two basic properties:
ship roles to these functlon5|s’ thatpen is an-ro, with (1) the fact that the more something behaves like an X
bothfr ead andf cl ose as—co's: the more likely it is an X § 3.3) and (2) domain-specific
prior beliefs § 3.4). We finish the section by computing
the probabilities for the annotations in our example.
We reach this. conclusion using similar reasoning as be3_1 Defining the Annotations to Infer
fore. Iff open is an—ro, we no longer have the opportu-
nity to leak an allocated resource, but as Figure 2 shows/Ve useannotation variableso denote the program ob-
it is now a bug to passp to aco. jects to which annotations bind. The example has three
Consequently, from simple reasoning we can infersuch variablesfopen:ret fread:4andfclose:1 The vari-
much about these functions. Note that we aregest  ablefopen:retcorresponds to the possible annotations for
tain of anything; we onlybelievethat some conclusions the returnvalue of open, and has the domairo, —ro}.
are more likely than others. Further, we may be able toThe variablesfread:4 and fclose:1 (where “i” denotes
infer more about these functions by incorporating addi-the ith formal parameter) have the domajino, —co}.
tional intuitions and knowledge. In the next section we We have2® = 8 combinations of values for these vari-
discuss how to precisely formulate such reasoning. ~ ables, and each represents a ja@pecificationof the
. . roles of all three functions. (For this paper, an annota-
3 The Big Picture tion and its negation are mutually exclusive.) We denote
This section gives a crash course in our inference apthe set of annotation variables As In our example,
proach, tying it to the example just presented. By its end A = {fopen:ret fread:4 fclose:1}. Further, the notation

fp = —ro(); ~co(fp); ~co(fp);



ANNOTATIONS FACTOR VALUES FACTOR PRODUCT  PROBABILITY

fopenret  fread:4  fclose:l DFA  fichecky  f(roy(fopenired — fi.oy(fread:d)  f..y(fclose:D) I1r <TI1f
T0 —co co m| 0.9 0.8 0.7 0.3 0.151 0.483
—ro —co —co 0 0.9 0.2 0.7 0.7 0.088 0.282
ro —co —co O 0.1 0.8 0.7 0.7 0.039 0.125
ro co —co O 0.1 0.8 0.3 0.7 0.017 0.054
r0 co co O 0.1 0.8 0.3 0.3 0.007 0.023
—ro —co co O 0.1 0.2 0.7 0.3 0.004 0.013
—ro co —co O 0.1 0.2 0.3 0.7 0.004 0.013
—ro co co O 0.1 0.2 0.3 0.3 0.002 0.006

Table 1: Table depicting intermediate values used to com@(tpen:ret fread:4, fclose:1). Specifications are sorted by their probabilities. The
value Z is a normalizing constant computed by summing the coldrpi. By summing the values in the last column whiepen:ret= ro we
computeP(fopen:ret= ro) = 0.7. The marginal probabilitie®(fread:4 = —co) =~ 0.9 andP(fclose:1= co) ~ 0.52 are similarly computed.

A = a means that is some concrete assignment of they convey useful information. The ratio that their asso-
values toall the variables inA. Thusa represents one ciated factor returns reflects the reliability of a tendency
possible complete specification, which in our example— big ratios for very reliable tendencies, smaller ratios
specifies ownership roles for all three functions. for mildly reliable ones. Second, factors work well in

Table 1 lists all possible specifications for Figure 1, our domain since (1) they let the user express any com-
and displays the intermediate values used to computputable intuition in terms of a custom function and (2)
probabilities for each specification. We use this tableinference intuitions naturally reduce to preferences over
throughout the remainder of this section. The “DFA’ col- the possible values for different groups of annotation
umn indicates, for each specification, the final state of thevariables. Factors thus provide a way to reduce disparate
DFA from Figure 2 when applied to the code example. observations to a common currency.

Once we represent individual beliefs with factors, we
combine a group of factor§f; Jle into a single prob-

The rest of the section shows how to express domaingpjity model by multiplying their values together and
insights in our inference framework in terms of User- normalizing:

defined mathematical functions, callédctors The
framevv_qr.k uses these factqr_s to compute annotation P(A) = 1 H fi(AY) (1)
probabilities, e.g. the probabilit(fopen:ret= ro) that Z
the return value of open has the annotatiorp.
Factors are relations mapping the possible values ofhe normalizing constarit’ causes the scores to define
one or more annotation variables to non-negative reah probability distribution over the values 4f, which di-
numbers. More precisely, each factfyris a map from rectly translates into a distribution over specifications.
the possible values of a set of variablés (A; C A) One way to view Equation 1 is as a specific case of
to [0, 00). Factors “score” an assignment of values to aHinton’s concept of a Product of Experts [19]. From
group of related annotation variables, with higher valueghis view, each factor represents an “expert” with some
indicating more belief in an assignment. Although notspecific knowledge which serves to constrain different
required, for many factors the mapped values we specifglimensions in a high-dimensional space. The product of
are probabilities (i.e. sum to 1) because probabilities aréghese experts will then constrain all of the dimensions. In
intuitive to specify by hand. this case, the dimensions represent the space of possible
Suppose we know that functions in a codebase that respecifications, and the most probable specifications are
turn a value of typerl LEx have a higher chance of re- those that most “satisfy” the combined set of constraints.
turning ownership{o). We can express this tendency Note that because factors can share inputs their values
using a factor that, given the annotation label for the re-are not independent; such correlation gives the model
turn value of a function with & LE+ return type, returns much expressive power. As stated previously2(1),
slightly higher weights foro annotations thamro an-  annotations may be correlated (e.g.f tfpen is anro,
notations. For example, making .. (fopen:ret=ro) =  thenf cl ose is likely aco). We capture this correlation
0.51 and fy . (fopen:ret= —ro) = 0.49. Note that the by having the probabilistic model represent a probability
magnitude of the values is not important, but rather theidistribution P(A) over the values oéll the annotation
relative odds We could have usedl and49 instead, variablesA.
implying an odds 061:49 to preferro over—ro annota- The simplicity of Equation 1 is deceptive. Itis trivial
tions. While trivial, this example illustrates a couple of to define an ad hoc scoring function that in a deep sense
recurrent themes. First, the observations we want to exmeans nothing. This function is not one of those. It sub-
ploit for inference are often tendencies and not laws — asumes the expressive power of both Bayesian networks
long as these tendencies are right more often than wrongnd Markov Random Fields, two widely used methods

3.2 Modeling Beliefs for Annotations

fie{fiY]—y



for modeling .complex probabil_istic domains,_becags_e 1. FILE * fpl = foper( "nmyfile. txt", "r* ):
both can be directly mapped to it. In our experience itis 2. FILE * fp2 = fdoper( fd, "w"' );
also simpler and easier to reason about. We defer discus3. fread buffer, n, 1, fpl);

: ; ; : 4. fwrite( buffer, n, 1, fp2 );
sion of its mathematical foundation (see [36]) — but for 5 fclos fpl ):
our purposes, it has the charm of being understandableg  fciosq fp2 ):
general enough to express a variety of inference tricks,
and powerful enOUgh to make them mear_‘ s_omethlng. Figure 3: Code example that would produce two distinct checks, one

We now show how to use factors by deflnlng two qom'forf pl andf p2 respectively. Observe that bdtlopen andf dopen

mon types of factors for our example: behavioral signa-return ownership of a resource that must be claimetidyose.

tures and prior beliefs.

bug10% of the time. This can be reflected fiy4ccry by

3.3 Behavioral Signatures settingfpug = 0.1 andf o = 0.9. These values need
“Behavior is the mirror in which everyone shows theirimage. only be rough guesses to reflect that we prefer annota-
— Johann Wolfgang von Goethe tions that imply few bugs.

