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Abstract 
 
Although many visualization techniques have been shown to be 
pedagogically effective, they are still not widely adopted. The 
reasons include: lack of suitable methods of automatic-generation 
of visualizations, lack of integration among visualizations, and 
lack of integration with basic integrated development environment 
(IDE) support. To effectively use visualizations when developing 
code, it is useful to automatically generate multiple synchronized 
views without leaving the IDE. The jGRASP IDE provides object 

viewers that automatically generate dynamic, state-based 
visualizations of objects and primitive variables in Java.  Such 
seamless integration of a lightweight IDE with a set of 
pedagogically effective software visualizations is unique and is 
currently unavailable in any other environment. Multiple 
instructors have reported positive anecdotal evidence of their 
usefulness.  We conducted formal, repeatable experiments to 
investigate the effect of these viewers for singly linked lists on 
student performance and we found a statistically significant 
improvement over traditional methods of visual debugging that 
use break-points. 
 

Keywords: Program Visualization, Algorithm Animation, Data 
Structures. 

Categories and Subject Descriptors: D.2.6 [Software 

Engineering]: Programming Environments – graphical 

environments, integrated environments, interactive environments. 

 
 

1    Background 
 
 
All Computer Science, Software Engineering, Computer 
Engineering, and Wireless Engineering (software option) majors 
at Auburn University are required to take the COMP 1210 course 
(an introduction to the Java programming language) followed by 
the COMP 2210 course (an introduction to data structures and 
algorithms).  Data structures and algorithms are abstract concepts, 
and the understanding of this topic and the material covered in 
class can be divided into two levels: a) Conceptual – where 
students learn concepts of operations such as create, add, delete, 
sort etc; and b) Coding – where students implement the data 
structure and its operations using any programming language 
(Java in our case). Over the course of the past few years we have 
noticed a consistent decline in enrollment in the CS department. 
This trend is most noticeable during the COMP 2210 course when 
 
 
 
 
 

a majority of students decide to drop this required course.  We 
conducted paper-based surveys and one-on-one interviews in Fall 
2004 and Spring 2005 to understand the aspects of the COMP 
2210 that students find most difficult. We found that students did 
not find fundamental concepts difficult to understand but had 
most trouble with the implementation. About 75% of students 
indicated that they had an appropriate level of expertise in Java to 
complete the requirements of COMP 2210.  Evidently, poor Java 
skills is not causing the problems with implementation. Most 
students faced a blank-screen syndrome when they began 
implementation [Jain et al. 2005a].  The basic problem was that 
students have difficulty transitioning from static textbook 
concepts to dynamic programming implementation [Shaffer et al. 
1996].  Thus, there is a need to bridge the gap from concepts to 
implementation. 

We surveyed over 21 tools that are used for the purpose of data 
structure visualization [Jain et al 2005b] and found that most tools 
(more than 14 in our survey) focused on conceptual 
understanding. We found that only 7 implementation level tools 
were available to help students during program comprehension 
and debugging activities.  But, none of these implementation tools 
fulfilled all of our goals, viz., 
• serve the dual purpose of classroom demonstration and  

development environment (i.e. can be used for lab exercises 
and assignments) 

• provide automatic generation of views 
• provide multiple and synchronized views 
• provide full control over the speed of the visualization 
• bridge the gap between abstract learning and code 

implementation 

Felder and Silverman [Felder and Silverman 1988], in their 1988 
study report that between 75—80% of students are visual learners. 
Most students will retain more information when it is presented 
with visual elements (pictures, diagrams, flow charts, etc).  In 
programming, visual learners can benefit from creating diagrams 
of problem solutions (e.g., flow charts) before coding. Similarly, 
visual representations of data structure states should help in data 
structure understanding. Thus, it would be beneficial to have a 
tool that enables students to visualize both the conceptual and the 
implementation aspects of data-structures.  

 

2   jGRASP Object Viewers 

 

During execution, Java programs will usually create a variety of 
objects from both user and library classes.  Since these objects 
only exist during execution, being able to visualize them in a 
meaningful way can be an important element of program 
comprehension.  Although this visualization can be done mentally 
for simple objects, most programmers can benefit from seeing 
more tangible representations of complex objects while the 
program is running.   
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Beginning with version 1.8, the jGRASP lightweight IDE 
(http://jgrasp.org) provides a family of dynamic viewers for 
objects and primitives.  These viewers are the most recent 
addition to the software visualizations provided by jGRASP.  The 
purpose of a viewer is to provide one or more views of a 
particular class of objects.  When a class has more than one view 
associated with it, you can have multiple viewers open on the 
same object with a separate view in each viewer.  These viewers 
are tightly integrated with the jGRASP workbench and debugger 
and can be opened for any item in the Workbench or Debug tabs 
from the Virtual Desktop (see Figure 1). 

