
Language-Independent Interactive Data Visualization

Alistair E. R. Campbell, Geoffrey L. Catto, and Eric E. Hansen
Hamilton College

198 College Hill Road
Clinton, NY 13323

acampbel@hamilton.edu

Abstract

We introduce the Language-Independent Visualization En-
vironment (LIVE) as a system for the visualization and ma-
nipulation of data structures and the computer programs
that create and operate on them. LIVE interprets arbi-
trary programs containing arbitrary data structure defini-
tions, showing diagrammatically the data that the process
generates. It is language-independent in that a single pro-
gram can be visualized in the syntax of multiple languages.
LIVE is interactive in that not only does it show the effects
of statements immediately as they occur at runtime, but it
also generates new program source code automatically when
the user manipulates the data on the screen. We anticipate
that this tool will be most useful in a pedagogical setting
such as a CS2 or data structures course, particularly with
the introduction of pointers and linked structures.

Categories & Subject Descriptors

K.3 [Computers & Education]: Computer & Information
Science Education - Computer Science Education

General Terms

Algorithms, Experimentation, Languages

Keywords

Visualization, Recursion, Scope, Data-Structures, CS2

1 Introduction

One of the most important issues faced by programmers in
designing algorithms and data structures is their ability (or
inability) to visualize the effects that statements and sub-
programs have on their data, and thus keep an accurate

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and

that copies bear this notice and the full citation on the first page. To

copy otherwise, or republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee.

SIGCSE’03, February 19-23, 2003, Reno, Nevada, USA.

Copyright 2003 ACM 1-58113-648-X/03/0002...$5.00

mental picture of complicated data structures. For many
well-seasoned practitioners working with relatively simple
data structures, visualization is done by simply imagining
a picture of the data and reading the program source code.
Intermediate programmers frequently visualize processes by
drawing a picture on paper and tediously tracing each state-
ment in a program. If they don’t get it right the first time,
they will probably find their errors eventually through this
kind of off-line visualization. Beginners have the most diffi-
cult time with visualization because not only do they have
the least experience with particular algorithms, they also
have the added burden of not completely understanding the
fundamental effects of the individual statements. They are
often frustrated because they don’t even know the basics of
what they’re supposed to be visualizing.

Another issue is the problem of multiple languages and
paradigms of programming. A C++ programmer switching
to Java (or vice versa) often has difficulty with what ap-
pears to be familiar syntax, but entirely different semantics.
Well-educated computer scientists will quickly learn which
principles and constructs are meant by the new syntax and
adjust their programming style. Beginners, however, strug-
gle at great length because, to them, the syntax is often the
hardest part.

We seek to develop pedagogical tools that address these is-
sues directly. Our premises are that the visualization of
a program’s underlying data is crucial to a student’s un-
derstanding of the behavior of algorithms, and that seeing
the same algorithm in the syntax of multiple languages im-
proves understanding of statement and operator semantics
from both familiar and unfamiliar languages. Student un-
derstanding will be enhanced by environments that allow
them to manipulate data structures on the screen and to see
immediately the effects of program statements as they are
executed. This paper introduces one such environment, en-
abling the visualization of arbitrary user-defined data struc-
tures in arbitrary programs, and supporting syntax from
multiple programming languages simultaneously.

2 Related Work

Previous work has demonstrated the benefits of visualization
as an aid to student learning. Tango, Polka, and Samba are
systems for building algorithm animations by way of aug-
menting existing programs with extra statements that drive
the animations [5, 6, 7]. With Samba in particular, students
are encouraged to be interactive in their learning by creating
the animations themselves. The JAWAA and JFLAP sys-
tems provide for web-based data structure, algorithm, and

215

automata theory animations [4, 3]. The JVALL software an-
imates the operation of linked lists in the Java programming
language [2]. Other work in data structure visualization gets
closer to the implementation details of a running process
by interfacing with the Visual C++ debugger to display a
program’s variables diagrammatically, indicating pointer as-
signments, heap and stack allocations, memory leaks, etc.
[1]

3 The LIVE system

We have developed LIVE (Language Independent Visualiza-
tion Environment), a system that supports the visualization
of arbitrary data structure definitions, multiple language
syntax, recursive subprograms, and lexical variable scope.
The user can invoke LIVE, enter a program in one language,
and step through the statements of the program. While the
program is running, the user can add statements to it, and
can view it in the syntax of other languages.