In general. the more something behaves like an X. th Check factors easily correlate annotation variables.
9 ' 9 90 this case, f(check)y COrrelatesfopen:ret fread:4 and

more probable it is an X. In our context, programmers : .
. . fclose:1since its value depends on them. In general there
often use program objects that should have a given an-

R . . ; will be one “ " for each location in the program
notation in idiomatic ways. Sudbehavioral signatures € Fcheek) : '€ prog
where a distinct bug could occur. Figure 3 gives an exam-

extract from code (e.g., by using static analysis) Which)ble with two callsites where two file handles are acquired
2 ' by calling f open andf dopen respectively. These two

gives a nice mechanical way to get large data samples, .
i - . cases constitute separate checks (represented by two fac-
As with any statistical analysis, the more data we hav

. . %ors) based on the reasoning that the programmer made
the more information we can extract. - L .
. . a distinct decision in both cases in how the returned han-
The most common behavioral signature for any anno- : . .
les were used. Observe in this case that the variable

tation is that programs generally behave cor_rectly aNG lose:1is associated with two checks, and consequently
that errors are rare. Thus, correct annotations (typi-

. serves as input to two check factors. Thus the more a
cally!) produce fewer errors than incorrect ones. We

; . ; ., :function is used the more evidence we acquire about the
measure how much a behavioral signature is exhibited 0 nction’s behavior through additional checks

a program by using bhehavioral test A behavioral test
works as follows: for every location in a program where 3 4 prior Beliefs: Small Sample Inference
a behavioral signaturmay apply, we conduct &heck
to see if a given set of annotations matches that signaAs in any data analysis task, the less data we have the
ture. Because the behavior may involve reasoning aboutarder inference becomes. In our domain, while a large
the semantics of different execution paths in the progranfitumber of callsites are due to a few functions, a large
(either intra- or inter-procedurally), this check is imple number of functions have few callsites. As already dis-
mented using a static analysisecker cussed AFGs partially counter this problem by explic-
The checker we use in this paper is an intra-proceduraltly relating different functions together, thus inforrieat
static analysis that simulates the DFA in Figure 2 onfrom one annotation can flow and influence others. An
paths through functions stemming from callsites whereadditional approach that cleanly melds into our frame-
a pointer is returned. In principle, however, checks carwork is the use opriors to indicate initial preferences
employ program analysis of arbitrary complexity to im- (biases). We attach one prior factor to each annotation
plement a behavioral test, or even be done with dynamigariable to bias its value. Having one prior factor per an-
analysis. The output of the checker indicates whether opotation variable, rather than per callsite, means it pro-
not the annotation assignmentto the set of annotation Vides a constant amount of influence that can be gradu-
variablesA; matched with one (or more) behavioral sig- ally overwhelmed as we acquire more evidence.
natures. We can capture this belief for our example with  For example, a completely useless specification for a
a singlecheck factoy fcyeck) (fopen:ret fread:4, fclose:1):  codebase is that all functions have eithero or —co
: annotations. This specification generates no bugs since
- 6‘<ok> if DFA = OK . . . ]
ficheeky () = { 0 . fDFA —B nothing is ever allocateo_l or relgas_ed, but is vacuous be
(bug © | U9 cause we are interested in identifying allocators and deal-
This factor weighs assignments fapen:ret fread:4 and  locators. One counter to this problem (we discuss an ad-
fclose:1that induce bugs against those that do not withditional method later ir§ 5.1) is to encode a slight bias
a ratio off g to 00 . For instance, suppose we be- towards specifications wittv’s andco’s. We encode this
lieve that any random location in a program will have abias with two sets of factors. The first is to bias towards



ro annotations with the factof;,.,): the top. The more locations whefrel ose is used in a
similar manner the more confidently we believe it ima
0ro : if X =ro

firoy(X) = { {ro)

O-roy + X ==ro 3.6 How to Handle Magic Numbers?

For instancef,,, = 0.8 andf-,,y = 0.2 means that
we preferro to —ro annotations with an odds of 8:2. Our
example has one such factor attachefbpen:ret Values
of this factor for different specifications are depicted in

Table 1. bers two questions immediately surface: (1) where do

The addition off(,,) (fopen:rej biases us towards  they come from? and (2) how hard are they to get right?
annotations, but may cause us to be overly aggressive in

annotating some formal parameterg:as order to min- For our experiments, even crudely-chosen parameter

imize the number of bugs flagged by the checker (thereby2/Uues (as we have done so far) work We_”- This ro-

maximizing the value of thef(.ccry factors). To bias ustness seems to t_)e due to two feature_s. (1) the large

againstco annotations, we defing., in an analogous amount of data that inference can work with and (2) the

manner tof ). We setf .,y = 0.3 andf_.,) = 0.7 strong behavioral patterns evidentin code. Further, these
TO)" co * —-co ML)

which makes our bias away from annotations slightly numbers seem portable across codebases. In a separate

weaker than our bias fow annotations. In our example, PapPer [20], when we took the parameters learned on one
we add twaco factors:f< >(fread:4) andf< >(fclose:1). codebase A and used them for inference on another code-

These two factors, while distinct, share the same value82se B the results were imperceptible compared to learn-
Of 00y aNO, ) ing them directly on B from a perfect set of known anno-
co —Cco)"

In general, we use priors when we have some initial intations. (We discuss the mechanics of learning @3.)

sights that can be overcome given enough data. Further, However, assume a hypothetical case where neither
when we do not know enough to specify their values,approach works. Fortunately, the way annotations get
they can be omitted entirely. consumed provides algorithmic ways to converge to
good parameter values. First, we commonly run infer-
) ) ) ence repeatedly over a codebase as it evolves over time
Equped with four factors to enche beliefs for the three_ thus, there will be significant numbers of known an-
functions, we now employ Equation 1 to compute final hoations from previous runs. Because our approach eas-
probabilities for the possible specifications. _ily incorporates known information (in this case previ-
We first multiply the values of the factors (shown in q,q)y validated annotations), users can (1) apply machine
column ‘T f” of Table 1) and then normalize those |garning to refine parameter values, (2) recompute anno-

values to obtain our final probabilities.  From Ta- ta(on probabilities, or (3) do both simultaneously. In all
ble 1, we can see that for the specificatien, —co,co)  ases results will improve.

(first row) the product of its individual factor values is o
0.9%0.8x0.7x0.3=0.151. After normalizing, we have | N€ Same approach works even when applying infer-

a probability of0.483, making it the most probable spec- ence to a codebase for the first time. Annotations ei-
ification. Observe that because of our bias towarddn€r get consumed directly or get fed to an error check-

ro annotations, the second most probable specificatiod"9 tool. In both cases we can sort the annotations or
(=10, ~co, ~co), has a probability 06.282 (almost half errors (based on the probabilities of their underlying an-
as likely). Further, we can use the table to computd0tations) from most-to-least probable, and inspect them
the probabilities of individual annotations. To compute PY 90ing down the list until the number of inference mis-

P(fopen:ret = o), we sum the probabilities in the last takes becomes annoying. We then rerun inference using
column for each row whertpen:ret= ro. the validated annotations as discussed above.