Visualizations for data structures are created in two steps. First an 
external viewer class is implemented using the source code-based 
API provided with the jGRASP framework. In the second step the 
program that implements the data structure is executed using the 
debugger or workbench. A user can simply drag and drop the 
object reference anywhere on the screen to open the viewer (see 
Figure 2). As the user steps through the code the viewer will be 
automatically updated 
 
 The jGRASP viewers fall into two main categories: interface-
based and structurally-based. For example, an interface-based 
viewer might show a HashTable as a set of keys and values, while 
a structurally-based viewer would show the array of hash slots, 
the linked list of key-value pairs at each slot, etc. 
 

Workbench and 

Debug tabs

CSD and UML 
windows

Message Tab 

pane

 

 

Figure 1:  jGRASP Virtual Desktop 
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Figure 2: Details of the controls of the viewer window 
 

Name of the reference 
variable 

28



The structurally-based viewers fall into two sub-categories: non-
verifying and verifying (all interface-based viewers are non-
verifying). The non-verifying viewers assume that the structure of 
the object being viewed is correct, and generally use method calls 
to elaborate the structure. When a structure gets beyond a certain 
size, the non-verifying viewers will examine only the part of the 
structure that is on-screen. Because of this, they may be used to 
examine large structures without slowing the debugging process 
excessively. The non-verifying viewers would generally be used 
to examine the contents of a structure in the context of an 
algorithm that uses it, rather than to examine the workings of the 
data structure itself. Hendrix [Hendrix et al. 2004] discusses non-
verifying viewers in further details. 

 

2.1   Advantages of Verifying Viewers 

The purpose of the verifying viewers is to aid in the understanding 
of the data structures themselves, and to assist in finding errors 
while developing a data structure. To further this intended use, 
any local variables of the structure's node type are also displayed, 
along with the links between these local variable nodes or 
structure fragments and the main. This allows mechanisms of the 
data structure such as finding, adding, moving, and removing 
elements to be examined in detail by stepping through the code. 
 

As an additional aid to understanding the mechanisms of the data 
structure, the verifying viewers animate structural changes. In 
order to do this, they store a representation of the entire data 
structure at each update (viewer updates happen at a breakpoint or 
after a step in the debugger). At each update, the value from the 
previous update (which may or may not be the same as the current 
value) is examined for changes. If any nodes in the structure have 
moved, the viewer enters into animation mode. In this mode, an 
“animation update” occurs at regular intervals. During animation, 
the previous structure value and previous local variable nodes and 
structure fragments (which may or may not be present any longer) 
are displayed. Node locations are interpolated so that they move 
smoothly from their old locations to the new ones, within and 
between the main structure and local variable nodes and structure 
fragments. At the end of animation, the new structure value and 
new local variable nodes and structure fragments are displayed. 

 

2. 2   An Example of Animated-Verifying Viewer 

To view the local variables created as a method is being executed, 
the user must step-into the method. This will enable the user to 
see an animation that depicts object creation, pointer 
manipulation, and the updates to variable values. Figure 2 shows 
the controls available on the viewer window. 

jGRASP provides a library of viewers for common data structures 
that allow a viewer to be written using very little code. For 
example, a linked list viewer only needs to know how to find the 
first node in the list, and, given a node, how to find the 
next node; or, alternately, the number of nodes and access to any 
node by index. 

Consider the following code fragments of two Java programs: a) 
LinkedSet.java which implements a singly linked list, and b) 
LinearNode.java which is the type of element contained by the 
class LinkedSet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to create a viewer for LinkedSet.java, only the instance 
variables in the following methods should be updated in the 
template provided with the jGRASP distribution for singly linked 
list. We need to modifying only 5 lines of code to create a viewer 
for LinkedSet.java. 

a) getDisplayFields() - indicates the fields of the data structure 
that we want to be displayed in the viewer. For our example we 
have passed the variable count which is displayed in Figure 2. 

b) getFirstNodeField() -  indicates the pointer (if any) to be 
displayed at the head of the list. For our example we have passed 
the variable contents, which is displayed in Figure 2. 

c) getNodeType()  - indicates to the viewer the type of the nodes 
contained in the linked list. For our example we have passed the 
variable LinearNode. 

d)  getNext() - indicates to the viewer a path to the next node in 
the linked list. For our example we have passed the variable next. 

e) getNodeValue() - indicates to the viewer how to access the 
value of the element in the linked list. For our example we have 
passed the variable element. 