3.1 Interaction

When the user starts LIVEGUI, the graphical interface to
LIVE, he or she is presented with a blank frame (the canvas),
onto which data can be placed. LIVEGUI allows the user
to perform the basic operations of repositioning and resizing
data on the canvas, and to select system preferences like font
size, background color, etc.

In an accompanying panel on the right side of the canvas, a
computer program can be displayed and edited. When the
user selects Run from the file menu, LIVE parses the pro-
gram, clears the canvas, and begins an interpretation of the
syntax tree. Each program statement is displayed just before
it is executed. The speed of this evaluation can be varied,
or even set to zero, in which case the user can step through
the interpretation manually. A statement field below the
main code window allows a user to add new statements to
be executed immediately and added to the program.

From the menus provided, the user can create new data
types, instantiate named variables, assign pointer values,
and allocate or delete data dynamically. In response to each
interaction, LIVE generates a new source code statement
that has the same semantics as the user’s manipulation. As
an example, consider the task of creating a circularly linked
list with two nodes, in the Java syntax. An initial program
is created with the node type definition and the declaration
of list, a single object reference variable (pointer). The
user runs the program in LIVE, placing that variable on the
canvas:

To instantiate the first node, the user selects list with the
mouse, and chooses Create New Dynamic Object... from the
menu that appears:

In the code window, the statement list = new Node() is
added to the program and a new Node appears on the canvas.

Similarly, the user selects the next field of that node and
allocates the second node. The statement list.next = new
Node() is automatically generated:

The cycle is completed by two gestures: the selection of
Assign pointer to... on the next field of the second node, and
one click on the first node. LIVE adds list.next.next =
list:

Thus, except for the the initial declaration of the named
pointer variable, every statement in the program body is
automatically generated by user interaction with data using
the mouse.

3.2 Multiple languages

Multiple language modes support the display of programs
and data types in LIVE. A computer program is represented
in the LIVE system as a syntax tree. The same syntax tree
notation is used in all language modes. The tree is created by
a parser appropriate to the current mode. The parsers, one
for each language supported, were produced with JAVACC,
the Java Compiler Compiler [8]. Associated with the syntax
trees are code generation algorithms that render the trees in
any of the supported languages. Currently, LIVE supports
C++, Java, and our own in-house language Überlanguage,
reminiscent of Pascal. The latter could be considered LIVE’s
native language not only because its parser was developed

216

before the other two, but also because elements of its syntax
are used internally by the LIVE system.

RECORD
ACCESS

FOLLOW
POINTER

LVALUE

ASSIGN

IDENTIFIER

IDENTIFIER
foo

x

RVALUE

LVALUE

IDENTIFIER

width

Figure 1: The LIVE syntax tree for the C++ statement
foo->x = width, the JAVA statement foo.x = width,
and the Überlanguage statement fooˆ.x := width

Generating code from the same syntax tree in multiple lan-
guages improves a student’s understanding of syntax and
semantics for assignments, particularly with respect to how
pointers and structure accesses work. One of the illumi-
nating effects of having syntax trees as the underlying code
representation is that when the code for a subtree is gener-
ated in the target language, the simplest syntax is used. For
example, if the user enters the C++ statement (*foo).x =
width, it is parsed by the C++ parser into the syntax tree
shown in figure 1. When that tree is generated in C++, the
user sees foo->x = width. Likewise, if the user switches to
Java mode, LIVE generates foo.x = width.

Returning to LIVE, still running our circular list example,
the user switches to C++ mode using the selector above the
code window. To declare and initialize another pointer p,
the user enters C++ source code directly into the statement
field in the lower right corner:

The user selects the x field in the first node, chooses Assign
integer literal from the menu that appears, and enters the
literal number 7 in a dialog box. LIVE generates list->x =
7 in response:

Finally, the user selects the x field in the second node,
chooses Assign integer from..., and then selects the x field
in the first node, yielding p->x = list->x:

Note that the code generation algorithm has chosen the
shortest paths to the data involved in the last two state-
ments.