These probabilities match our intuitive reasoning. The Second, itis generally clear how to conservatively bias
probability P(fopen:ret= ro) ~ 0.7 indicates that we are parameters towards higher precision at the expense of
confident, but not completely certain, tHatpen could  lower recall. For example, assume we feed inferred an-
be anro, while P(fread:4 = —co) ~ 0.9 shows that we notations to a checker that flags storage leaksa(ith-
have a strong belief that ead is —co. Forfcl ose, we  out a subsequenrb). We can strongly bias against the
are left with a modest probability th& fclose:1= co) =~ ro annotation to the extent that only a function with a
0.52. While this number seems low, it incorporates bothvery low error rate can get classified asran While this
our bias towardso annotations and our bias agaimast misses errors initially, it ensures that the first round of
annotations. Observe that if we rank the possible by  inspections has high quality errors. Rerunning learning
their probabilities (in this case only twocl ose is at  or inference will then yield a good second round, etc.

By now, the reader may feel uneasy. Despite dressing
them in formalisms, factors simply map annotation val-
ues to magic numbers. (Or, in formal newspeak,the
rametersof the model.) As with all uses of magic num-

3.5 Computing Probabilities



| Firop | | Fleop | | Freop | | Firop | | Fieop | havioral tests{ 5.1), exploit ad hoc naming conventions

(§ 5.2), and handle a function that may have no good la-

beling for a specification because it grossly violates the
f(check)

ownership idiom § 5.3). Our experiments(7) evaluate
anAFG with all of these features. While we discuss these
points in terms of the ownership problem, they readily
apply to other inference tasks.

Figure 4: Factor graph for the code example in Figure 3. Rectangular
nodes represent factors and round node represent annotatiables. 5.1 Multiple Behavioral Tests
The top factors represent factors for prior beli€f8 ), while the bot-

tom factors represent behavioral tests (check$) 1). The properties we wish to infer almost always have mul-
4 Annotation Factor Graphs tiple behavioral signatures. For signatures that are mutu-
ally exclusive (i.e., only one behavior can be exhibited at
once) we can define a single check factor that weighs the
different observed behaviors. For non-exclusive behav-
éors, we can simply define different factors as we have
done so far. We thus focus on the former. We illustrate
the technique by refining the checker in Figure 2 from a
checker which reduced all behaviors to two mutually ex-
clusive states{(Bug, OK }) to one which captures more
depicts anAFG for the code example in Figure 3. De- nuanced behavior with five final states, given in Figure 5.

picted are nodes for annotation variables, factors forrprioThe five signatures !t accepts are:. )
beliefs § 3.4), and factors that represent two distinct 1. DeaIIo_caton aro's returned pointer reaches a single
checks of the code fragment. Each factor node (square% matchingco thatyoccurs atthe end of the trace. .
maps to a distinct factor multiplicand in Equation 1, each - OWnership aro's returned pointer reaches a single
variable node (oval) maps to an annotation variable, and Matchingeo that does not occur at the end of the trace
an edge exists between a factor node and variable node (i-e., is followed by one or moréco functions).

if the variable is an input to the given factor. Further, 3 Contra-Ownership a —ro's returned pointer only

While Equation 1 is the formal backbone of our frame-
work, in practice we operate at a higher level with its cor-
responding visual representation callgdetor graph A
factor graph is an undirected, bipartite graph where on
set of nodes represent the variablesand the other set
of nodes represent the factdirg; };_,.

We call the factor graphs we construct for annotation
inferenceAnnotation Factor Graph$AFGs). Figure 4

beliefs about one variable can influence another if there  '€achesco’s. , _

is a path between them in the graph. For example, ob2 Leak an error where ao's returned pointer does not

serve that the\FG in Figure 4 explicitly illustrates the reach aco. . _ .

indirect correlation betweeipen andf dopen through 5. II_nva|l|d use an error, includes all misuses besides
ea

their relationship td cl ose. If we believe thaf open ) ) ]
is anro, this belief propagates to the belief that ose We assign weights to these outcomes as follows. First,

is aco because of the check fép1. This belief then ~We bias away from the promiscuous assignmentiof-
propagates to the belief thatlopen is anro because of o (accepted byontra-Ownershipand towards o-co
the check foff p2. While theAFG illustrates this flow of ~ (accepted bybeallocato)) by giving Deallocatortwice
correlation, the underlying machinery is still Equation 1. the weight ofContra-Ownership SinceDeallocatoris
ThusAFGs meet our criteria for an inference framework the harshest test, we use it as a baseline, giving it the
capable of combining, propagating, and reasoning abo€ight1.0 and, thusContra-Ownershighe weighto.5.
imperfect information. The other non-error _cas@,wnershlpls the_least intuitive

A benefit of factor graphs is that they more compactly(@nd we arrived at it after some experimentation): we
represenP(A) than the table in Section 3, which scales Weigh it slightly less tharContra-Ownershigsince oth-
exponentially in the number of possible annotations. The2rWise theAFG over-biases towards>-co annotations.
inference algorithm we use to infer probabilities for an-  As before, we weight error states less than non-error
notations § 6.2) operates directly on theFG, forgo-  States because of the assumption that programs generally
ing the need to build a table and exploiting the graphicaPehave correctlys(2.1). Thus, for errors we assign a low

structure to determine which features influence others. score:0.1 for leaks and).01 for all other bugs (the latter
occurring very rarely in practice). (Note that even if a

5 Advanced Inference Techniques codebase hado errors we would still assign these out-
Building on our concept oAFGs, this section goes be- comes non-zero values since static analysis imprecision
yond the basic inference techniques of Section 3 to morean cause the checker to falsely flag “errors.”)

advanced themes. We keep our discussion concrete by Although all of these weights were specified with sim-
exploring how to build factors for the ownership prob- ple heuristics, we show in Section 7 that they provide re-
lem that incorporate multiple, differently-weighted be- spectable results. Moreover, such weights are amenable



EXTENDED-DFA STATE  f(cheek) REASON FOR WEIGHT it (e.g., byzantine uses of reference counting). If a func-

Deallocator 1.0 Baseline tion is far enough outside the ownership model, then no
Contra-Ownership 0.5 Weight half as much a3eallocator : . :
Ownership 0.3 Slightly less tharContra-Ownership matter what annOt‘_atlon(S) we ?SSIg_Wm'Or —ro, co Of .
Leak 0.1 Low weight: errors are rare —co, the checker will flag a proliferation of “errors.” This
Invalid Use 0.01 Such errors are very rare

problem arises in many inference contexts: the property

Table 2 Values of f(.j..x) for the behavioral signatures for the own- We want to infer assumes some structure of how code

ership idiom. Observe that for this factor the values do mot $o0 1, behaves, and when those assumptions are wrong, the re-

but instead are based reasoning about relative “reward. sultant noise can hurt inference dl’amaticauy.:GS let

ndof. us tackle this problem by simply modeling the possibil-
ity that a function may not fit the ownership. We discuss

path
oo © two ways to do so.

end-ofpath, e The first way just adds another annotatiefit to the
domain of our annotation variables and models “not fit-
ting” as yet another behavioral signature (asib.1).
We modify the checker described in Section 5.1 so that if

end-of-path @ it encounters a-fit annotation while checking it tran-
Ownership - . .
sitions to a special end-stateutside Model For the
Figure 5: Complete DFA used by a static checker to implement behav-_ownerSh'p idiom, this 'ncreases th(’?‘ number of end-states
ioral tests for Ownership. Shaded nodes are error states. in the checker DFA from five to six. We then change
to automatic tuning§(6.3). fichecry t0 assignOutside Modela value slightly above

those for errors but below that of acceptable states (e.qg.,
0.2). Thus, if all values for an annotation variable cause
Ad hoc knowledge captures information such as biasegnany errors, we will overcome our bias against +fé
for certain annotations, naming conventions, and othevalue and classify the variable as not fitting the model.
heuristics. We further illustrate how to express such feaOnce an annotation variable is classified-d&, all be-
tures by using factors to model naming conventions.  havioral tests involving that function are effectively-dis
Given a list of keywords suggestive of am an-  carded since the outcomes of those checks will always be
notation (e.g., “alloc”, “open”), we construct a factor Outside Model Thus,Outside Modekepresents a state
Jikeyword,roy fOr €ach function whose name contains thewhere the checker acceptsybehavior, regardless of the

keyword as a substring: annotation values.