Once a viewer is created for a class and the viewer path has been 
set, a viewer can be opened on any instance of the class during the 
execution of an arbitrary program. 

 
In Figures 4-6, we will insert a node with value 6 in the index 
position 3 of the linked list. Figure 4 shows the insert method, and 
where we are in the debugging process. Figure 5 depicts the state 
of the object viewer for singly linked list before the line is 
executed, and Figure 6 shows the state after the line is executed. 
The local variables created in the insert method – before, after, 
node can be visualized in the viewer. 

 

Figure 3: Code fragments of  LinkedSet.java and 
LinearNode.javaLinkedSet.java and 

class LinkedSet  
{ 
           // the current number of elements in the set  
            private int count;  
 
          //points to the last element in the list 
            private LinearNode<T> contents;  

} 

class LinearNode 
{  
            //pointer to the next node 
            private LinearNode<T> next; 
 
            //generic type of element contained 
            private T element; 

} 

 

29



 
 
 

 
 

 
 

Figure 5: Before the setNext() method is called 

 
 

Figure 6: After the setNext() method is called 
 

Figure 4: CSD window of jGRASP with the debugger stopped at a break point 
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3   Experiments 

 

3.1   Purpose 
 

We conducted two controlled experiments to test the following 
hypotheses: 
1. Students’ are able to code more accurately (with fewer bugs) 

using the jGRASP data structure viewers. 
2. Students are able to find and correct “non-syntactical” bugs 

more accurately using jGRASP viewers. 
 

3.2   Subjects 
 

Two criteria are important when choosing subjects for our 
controlled experiments. First, the subjects must be a close 
representation of the target population. The jGRASP viewers are 
being developed primarily for students enrolled in an introductory 
level data structure and algorithms course. Students enrolled in 
Fundamentals of Computing II (COMP 2210) at Auburn 
University were used as subjects since they closely resemble the 
target population. Second, the subjects must be relatively uniform 
in regard to their programming abilities in order to minimize the 
variance between groups. Additionally, we faced the following 
challenges while designing the repeatable experiments: 
1. seamless integration with the course 
2. organization of a large subject population 
3. scheduling experiments such that there are no conflicts with 

course procedures 
4. control over hardware and software used to ensure all 

subjects use a similar apparatus 
5. plagiarism 

We designed experiments that were closely integrated with course 
requirements and complemented the lab assignments. For 
example, we conducted the experiments on singly linked lists, and 
assigned project assignments on doubly linked lists. In Spring 
2006 the students will be completing eight in-lab activities as a 
part of the COMP2210 course. These are attendance-based, 
ungraded, in-lab activities that comprise of 5% of the course 
grade. All in-lab activities will be conducted during the respective 
lab time of each section in a particular computer lab on campus. 
This ensured control over the hardware and software used by the 
subjects, and the schedule of experiments did not conflict with the 
subjects’ course-work.  

An equal number of subjects were assigned to two separate 
groups. The groups were balanced based on two specific 
programming skills – the ability to detect and correct logical 
errors and the ability to comprehend and trace programs.  To test 
for the above abilities we conducted two tests as a part of the first 
in-lab activity. We identified common logical errors that are 
specific to the implementation of data structures [Eisenstadt 1997; 
Hristova et al. 2003; Metzger 2003; Rubey 1975; Youngs 1974]. 
In the first test we created problems designed to test for each of 
the common logical errors (a total of 25). In the second test, we 
chose eight questions from the twelve created by the multi-
national study of reading and tracing skills in novice programmers 
[Lister et al. 2004].  We omitted questions on sorting since 

students had not been taught these concepts. Groups were 
balanced in week 5 of the course.  

Internal validity implies the presence of evidence to indicate that 
the special conditions imposed in an experiment caused the 
observed outcome. Selection-bias is said to exist if distinct groups 
are not comparable before an experiment. Selection-bias is a 
major threat to internal validity for multiple-group experiment 
design. In our case a selection-bias would imply that factors other 
than the viewers that were used in the experiments caused 
different outcomes for the two groups.  

We designed experiments based on the between-group approach 
to avoid the transfer of concepts learned in early experiments to a 
later experiment. Using the steps described above we balanced the 
programming expertise of all the groups thus having two 
comparable groups.  