3.3 LIVE programs

LIVE supports data types for primitives, pointers, and
records. The primitives are boolean, integer, character,
string, and float. Arbitrary record data types can be defined
by the user, as long as their fields are primitive, previously
defined records, or pointers. A pointer is a reference to a
datum of any other type, including another pointer type.
Program data may be created at run time either statically,
as variables in a program body, or dynamically, as the result
of a dynamic allocation operation. LIVE maintains its own
stack for keeping track of static variables, as well as a heap
containing the dynamically allocated data.

The LIVE system runs its programs by interpreting them,
leaving much of the semantic consistency checking until run
time. Two examples of this are type checking for assign-
ments and variable or record field lookup. If types don’t
match, or if a variable isn’t in scope, LIVE signals an er-
ror condition and LIVEGUI notifies the user. Nevertheless,
even after errors occur, it is often the case that the user can
continue running the current LIVE program.

LIVE provides for the declaration and calling of subpro-
grams, with call-by-value parameter passing. A subprogram
may return a value to its caller. The ordinary static scope
rules for variables from Java and C++ also apply in LIVE:
a variable may be declared in any body and has scope un-
til the end of the body. When data are instantiated, they
become visible on the canvas until they are longer in scope.
Subprograms may be recursive, often resulting in multiple
instances of the same variable name on the screen at the
same time. Two variables with the same name may have
nested scopes, resulting in holes in the scopes of the outer
variable. Figure 2 illustrates examples of scope holes and
recursion in LIVE.

Other operations currently supported by LIVE include as-
signment, standard arithmetic, an operator returning a
pointer to a datum, its inverse pointer following opera-
tion, a record field access operator, dynamic allocation

217

and deallocation operators, and the boolean-returning nu-
meric comparison operators written in Java or C++ as
{<,<=,==,>=,>}. The equality comparison operator (==) is
overloaded for pointer comparisons as well. Control struc-
tures include selection (if-else) and iteration (while, for).
Statements for interrupting control structures (return,
break) are supported with approximately the same seman-
tics as in Java or C++.

Figure 2: Computing factorial two ways.
In the top canvas: An example of nested scopes. The
larger x in the center stays fixed; the other x moves
around as it is allocated and deallocated repeatedly.
In the bottom canvas: An example of recursion. LIVE
is starting to return back up the call chain of a recursive
factorial function, with several instances of parameters
and local variables waiting.

4 Discussion

LIVE currently supports operations in the imperative
paradigm of programming, thus it is best suited to use with
languages that employ sequence, selection, iteration as pri-
mary control structures, along with subprogram call as a
means of abstraction.

In this paper, we are neutral on the question of whether
an object-oriented approach should be taken in introduc-
tory courses. Our current system is procedural, rather than
object-oriented, because the principles it is best suited to
demonstrate—structured data, pointers, dynamic memory
management, block-structured allocation and deallocation of
variables, subprogram flow of control, and recursive subpro-
gram calls—all have their roots in the procedural paradigm
and are demonstrated most effectively without the added
burden of issues like inheritance, method lookup tables, pub-
lic vs. private data and methods, constructors and destruc-
tors, etc. We consider LIVE not as a means of visualizing the
execution of a complete Java or C++ program, but rather
as an aid to understanding how the basic operations within
an ordinary function or object-oriented method change the
data structures when they are executed.

Many of LIVE’s features are valuable in pedagogical set-
tings, both in and out of the classroom. In class, for ex-
ample, a teacher can start LIVE with a program contain-
ing only the record declaration for a singly-linked list node,
then alternate between manipulating the visualization and

entering statements, asking individual students to predict
the behavior. Once the class is comfortable with the ba-
sics, individuals or groups may be challenged to enter code
into LIVE to generate a complicated data structure. Per-
haps more importantly, after class, a student can use LIVE
independently to reinforce the concepts initially shown in
class.

One of the more distinctive features of LIVE is that it shows
the user his or her data structures in the manner that the
user desires, not in a manner computed by the system. This
places the burden of data organization on the user, but the
burden is reasonable on two counts. First, LIVE supports
arbitrary programs and structures. Because many different
data structures share similar type definitions, there is no way
for the system to automatically infer a correct scheme for
data placement. Consider, for example, that a binary tree
node and a doubly-linked list node are structurally equiv-
alent, each with a data field and two pointers, but a bi-
nary tree should probably not be displayed linearly. Second,
LIVE is meant to be used as a learning tool. We want our
students to be actively involved in observing a program run.
When a datum pops up onto the canvas, we want them ask-
ing questions like Why has it appeared now? What other data
can I expect to see later? When will it disappear? Where
should I put it in relation to other data? Making the stu-
dent be responsible for the neatness of the visualization helps
them figure out what’s going on more quickly than by simply
watching.