The second way treats the not-fit property more glob-
ally: if the annotation variables for a function’s return
value orany of its formal parameters cause it to not fit,

This factor is attached to a function’s/—ro annotation W€ remove the entire function from our checks. Imple-
variable and rewards or penalizesannotations depend- Menting this requires correlating annotation variables in
ing on the ratio of the factor’s values. This factor (and itsth® AFG in a new way by adding a "meta-annotation”
parameters) is replicated for all functions whose namd®r each function whose corresponding annotation vari-
contains the given keyword. able has the domaiffit, -fit}. For example, for the

For co variables, the construction is similar, except functionfopen we would create the variablepen:fit
that instead of the factor being associated with one Similarly as above, we modify the checker to include an
annotation variable, it is associated with all theanno- ~ Outside Modelstate, but because the not-fit property is
tation variables for a function. Hnyof those variables NOW shared by all of the function’s annotation variables,
have the valueo, then the factor maps i, d.co) the checker consults the fit-variable for a function imme-

1 eywora,co . . .

and t00 ke word,~co) Otherwise. Our reasoning is that (j|ately prior to consul_tlng thg values of any of the func-
naming conventions imply that at least one of the param{lon’s regular annotation variables. As before, when the
eters should have@ annotation. value is— fit the checker transitions tOutside Mode/

We only construct such factors if the function containsOtherwise execution continues as normal by consulting
the keyword; in our experience while the presence of 4he regular annotation variable and taking the usual tran-

keyword may suggest a function's role, the absence of sition in the DFA. Consequently, a function’s fit-variable
keyword usually provides no additional information. serves as an additional input to each check factor that in-

. volves at least one of the function’s regular annotation
5.3 Does the Model Fit? variables. As before, we state a strong bias toward a
The ownership idiom only approximates how developersvalue offit by attaching a prior belief factor to the fit-
use resources. Thus, there will be functions that do not fivariable. Thus, if all values for any of a function’s an-

5.2 Ad Hoc Knowledge: Naming Conventions

_ e(keyword,ro) A=ro
f(keyword,ro) (A) - { 9(keyword,ﬂ7‘o> - A =-—ro



notation variables lead to many errors, we overcome our
bias against the-fit value and classify the function as
not fitting the model.

As described in Section 7.3, this second construction
found aspects of Linux that proved noisome for infer-
ence. Moreover, neither approach is specific to the own-
ership idiom and can be applied to other annotation in-
ference domains.

6 Implementation

We now discuss our implementation, including the de-
tails of the actual checker and how probabilities are com-
puted in practice from thaFG.

6.1 The Checker

Our program analysis is built on CIL [27] and is simi-

> A: annotation variablegnown: known annotations
GIBBSSAMPLE(A, known)
a={}
> initial random values
forv e A,v &€ known
a[v] = RANDOMVALUE(DOMAIN (v))
> burn in the sample
for j = 1to 1000
for v € PERMUTEVARIABLES(A), v & known
N =0.0
> compute all scores that rely ars annotation
for d € DOMAIN(v)
scores = {}
alv] =d
scores[d] = FACTORSSCORHw, a)
N = N + score[d]
> normalize scores
for d € DOMAIN (v)
scores[d] = scores|d]/N
alv] = DISTRIBUTIONSAMPLE(scores)

lar to xgcc [15]: unsound, but efficient and reasonably retum a

effective. The analysis engine, written in OCaml, is par-
tially derived from the version ofgcc as described in
Chou’s thesis [6]. Our entire factor graph implementa- Finally, there are paths the checker does not analyze
tion is written in OCaml as well. because they are beyond its limited reasoning capability.
For the ownership checker, beyond constructingWe abort the analysis of paths where a tracked pointer is
checks for every callsite that returns a pointer, we trackstored either into a global or the field of a structure. If
the use of string constants within the function and treatll the paths for a given check would be discarded (this
them as if they were returned by-a-o. Pointer deref- is determined when theFG is constructed) the check is
erences are modeled as implicit calls tex@ function  not included in theAFG. While this leads to some se-
to monitor if an owning pointer is used in any way af- lection bias in the paths we observe, our decision was to
ter it is claimed. We also perform minor alias tracking: focus on paths that would provide the cleanest evidence
when tracking a pointer and we observe the expression of different behavioral signatures. Accurately modeling
g = p (whereq is a local variable) we adglito p’s alias  the heap shape of systems programs statically is an im-
set. We do not model ownership transfer frgno g portant open problem that we (fortunately) did not need
(unlike [18]) and simply treat; as another name fqr ~ to solve in order to infer properties of many functions.
since both pointers are local variables (i.e., the refexenc
has not escaped the function). Further, when a tracke
pointer is involved in a et ur n statement, we consult In theory it is possible to compute probabilities for an-
the correspondingo (—ro) annotation of the enclosing notations by directly using Equation 1, but this requires
function and treat it essentially as:a (—co) annotation enumerating an exponential number of combinations for
except that for error conditions we always transition tothe values of annotation variables. Instead, we estimate
the Invalid Use state. This follows from the intuition probabilities usingsibbs sampling13], which generates
that while programmers may accidentally leak resourcegpproximate samples from the distributi®tfA). Ab-
on unforeseen paths, when implementing a function thetractly this algorithm simulates a random walk through
reason very consciously about the properties of the funca Markov chain. Theory shows that once the chain is
tion’s return value. Hence ownership errorsat urn run long enough it converges to its stationary distribu-
sites are considered very rare. This allows #feG to  tion (equilibrium), and sampling from that distribution is
model a form of inter-procedural reasoning that handlegquivalent to drawing samples froR{A ).
idioms such as wrapper functions. While the full details of Gibbs sampling are beyond
Because the checker analyzes multiple paths stenthe scope of this paper, the pseudocode for generating
ming from a single pointer returning callsite, we sum- samples is depicted in Figure 6. Gibbs sampling has
marize the results over all analyzed paths by reportingwo key advantages over other algorithms: (1) it treats
the most pessimistic DFA state founthvalid Use fol-  the checker implementation as a black box and (2) at all
lowed by Leak Ownership Contra-Ownershipand fi-  times there is a complete assignment of values:jito
nally Deallocator The idea is to penalize annotations all the variables in theFG. The upshotis that we always
that induce errors, and reward annotations that comrun the checker with a full set of annotations.
pletely obey our strictest behavioral signatures. To generate a single sample, we perform “burn-in,” a

Figure 6: Pseudocode for Gibbs sampling frdPgA).