We address the above issued by forming two comparable, groups 
balanced on the basis of programming expertise. The following 
steps were taken to determine group assignments:  
1.  Students were sorted in a list in ascending order of their 
combined scores in Lab Activity 1. 
2.  The list was divided into pairs starting from the lowest score. 
Each student from a pair was randomly assigned to group 1 or 2. 
3. Groups 1 and 2 were randomly assigned as the control group 
(no viewers) and the treatment group (state based viewers). 

Students in Group 1 were familiarized with the jGRASP debugger 
and students in Group 2 were familiarized with both the debugger 
and jGRASP viewers. We conducted in-lab activity 2 to 
accomplish these goals. 
 

3.3   Experiment 1 

Our hypothesis was that students will be more productive (will 
code faster and with greater accuracy) using the jGRASP data 
structure viewers. 
 

3.3.1   Materials and Procedure 

Students were asked to implement four basic operations for singly 
linked lists. The program LinkedSet.java (from the class textbook 
[Lewis and Chase 2004]) was used in this experiment.  Students 
were provided a detailed description of the programming 
assignment and the grading policy. Students were required to 
work independently and were timed (although there was no time 
limit to complete the assignment). The independent variable was 
the visualization medium (coding using jGRASP viewers vs. 
without viewers). The dependent variables were: time taken to 
complete the assignment, and the accuracy of the assignment.  
 
The control group implemented all the four methods – entry(), 

delete(), insert(), and contains() using the jGRASP visual 
debugger.  Details of these methods are provided in Appendix A. 
The driver program provided to this group contained a toString() 
method so that they could print out the contents of the list without 
writing additional code.  The treatment group implemented the 
same methods using the jGRASP object viewers.  The driver 
program given to this group did not contain 
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the toString() method, so the subjects had to use the viewers in 
order to see the contents of the list.  The machines in the lab were 
set up with permissions such that only the treatment group had 
access to the viewers.  
 

3.4    Experiment 2 

Our hypothesis was that students are able to detect and correct 
logical bugs more accurately and in less time when using jGRASP 
viewers. 
 

 3.4.1   Materials and Procedure 

A Java program implementing a singly linked list with 9 errors in 
four methods add(), insert(), delete() and contains() was provided. 
Details of these methods are provided in Appendix A. Students 
were asked to find and correct all the non-syntactical errors. The 
independent variable was the visualization medium (finding errors 
using jGRASP viewers vs. without viewers). The dependent 
variables were: number of bugs found, number of bugs accurately 
corrected, and number of new bugs introduced in the program 
while performing the experiment.  

Both the groups were first required to identify and document 
errors.  Next, similar to experiment 1, the control group corrected 
the detected errors using the jGRASP visual debugger and the 
treatment group corrected the errors using the jGRASP object 
viewers.   
 

4   Results and Discussions 

Collection of data was strictly contingent on student consent.  
Students were eligible for 5% of the course grade for the in-lab 
activities even if they decided to opt-out of data collection. 
Students that decided to opt-in for data collection were eligible for 
a 3% grade bonus. Our scoring of the students' work will 
constitute a grade that will be used to calculate up to 3 extra 
points on their final numeric average. For each group, we will 
create four quartiles.  Quartile 1 (i.e. top 25% of the students) will 
get 3 bonus points, quartile 2 will get 2 bonus points, quartile 3 
will get 1 bonus point. Using this scheme both groups will be 
awarded similarly regardless of the experimental treatment they 
receive. 
 
We used Hotelling’s T2 statistic to analyze our data since we have 
two dependent matched groups and more than one response 
variable for each experiment. Hotelling’s T2 is a multivariate 
counterpart of Student's-t test which is typically performed for 
univariate data [Johnson and Wichern 1998].  
 
 
4.1   Results of Experiment 1 
 
 
The null hypothesis is that there is no difference in the accuracy 
and time taken for both groups. For 31 samples in each group, 
Hotelling’s T2   statistic was calculated to be 23.732087. The 
critical value for α = 0.05, p=2 (two response variables), and n=31 
(sample size) was 4.1708768.  P-value was calculated to be 

0.0000335. Since the T2 value is much greater than the critical 
value, and p-value is much less than the alpha value, we can 
strongly reject the null hypothesis. Thus, there is a statistical 
significant difference between the two groups. Figure 7 shows 
that the mean time taken by the group with viewers is 109 minutes 
while the mean time taken by the group without viewers is 112 
minutes.   
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Figure 8 shows that the mean accuracy of the treatment group 
with viewers is 6.34 points, while the mean accuracy of the 
control group without viewers is 4.48 points.   
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Table 1 and 2 shows the breakdown of the number of students in 
each group that correctly implemented each of the given method. 
We see that students in the treatment group consistently 
performed better than the control group for all cases. 
 