5 Future Work

Initial student reaction to LIVE has been very positive. We
have demonstrated the system to a number of computer sci-
ence concentrators, all of whom agreed that its use would
have increased their understanding of pointers, data struc-
tures, and recursion, had they been provided with LIVE
at the time they were first learning these basic principles.
LIVE has also been used successfully in the classroom to il-
lustrate the different semantics of apparently identical Java
and C++ variable declarations, and to show the effects of
nested variable scope. LIVE will be used more extensively
in the classroom in Fall 2002, to demonstrate pointers and
recursion in a CS2 course. We plan to study in detail how
the students and faculty make use of the system.

We are continually improving LIVE by adding new features
to its core and by enriching the syntax supported by its
language processors. Most notably, our immediate plans call
for the implementation of reference parameters and array
types.

LIVE will be expanded to include method declarations
within structures and classes, to parse and respect the dis-
tinction between public and private object and class meth-
ods and data, and to support dynamic method lookup for
object-oriented message passing.

Finally, difficult problems arise when some features in one
language are not compatible with another language. For in-
stance, C++ supports pointer arithmetic, but Java does not.
Pure functional languages don’t allow variable assignments.
While we may never know how to unify all conceivable lan-
guage properties under one visualization system, partial res-
olution of this general problem remains open to further re-
search.

218

6 Availability

LIVE is available free of charge under the GNU pub-
lic license. Its Java 1.2 source code and supporting
documents may be found on the LIVE project website:
http://www.cs.hamilton.edu/~alistair/LIVE.

7 Conclusion

We have introduced LIVE: the Language-Independent Vi-
sualization Environment as a tool for teaching and learning
about arbitrary linked data structures, recursion, and vari-
able scope. The main contributions are (1) that it has a
language-independent framework for visualizing code, data
and their types; (2) that it displays the effects of code exe-
cution diagrammatically while the program is running; and
(3) that it automatically generates source code statements
in response to user manipulation of the data visualized on
the screen.

8 Acknowledgments

This work was supported, in part, by the Ralph E. Hans-
mann Science Students Support Fund at Hamilton College.
Thanks also to Rick Decker and Julie Parent for their feed-
back on early versions of LIVE; and to Stuart Hirshfield and
Peter Kimball for helpful comments on earlier drafts of this
paper.

References

[1] Costigan, J., Wilhite, B., and North, C. Data struc-
ture visualization with visual debugger: A tool for
automatic visualization of run-time data structures.
Online. Internet. September, 2002. Available WWW:
http://infovis.cs.vt.edu/datastruct/.

[2] Dershem, H. L., McFall, R. L., and Uti, N. Animation
of Java linked lists. In Proceedings of the 33rd SIGCSE
Technical Symposium on Computer Science Education
(2002), pp. 53–57.

[3] Gramond, E., and Rodger, S. H. Using JFLAP to inter-
act with theorems in automata theory. In Proceedings
of the 30th SIGCSE Technical Symposium on Computer
Science Education (1999), pp. 336–340.

[4] Pierson, W. C., and Rodger, S. H. Web-based anima-
tion of data structures using JAWAA. In Proceedings
of the 29th SIGCSE Technical Symposium on Computer
Science Education (1998), pp. 267–271.

[5] Stasko, J. TANGO: A framework and system for algo-
rithm animation. IEEE Computer 23, 9 (1990), 27–39.

[6] Stasko, J. T., and Kraemer, E. A methodology for build-
ing application-specific visualizations of parallel pro-
grams. Journal of Parallel and Distributed Computing
18, 2 (1993), 258–264.

[7] Stasko, J. T., and Lawrence, A. Using student-built al-
gorithm animations as learning aids. In Software Visual-
ization: Programming as a Multimedia Experience, J. T.
Stasko, J. B. Domingue, M. H. Brown, and B. A. Price,
Eds. The MIT Press, 1998, pp. 419–438.

[8] WebGain, Inc. Java compiler compiler
(JAVACC)–the java parser generator. Online.
Internet. [September 2002]. Available WWW:
http://www.webgain.com/products/java_cc/.

219