8.2 Probabilistic Inference



process of iteratively adjusting the values of the variable AFG Size  Manually Classified Annotations
to drift them towards a configuration consistent with be- Codebase Linesi(¢®) |A| # Checksro —ro 2 co —co 22 Total

70 —co

ing drawn fromP(A). Determining theminimumnum- SDL 515 843 57735 25 14 16 31 051107

H H _ini R OpenSSH 80.12 717 341645 28 1.6 10 108 0.09191
ber of iterations for the burn-in is generally perceived as e 683 4287 2147869 94 258 7 109 008202
a black art; we have chosen a large number (1000) that xnu 1381.1 1936 916935 49 0.71 17 99 0.17200
has yielded consistently reliable results. Linux 6580.3 10736 9278121 31 0.67 19 93 0.20164

Each iteration of the burn-in visits each variablén Table 3: Quantitative breakdown for each codebase of: (1) the dize o
the AFG in random order. To generate a new valuexfpr the codebase, (2) the size of co_nstruo@eE!G,_ and (3) the composition
for each of its possible values we cah&TORSSCORE of the.test set used for evaluating annotation accu_racy.tHéoAFG
to compute the product of all the factors in thEG that statistics,| A | denotes the number of annotation variables.
share an edge with. This computation will re-run the
checker foreverycheck in whichv appears. The result
is a single non-negative score for each value v. The . . , .

. .. .. .We applied our technique to five open source codebases:
scores are then normalized to create a probability d|str|—SDL OpenSSH, GIMP, XNU, and the Linux kemnel. Ta-
bution overv’s values, and finally a new value foris - : ' ’ . '
sampled from this distribution ble 3 gives the size of each codebase and its correspond-

ing AFG. For each codebase’s-G we generated 100

After the bum-m completes, we take. a snapshot of th'E"samples using Gibbs sampling to estimate probabilities
values ofall variables and store it as a single sample fromfor annotations. We sort annotations from most-to-least

P(A). From these samp:les we ?St'matﬁ probsb;)l!:!es ;‘]or robable based on these annotation probabilities. Note,
annotatlon_s. Frc:r ex:mp (Ie’ to est|r_nat(|at epro ha ]:'tyt e provided no “seed” annotations to the inference en-
an annotation has the value, we simply count the frac- gine (e.g.did notincludenal | oc, f r ee). Sincero and

tion O_f sar[lples Whe_re_|t h"f‘d the yalu@ co represent two distinct populations of annotations, we
This naive description is subject to numerous well-o\ 5iuate their accuracy separately. For our larg@ss

known improvements. First, all computations are dong jnux), Gibbs sampling took approximately 13 hours on
in log-space to avoid problems with arithmetic roundoff. ; 3 GHz dual-core Intel Xeon Mac Pro. while for the

Second, we apply standard “annealing” tricks to improvegmgajlestaFG (SDL) sampling finished in under 5 min-
convergence of the simulated Markov chain. utes. Unless otherwise noted, thEGs we evaluate in-

Our most important optimization (which we devised c|yde the factors for modeling prior bias§3(4) and for
specifically forAFG inference), involves the execution of my|tiple behavioral testg(5.1).

the checker. Because the checker will be execatady

7 Evaluation

times, we cache checker results for each check by record- 18P 3 gives the breakdown of the “test set” of an-
notations we manually classified for each codebase. We

ing what values im: the checker consulted and storing i )
the outcome of the check in a trie. This memoization is§elected the test set by: (1) automatically extracting a

agnostic to the details of the checker itself, and leads té'st c_)f all functipns involved in a check, (2) r:_;md_omly
a two orders of magnitude speedup. The caches tend t@ckmg n functions (00 < n < 200) from this list,

be fairly well populated after generating 3-5 samples foranOI (3) hand classifying these functions. Note that

the AFG, and is the primary reason the algorithm scalesthis methpd produces a very_harsh test s_et for inference
to analyzing real codebases. because it .plcks functions w!th fe\{v callsites as readily

as those with many. A seemingly innocent change pro-
6.3 Learning Parameters duces a drastically easier test set: picfunctions from

If some annotations are known for a codebase, the pe? list of all callsites. The selected test set would inflate

rameters of amFG can be learned (or tuned) by apply- our |r_1ference ab|l!t|es since the probablh_ty of_plcklng a
I$unc:tlon scales with the number of callsites it has. As

ing machine learning. The general approach to learnin | f ) in th Id h
parameters for factor graphs is to apply gradient asce resu t most. ungtlons In the test set wouid have many
callsites, making inference much easier. In aggregate,

to maximizing the likelihood function, where in this case o . -
the data is the set of known annotations. At a high level V€ manually classified around 1,000 functions, giving a

gradient ascent iteratively tunes the parameters of th&&Y comprehensive comparison set.

AFG to maximize the probability that the known anno-  We first measure the accuracy of inferred annotations
tations would be predicted using Equation 1. Full deriva-(§ 7.2). We then discuss the model’s resilience to unan-
tion of the gradient and the specific details for gettingticipated coding idioms§(7.3). We next discuss our ex-
gradient ascent to work faXFGs is beyond the scope of perience extending the cos=G model with keyword
this paper, but complete details can be found in [20]. Secfactors § 7.4). Finally we discuss using inferred annota-
tion 7.4 discusses our experience with parameter learnintions as safety nets for bug-finding toofs41.5) and for

for leveraging codebase naming conventions. finding bugs § 7.6).



7.1 Codebases Inspections byP(ro)  Inspections by>(co)

We evaluated our technique on important, real-world ap- _°0¢P2s¢ Inspectionsros  2ros  cos  ~eos
plications and systems based on both their size and their ~ *°~ 29 10 2 2 :
disparate implementations. We strove for project diver- OpenssH 10 10 0 10 0
sity in coding idioms and resource management. avp ST : 10 1
The smallest project, SDL, is a challenge for infer- 20 20 0 16 4
ence because most functions have few callsites (most are XY ég 196 j 197 é
called fewer than four times). Further, because it was Linux ;8 l87 g l98 ;

originally developed for porting games from Windows
to Linux, it employs uncommonly-used resource man-Table 4 Absolute number ofo (co) annotations found within the first
agement functions from external libraries such as XLib.10 and 20 inspections for each codebase.