Thus, we can say that in 95% of all cases, jGRASP object viewers 
will help increase the accuracy and reduce time taken for 
programs implementing data structures. 
 
 

Figure 7: Comparison of mean time 

Figure 8: Comparison of mean accuracy 
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4.2   Results of Experiment 2 
 
 
The null hypothesis is that there is no difference in the number 
of bugs detected, corrected, introduced, and the time taken for 
both groups. For 26 samples in each group, Hotelling’s T2   
statistic was calculated to be 12.833955. The critical value for α 
= 0.05, p=4 (four response variables), and n=26 (sample size) 
was 7.0892211.  P-value was calculated to be 0.0069295. Since 
the T2 value is much greater than the critical value, and p-value 
is much less than the alpha value, we can strongly reject the null 
hypothesis. Thus, there is a statistical difference between the 
two groups.  
 
Figure 9 shows that the mean time taken by the group with 
viewers is 88.23 minutes while the mean time taken by the 
group without viewers is 87.6 minutes.  Figure 10 shows that the 
group with viewers is able to detect and correct more errors. In 
addition this group introduced fewer errors.    
 
Table 3 and 4 shows the breakdown of the number of students in 
each group that correctly implemented each of the given 
method. We see that students in the treatment group consistently 
performed better than the control group for all cases. 
 
Thus, we can say that in 95% of all cases, jGRASP object 
viewers will help increase the accuracy, but the time taken to 
write programs implementing data structures is a bit more. We 
will need to perform further analysis to explore this issue. 
 
 

 
 
 

Table 1 – Details for each method for Experiment 1 (Group 1) 

 

 

Group 1 (Without Viewers) – Control Group 
 

 1. Entry 2. Insert 3. Delete 4. Contains 

No. Correct 12 4 4 15 
% Correct 

38.71% 12.9% 12.9% 51.61% 
 

 

Table 2 – Details for each method for Experiment 1 (Group 2) 
 

 

Group 2 (With Viewers) – Treatment Group 

 

 
1. Entry 2. Insert 3. Delete 4. Contains 

No. Correct 15 8 7 18 
% Correct 

48.39% 25.81% 22.58% 58.06% 

Time Taken - Experiment 2

0

50

100

150

200

A
v

e
ra

g
e

 T
im

e
 T

a
k

e
n

 i
n

 M
in

s

87.61538462 88.23076923

Without View ers With View ers

Figure 9: Comparison of mean time 

33



Bugs Information - Experiment 2
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Table 4:  Details for each method for Experiment 2 (Group 2) 

 

 

Group 2 (With Viewers) – Treatment Group 

 

  Add Insert Delete Contains 

22 18 15 18 Located 

  84.62% 69.23% 57.69% 69.23% 

16 14 14 18 Corrected 

  61.54% 53.85% 53.85% 69.23% 

3 1 0 2 Introduced 
  11.54% 3.85% 0.00% 7.69% 

 
 
 
 
 
 

 
 
 
 
 
 

 

Table 3:  Details for each method for Experiment 2 (Group 1) 

 

 

Group 1 (Without Viewers) – Control Group 

 

  Add Insert Delete Contains 

16 14 11 14 Located 

  61.54% 53.85% 42.31% 53.85% 

9 9 10 15 Corrected 

  34.62% 34.62% 38.46% 57.69% 

4 2 3 4 Introduced 

  15.38% 7.69% 11.54% 15.38% 

Figure 10: Comparison of mean bugs located, corrected and introduced 
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Conclusions and Future Work 
 
 
The decline in CS students over the years at Auburn University, 
especially in COMP 2210 prompted us to do conduct extensive 
surveys and interviews. We discovered that the main problem that 
the students were facing in this course was transitioning from 
abstract, static text book concepts to actual, dynamic 
programming implementation. So solve this problem we design 
and implemented a set of jGRASP object viewer framework.  
 
In this paper we discussed the advantages of the animated 
verifying viewers. We have designed and conducted formal, 
repeatable experiments to investigate the effect of these viewers 
for singly linked lists on student performance. We found a 
statistically significant improvement over traditional methods of 
visual debugging that use break-points. Students were more 
productive and were able to detect and correct logical bugs more 
accurately using the jGRASP viewers.  
 