Thus, inferring these functions is not only challenging regyts. These top ranked annotations have near perfect
but also useful. As our results show, tA€G model accuracy foro's andco’s on all codebases.

readily infers correcto andco annotations for functions .
We then more thoroughly measure annotation accu-

in SDL that have as few as one or two callsites. racy by comparing inferred annotations to the entire test
OpenSSH and the GIMP are widely-employed appli- y by panng

. ; ) et for each codebase (from Table 3). We also compare
cations with modest to large source code size. The GIMF’?he accuracy of our baseFG against two ablated (i.e..

image manipulation program uses custom memory manl')roken) ones:AFG-NoFPPR, which measures the effect
agement functions and a plug-in infrastructure where '

lug-ins are loaded and unloaded on demand and WherOf decreasing checker power, an#iG-ReNavE, which
plug feasures the effect of decreased correlation.

leaking plug-in memory is not considered an error be- Ei 7 <h h . ¢ all th
cause of their short lifetime. Despite such noise, our igure 7 shows the annotation accuracy of all three

AFG worked well, and discovered several memory IeaksmOd,EIS for each QOerase test set uskegeiver Op-
in the GIMP core. erating Characteristic§ROC) curves [11]. The ROC

XNU (the kernel for Mac OS X) contains many spe- curve forro annotations plots the classification accuracy
cialized routines for managing kernel resources. Our re2s the classification probability threshalglides from 1

sults are mostly for the core kernel because much of th o OI. An¥/ a:jnnotatlonc\j/wth a ?;Obab'“tw_ﬁ] = 70) .Zé
rest of XNU is written in C++, which our front-end does 'S ¢'asstlied aso, and-ro OIErwise. The x-axis de-

not handle. Inferred annotations for XNU immediately picts, f9r gach value of, the cumulat!ve fraction of "?".'
led to the discovery of bugs. the —ro’s in the test set that were mistakenly classified

The Linux 2.6.10 kernel is a strong test because i3S (thefalse positive rateor FPR). The y-axis depicts

is huge and its code frequently breaks theco idiom the cumulatlt\lle flractl_(f)_n(;)f all ttr;]eots n the_:_est se;t that
due to sporadic use of (among other things) referenc were correctly classified aw (thetrue positive rateor

el . . . 0
counting and weird pointer mangling. Despite thes:TPR)' Perfect annotation inference would yield a 100%

. 0 ) : :
challenges, ouAFG successfully analyzed Linux with :PR V\gt%ato AJOFTR (v:jsuall);r? st;ap, V\gthl atlmelstlegment
a reasonable annotation accuracy. rom (0,0) to (0,1) and another from{0, 1) to (1, 1)),

Note thatAFG size scales with the number of checks, as all theros appear before ?‘” of the_r_o_s when the
. , . , annotations are sorted by their probabilities. Random la-
which only roughly correlates with code size: we ignore

functions not involved in at least one check and (by ne—be“ng yields a d|agonaI_I|ne frorf0, 0) to (1, 1). With
: ) S : ROC curves we can easily compare accuracy across code
cessity) skip function implementations our C front-end : . . )
bases since they are invariant to test set size and the rela-

had difficultly parsing. tive skew ofro’s to —ro’'s andco’s to —co’s.

7.2 Annotation Accuracy Basic AFG: as can be seen in the figure, tA€G

This section measures the accuracy of our inferred spednodel has very high accuracy for all codebases except
ifications. Our first experiment, shown in Table 4, givesLinux, where accuracy is noticeably lower but still quite

a feel for the initial accuracy of inferred annotations. It good. SDL, had both the least code and the highest anno-
presents the results from the first 10 and 20 inspectiontation accuracy, with a nearly perfect accuracy dos.

of the highest probability annotations for each codebaseurther,35% of all ro's for SDL are found without in-
These are selected froail the annotation variables in Specting a singlero. For OpenSSH we observe around
the AFG. The table assumes that the andco annota- 290% TPR with a FPR 0f.0% or less. Both GIMP and
tions are inspected separately, although this need not b§NU observe ar80% or better TPR for bothro’s and

the case in practice. The first few inspections are im-co’s with a20% FPR.

portant as they represent our most confident annotations Accuracy appears to decrease with increased codebase
and will be the basis of a user’s initial impression of thesize. While inspecting results, we observed that larger
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Figure 7: ROC curves depicting accuracy of inferred annotations. Re
sults are averaged over 10 runs where we add Gaussian ndde@
parameters. Error bars (shown at the classification prbtyathiresh-
olds of 0.95, 0.7, and 0.4) depict standard deviations.

1.0

0.8

0.6

0.4 4

o2dl! S - AFG-NoFPP
. -+ AFG-Rename

00" X
T T T T T T T T T T T T

00 02 04 06 08 10

Average false positive rate

(a) SDL:ro

10 ]
0.8
06 :
04

021"

0.0 -

T T T T T T B T T T T T
00 02 04 06 08 10

Average false positive rate
(c) OpenSSHro

1.0

1.0
0.8 0.8
06 0.6
0.4 0.4

027 02"

T T T T T T T T T T T T
00 02 04 06 08 10

Average false positive rate

(e) GIMP:ro

1.0
0.8
0.6
0.4 4
0.2

0.0 -

00 02 04 06 08 10

Average false positive rate

(g) XNU: ro

1.0

0.8

0.6

0.4 4

0.2

00"

00 02 04 06 08 10

Average false positive rate

(i) Linux: ro

() Linux: co

# Callsites per Function % of Functions with.

Codebase Mean Median > 5 Callsites > 10 Callsites
SDL 4.51 2 22.4 9.3
OpenSSH 7.41 2 23.0 115
GIMP 13.11 2 32.6 21.2
XNU 9.19 2 24.0 115
Linux 4.22 2 20.7 9.7

Table 5. Summary statistics of the number of callsites per function
(only for callsites that are consulted by at least one cheSk)ce the
mean number of callsites per function is much higher thamtedian,

the number of callsites has a long-tailed distribution.

codebases frequently violate the-co idiom and have a

lot of code beyond the reasoning power of our checker.
However, even the hardest codebase, Linux, had decent
accuracy: we were able to inf@% (62%) of ro (co)
functions with a30% FPR.

While Figure 7 depicts overall codebase accuracy
(with an aggregate annotation accuracy of 80-90% on the
first four codebases, assuming a classification probabil-
ity threshold 0f0.5), in truth these numbers are highly
pessimistic. First, as shown in Table 4, the accuracy of
bothro andco annotations for the top ranked inspections
(from the set of all inferred annotations) is near-perfect
across all codebases. Thus, users will almost always see
valid annotations when inspecting the highest confidence
results. More importantly, we observe on all codebases
that the distribution of the number of callsites per func-
tion is highly skewed (Table 5), with a little over 50% of
all functions being called at most twice, and only 20-30%
being called five times or more. Assuming we classify,
using a probability threshold @f.5, the annotations for
functions that are called five or more times, we observe
onall codebases (including Linux) an 80-95% accuracy
for bothro andco annotations, and an overall accuracy
of 90%. While annotation accuracy for single callsite
functions is important, correctly inferring annotations f
functions that are called at least a few times often has
much higher practical impact because those annotations
will be used throughout a codebase (and often provide
the greatest traction for bug-finding tools). Moreover,
our annotation accuracy faingle callsite functions is
far better than random labeling. For such functions, on
Linux the AFG model correctly infers around twice as
manyro andco annotations as random labeling for the
same number of inspected false positives.

AFG-NoFPP: reduces the checker’s analysis preci-
sion by disabling false path pruning [6] (FPP), which
eliminates many bogus paths through the code that static
analysis would otherwise believe existed. In practice
FPP reduces false error messages by recognizing many
control-dependent branches such as:

if( x == 1) p = malloq);

if( x == 1) free(p):



Disabling FPP will cause the checker to believe that theresults were robust to small perturbations in parameter val-
are four possible paths instead of two. Consequently, redes. While we believe the parameters are amendable to
moving FPP generates significant noise in the checker'tuning, the choice of numbers is not so brittle as to cause
results (the next section provides more detail). Unsurviolent changes in results when perturbed slightly.
prisingly, for all codebasesaAFG-NoFPP has signifi-
cantly reduced accuracy fep annotations due to false
paths. The main way false paths cause problems folnitially, classifications for Linux were slightly worse
ro-co inference is that they make it appear that somethan the other codebases because its ownership model is
functions claim a resource when in reality they are neveimore subtle than the one we attempt to infer. Using the
called in this manner. While this always has a negativefit model variables discussed in Section 5.3, we quickly
impact onco accuracy, because of the large raticros  identified a corner case in Linux that we needed to ex-
to —ro’s for GIMP (Table 3) this over-inflates the evi- plicity model in our checker. A common practice in
dence forro annotations and leads to increasedaiccu-  Linux is to conflate the values of pointers and to store er-
racy while still having pooko accuracy. AFG-NoFPP  ror codes in them instead of memory addresses. Since the
performs very poorly on XNU and Linux (to the degree kernel resides in a restricted address space, error codes
that random labeling does better) as the use of many resan be mangled into pointer values that lie outside this
sources in these codebases are highly control-dependenggion. Such pointers are frequently tested as follows:
AFG-Rename evaluates the benefit of exploiting
inter-correlation between annotations by systematically
destroying it. We do so by “renaming,” for each callsite,
the called function so that each callsite refers to a distinc - on, the true branch of such tests the referengeap-

function. This causeaFG-ReNAME to have an annota- pears to be lost, when in reality it was not a valid pointer.
tion for each callsite of a function. We compute proba-This causes serious problems becau&&RR PTRis far
bilities for these annotations as normal, but then computgtside our simpleo-co model. Because it appears hun-
probabilities for the original function annotations (non- yreds of times, inference computed a probability 60
renamed) by averaging the probabilities across the pefnat this function did not fitfit) thero-co model and all
callsite annotations. The end result is that by we can segnecks involving S_ERR PTR were effectively removed
how much correlation helps inference by contrasting theys evidence. We immediately noticed the highly probable
performance oAFG-RENAME to AFG. —fit value forl S.ERR PTR and modified our checker to
The curves foRFG-ReNAME perform closest t&dFG  recognize the function and prune analysis of paths where
on the smallest codebases, and gradually diverges (espigs return value for a tracked pointertisue, allowing us
cially for co accuracy) as we look at larger codebasesto glean evidence from these checks.
This is largely due to the increased amount of correlation . )
in the larger codebases. The accuracpbts-Rename /-4 Additional Information
diverges significantly fromAFG for codebases larger Our last experiment for annotation accuracy looks at how
than OpenSSH so that performance degenerates to that overall annotation accuracy for XNU improves as infer-
produced byAFG-NoFPPR (Note that for OpenSSH and ence is given additional information. We use (1) a set
GIMP, an apparentbump i accuracy oAFG-ReNAME  of 100 known good function annotations to serve as a
overAFG in the tail of the ROC curve is due a single  training set — in practice these would be harvested as a
annotation, and is within the margin of noise induced bychecking tool is repeatedly run over a code base, and (2)
the test set size.) a list of substrings a programmer feels might be relevant
Sensitivity to magic numbers. As part of this ex- to the labeling of a function. We provided a relatively
periment we also measured our earlier claim that eversmall set of 10 strings such as “alloc” and “get,” but there
rough guesses oAFG parameters generate acceptableis nothing to keep a motivated user from listing all inter-
(initial) results by doing the following sensitivity anal- esting strings from their problem domain. We applied pa-
ysis. We perturb eacAFG parameter by a randomly rameter learning to train the parameters for the keyword
generated amount of Gaussian noisé £ 0.02), which  factors based on a training set (as described in [20]), and
maintains the relative ordering between parameter valtested the classification accuracy on the remaining 100.
ues, but skews their values slightly and thus their relativé/Ve set the classification probability threshol@ &tto in-
odds. We generate 10 sets in this manner, use them wicate whether an annotation wasor —ro (co or —co)
infer annotations, and then report averages and standatd get a measure of overall accuracy.
deviations (depicted as error bars in Figure 7) across all For XNU, the baseline aggregate accuracy (inference
runs. In general, as the figure shows, the error bars fowithout knowing the training set) wasl.2%, and with
AFG are quite small, illustrating that our inference re- the addition of knowing the annotations in the training set

7.3 Detecting Unanticipated Coding Idioms

p = foo( ... );
if( ISCERR.PTR(p) ) { /* error path */ }



Function Param. Label Sites Prob.

void gimp_enum.stock box_set child_padding(...) {

XAllocWMHints ret TO 1 0.99 GlList *list;
X11 XFree 1 co 9 0.98
API XGetVisuallnfo ret ro 1 0.97 PR . . e
XListPixmapFormats ret ro 1 097 for ( ||_st = gtk__contalne_rgeLch|Idrer(...), list;
X11_CreateWMCursor ~ ret o 1 095 list = g-list_nexqlist) ) { ... }
XOpenDisplay ret ro 2 0.86 }
XGetModifierMapping ret ro 1 0.86
XCreateGC ret rO 2 0.84
XFreeMoﬁ;ﬁiﬂi‘; i co i 8-% Figure 8: [BUG] gt k_cont ai ner _get _chi | dr en returns a newly
co . . . . . .
XCloseDisplay 1 o > 076 gllocgted list. The pointer to the head of the list is loserthe first
iteration of the loop.
dlopen ret ro 1 0.95
C opendir ret ro 1 0.87
Standard setmntent ret ro 1 0.74 . . . . .
Library closedir 1 co 1 073 GLlst*_gtli_cqntalnergetchll.dren (GtkContainer*containey {
endmntent 1 co 1 0.58 GList *children = NULL;
/* gtk_containecforeach performs a copy of
the list using an iterator interface and
Table 6: A selection of correctly inferred labels for external ftinos a callback to perform an element copy. */
inferred from analyzing SDL and not in the Coverity Prevawit set.” gtk_container foreach (containey
“Sites” is the number of callsites for the given functionliaéid by the gtk_container children callback
program analysis and used for inference. &children;
. /*  The list “children” is reversed. The last pointer
accuracy of the test set increasedt02%. Knowledge in the list is now the owning pointer. */

of the training set during inference simulates already retum g_list_reverse(children;
knowing some of the annotations. Equipped with the}

keyword information alone accuracy wa$s.1%, with
the addition of knowing the annotations in the training setrigure ~ 9: Source code from the Gtk+ library of
the accuracy wa80.1%. This experiment demonstrates 9t k-contai ner._get children.  The function performs a
the power of our technique: we are able to easily incor_compllc:ated copy and reversal of a linked list. Inferendeela the

. . . - “~" return value (correctly) aso without analyzing the implementation.
porate additional information and have that information

improve the accuracy of our results. 'We also benchyong four classifications that our inference missed. We
marked these results againstARG that only included  jhspected each of the four and all were due to the fact

keyword and prior belief factors. While the topranked it our static analysis made mistakes rather than a flaw
andco annotations inferred from this model were usually , the inference algorithm.

correct, very quickly accuracy degrades as annotations
are inspected. Overaltp andco accuracy (the fraction
of ro’s and co’s classified correctly) is 22-33% worse
when using keyword information alone, while accuracy
for —ro’s and—co’s also noticeably suffers.