We plan to repeat these experiments for linked binary search 
trees. Currently the scoring of student solutions for Experiment 2 
was done only by one grader. In the next round of experiments we 
will use multiple grades and then run an inter-reliability analysis 
[Shrout and Fleiss 1979] to ensure that our grading scheme is 
reliably reproduced. We need to explore why the group with 
viewers takes a slightly longer time to finish the tasks in 
experiment 2. We also plan to conduct these experiments in 
multiple schools with different instructors, different environment 
variables, and students to determine if we get repeatable results. 
 
We are currently working on a set of generalized viewers that will 
work for most linked structures.  The goal is to eliminate the need 
for a user to create custom viewers. However, the viewer API will 
be published to encourage users to create their own viewers if the 
desire to do so. 
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Appendix A 

 

Methods used for Experiment 1 and Experiment 2 

 
1) void add (element) – this method adds a new node to the end of the linked list. (Note: The list can have duplicates). 
 
For example, if the list contains the following elements in the given order: “a”, “b”, “b”, “c”, “d”. After the method add(“e”) is called, node 
“e” should be added to the END of the list. So after the add(“e”) method is executed, the contents of the list are: “a”, “b”, “b”, “c”, “d”, “e” 
 
2) void insert (element, position) – should insert a given element at the given position (it is added before the element which is currently in 
that position). (Note: The list can have duplicates). 
 
 

Example 1) For example, if the list contains the following elements in the given order: “a”, “b”, “c”, “d”, “e”. After the method 
insert (“f”, 0) is called, node “f” should be inserted before “a” (which is at index 0). So after the insert(“f”, 0) method is executed, 
the contents of the list are: “f”, “a”, “b”, “c”, “d”, “e” 

 
Example 2) For example, if the list contains the following elements in the given order: “a”, “b”, “c”, “d”, “e”. After the method 
insert (“f”, 5) is called, node “f” should be inserted after “e” (which is at index 4). So after the insert(“f”, 5) method is executed, 
the contents of the list are: “a”, “b”, “c”, “d”, “e”, “f” 
 
Example 3) For example, if the list contains the following elements in the given order: “a”, “b”, “c”, “d”, “e”. After the method 
insert (“f”, 1) is called, node “f” should be inserted between “a” (which is at index 0) and “b” (which is at index 1). So after the 
insert(“f”, 1) method is executed, the contents of the list are:  
“a”, “f”, “b”, “c”, “d”, “e” 
 
 

3) boolean contains (element) – this method returns true is the list contains this element and false otherwise. 
 
For example, if the list contains the following elements in the given order: “a”, “b”, “c”, “d”. The method call contain(“e”) will return false. 
The method call contain(“b”) will return true. 
 
 
4) void delete (index) – this method deletes the node at a given index. 
 
 

Example 1) For example, if the list contains the following elements in the given order: “a”, “b”, “c”, “d”, “e”. After the method 
delete (0) is called, the node “a” which is at index 0 should be deleted. So after the delete(0) method is executed, the contents of 
the list are: “b”, “c”, “d”, “e” 
 
Example 2) For example, if the list contains the following elements in the given order: “a”, “b”, “c”, “d”, “e”. After the method 
delete (4) is called, the node “e” which is it index 4 should be deleted. So after the delete(4) method is executed, the contents of 
the list are: “a”, “b”, “c”, “d” 
 
Example 3) For example, if the list contains the following elements in the given order: “a”, “b”, “c”, “d”, “e”. After the method 
delete (1) is called, the node “b” which is at index 1 should be deleted. So after the delete(1) method is executed, the contents of 
the list are:  
“a”, “c”, “d”, “e” 
 
 

5) LinearNode<T> entry (index) – this method returns the object reference of the node at given index position. This method will be used 
by insert and delete methods 
 
 

Example 1) For example, if the list contains the following elements in the given order: “a”, “b”, “c”, “d”, “e”. After the method 
entry (0) is called, the object reference for node “a”, which is at index 0 should be returned.  
 
Example 2) For example, if the list contains the following elements in the given order: “a”, “b”, “c”, “d”, “e”. After the method 
entry (4) is called, the object reference for node “e”, which is at index 4 should be returned. 
 
Example 3) For example, if the list contains the following elements in the given order: “a”, “b”, “c”, “d”, “e”. After the method 
entry (2) is called, the object reference for node “c”, which is at index 2 should be returned. 
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