Our belief that manual specifications will have holes
was born out. Inference found over 40 allocator and deal-
locator functions that Prevent missed. Table 6 gives a
representative subset. Prevent missed the bulk of these
because SDL uses obscure interfaces which were not an-
7.5 Safety Nets for Bug-Finding Tools notated and which were not part of the SDL source code

We evaluate our classifications by comparing the inferred@nd therefore it could not analyze them). This experi-
ro and co functions classifications for SDL against the Ment shows that even highly competent, motivated de-
allocator and deallocator functions used by Prevent [7]. velopers attemptlng_ to annotate aI_I relevant functions in
Coverity Prevent is a commercial static analysis tool@ 700t set” easily miss many candidates.
that contains several analyses to detect resource er- Finally, our inference found an annotation mis-
rors. It performs an unsound relaxation analysis througltlassified by Prevent's relaxation. The function
the call-graph to identify functions that transitively lcal SDL_Convert Surface returns a pointer obtained by
“root” allocators and deallocators such @a | oc and  calling SDL_Cr eat eRGBSur f ace. This function, in
free. Prevent's analysis is geared to find as many deturn, returns a pointer fromal | oc, a well-known al-
fects as possible with a low false error rate. The set ofocator function. Prevent misclassifies the return value
allocators and deallocators yielded by our inference anaf SDL_Convert Sur f ace as —ro, an error likely due
Prevent (respectively) perform a synergistic cross-checkto the complexity of these functions. Our checker
Prevent will miss some allocators because they do no&lso had problems understanding the implementation of
transitively call known allocators, and static analysis im these functions, but correctly inferred a annota-
precision may inhibit the diagnosis of some functionstion for its return value based on the context of how
that do. On the other hand, Prevent can classify som&DL_Convert Sur f ace wasused We reported this case
functions we miss since it analyzes more code than weo Coverity developers and they confirmed it was a mis-
do, has better alias tracking and better path-sensititity. classified annotation.



7.6 Defect Accuracy tion to exploit for inferring annotations. High confidence

Using our inference technique, we diagnosed scores oipecifications can be used to infer error paths, which in
resource bugs (most of them leaks) in all five codebasedUr™ ¢an be used to infer other specifications.
but since our focus was on annotation accuracy, we did i @nd Zhou [22] and Livshits and Zimmerman [25]

not perform an exhaustive evaluation on all codebases dPOk for generalizedi-b patterns in code. Li and Zhou
the quantity of bugs our tool found. All diagnosed bugslookfor patterns across a codebase, whereas Livshits and
were discovered by ranking errors by the probabilities ofZimmerman look at patterns that are correlated through
the annotations involved, and for each codebase led t¥€rsion control edits. While general, these approaches
the discovery of bugs within minutes. are based on data mining techniques that often require

One particular bug found in GIMP highlights the infer- 1arge amounts of data to derive patterns, meaning it is
ential power ofAFGs. Figure 8 shows an incorrect use Unlikely they will be able to say anything useful about

of the functiongt k_cont ai ner _get _chi | dr en (whose infrequently cal!ed functions. It i_s also l_Jr_chear how to
return value we correctly annotate as) in the core extend them to incorporate domain specific knowledge.
GIMP code and illustrates the power of being able to in- Ammons et al [2] have a dynamic analysis to learn
fer the annotation for a function based on the context inProbabilistic finite-state automatons (PFSAs) that de-
which it is used. This function returns a freshly allocatedScribe the dependency relationship between a series of
linked list, but in this code fragment a list iteration is per function calls with common values passed as arguments.
formed and the head of the list is immediately lost. WeConcept analysis is then used to aid the user, somewhat
did not analyze the source of the Gtk+ library when an-successfully, in the daunting task of debugging the can-

alyzing GIMP; this annotation was inferred solely from didate PFSAs [3]. Their method suffers from the usual
how the function was used. code coverage hurdles inherent in a run-time analysis,

The implementation of gt k_cont ai ner get - making it difficult for such methods to infer properties
_chi | dr en, excerpted in Figure 9, shows how the list is @Pout rarely executed code. They also assume program
created by performing a complicated element-wise copyraces thatillustrate perfect compliance of the rulesgein
(involving a custom memory allocator) after which the Inferred (i.e., all traces are “bug-free”). This limitatio
list is reversed, with the new head being the “owning” IS Overcome by Yang et al [34], but unlike~Gs, their
pointer of the data structure. Even if the implementationMechanism for handling noise and uncertainty is specific
were available, understanding this function would posd® the patterns they infer. In addition, it is unclear how

a strenuous task for classic program analysis. to extend either method to incorporate domain specific
knowledge in a flexible and natural way.
8 Related Work Whaley et al [31] derive interface specifications of the

Most existing work on inferring specifications from code form “a must not be followed by’ for Java method calls.
looks for rules of the form “do not perform actianbe- ~ Their technique relies on static analysis of a method’s
fore actiony” or “if action a is performed then also per- implementation to find out if calling aftera would pro-
form actiond.” The inferred rules are captured in (prob- duce a runtime error. Alur et al [1] extend their method
abilistic) finite-state automata (FSAs and PFSAS). using model checking to handle sequences of calls
Engler et al [9] infer a variety of properties from tem- and to provide additional soundness. Although powerful,

plate rules, including.-b pairs in systems code. Exam- these techniques examine the implementation of meth-
ples include inferring whetheral | oc is paired with ~ ods rather than the context in which they are used. The

free, | ock with unl ock, whether or not anul | results of such techniques are thus limited by the ability
pointer check should always be performed on the retur®f the analysis to reason about the code, and may not be
value of a function, etc. The intuition is that frequently able to discover some of the indirectly correlated specifi-
occurring patterns are likely to be rules, while deviant be-cations our approach provides.
havior of strongly observed patterns are potential bugs. Hackett et al [14] partially automate the task of anno-
Our work can be viewed as a natural generalization otating a large codebase in order to find buffer overflows.
this earlier work to leverage multiple sources of infor- Their method is used in an environment with significant
mation and exploit correlation. user input (over a hundred thousand user annotations)
Weimer and Necula [30] observed that API rule vio- and is specific to their problem domain. Further, it is un-
lations occur frequently on “error paths” such as excep-<lear how to extend their technique to leverage additional
tion handling code in Java programs. Consequently, thepehavioral signatures.
weight observations on these paths differently from reg- Ernst and his collaborators developed Daikon [10, 29],
ular code. We observe similar mistakes in systems codeg system that infers program invariants via run-time mon-
although there identifying an error path is not alwaysitoring. Daikon finds simple invariants specifying rela-
trivial. This poses a potential form afidirect correla-  tional properties such as > b andz # 0, although



conceivably inferring other properties is possible. Their [g]
method is not statistical, and invariants inferred require
perfect compliance from the observed program. [10]
More distantly related are techniques that tackle the
inverse problem of “failure inference” for postmortem [11]
debugging. The goal is to diagnose the cause of a fail-
stop error such as an assertion failure or segmentationz]
fault. Both pure static analysis [26] and statistical de- 13
bugging techniques have been employed with inspiring
results [16, 23, 24]. Although specification inference and(14]
failure inference have different goals, we believe that
many of the ideas presented in this paper could be readili}®]

applied in that domain.

16
9 Conclusion e
This paper presented a novel specification inferencé?l
framework based on factor graphs whose key strength igg
the ability to combine disparate forms of evidence, such
as those from behavioral signatures, prior beliefs, anghq,
ad hoc knowledge, and reason about them in the com-
mon currency of factors and probabilities. We evaluated®”!
the approach for the ownership problem, and achieved
high annotation accuracy across five real-world codel?
bases. While our checker was primitive, with inferred [22]
annotations we immediately discovered numerous bugs,
including those that would impossible to discover with

state-of-the-art program analysis alone. (23]
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