
Copyright © 2006 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
SOFTVIS 2006, Brighton, United Kingdom, September 04–05, 2006.
© 2006 ACM 1-59593-464-2/06/0009 $5.00

Experimental Evaluation of Animated-Verifying Object Viewers for Java
Jhilmil Jain, James H. Cross II, T. Dean Hendrix, and Larry A. Barowski

Computer Science and Software Engineering
Auburn University, AL 36849

jainjhi | crossjh | hendrtd | barowla @auburn.edu

Abstract

Although many visualization techniques have been shown to be
pedagogically effective, they are still not widely adopted. The
reasons include: lack of suitable methods of automatic-generation
of visualizations, lack of integration among visualizations, and
lack of integration with basic integrated development environment
(IDE) support. To effectively use visualizations when developing
code, it is useful to automatically generate multiple synchronized
views without leaving the IDE. The jGRASP IDE provides object

viewers that automatically generate dynamic, state-based
visualizations of objects and primitive variables in Java. Such
seamless integration of a lightweight IDE with a set of
pedagogically effective software visualizations is unique and is
currently unavailable in any other environment. Multiple
instructors have reported positive anecdotal evidence of their
usefulness. We conducted formal, repeatable experiments to
investigate the effect of these viewers for singly linked lists on
student performance and we found a statistically significant
improvement over traditional methods of visual debugging that
use break-points.

Keywords: Program Visualization, Algorithm Animation, Data
Structures.

Categories and Subject Descriptors: D.2.6 [Software

Engineering]: Programming Environments – graphical

environments, integrated environments, interactive environments.

1 Background

All Computer Science, Software Engineering, Computer
Engineering, and Wireless Engineering (software option) majors
at Auburn University are required to take the COMP 1210 course
(an introduction to the Java programming language) followed by
the COMP 2210 course (an introduction to data structures and
algorithms). Data structures and algorithms are abstract concepts,
and the understanding of this topic and the material covered in
class can be divided into two levels: a) Conceptual – where
students learn concepts of operations such as create, add, delete,
sort etc; and b) Coding – where students implement the data
structure and its operations using any programming language
(Java in our case). Over the course of the past few years we have
noticed a consistent decline in enrollment in the CS department.
This trend is most noticeable during the COMP 2210 course when

a majority of students decide to drop this required course. We
conducted paper-based surveys and one-on-one interviews in Fall
2004 and Spring 2005 to understand the aspects of the COMP
2210 that students find most difficult. We found that students did
not find fundamental concepts difficult to understand but had
most trouble with the implementation. About 75% of students
indicated that they had an appropriate level of expertise in Java to
complete the requirements of COMP 2210. Evidently, poor Java
skills is not causing the problems with implementation. Most
students faced a blank-screen syndrome when they began
implementation [Jain et al. 2005a]. The basic problem was that
students have difficulty transitioning from static textbook
concepts to dynamic programming implementation [Shaffer et al.
1996]. Thus, there is a need to bridge the gap from concepts to
implementation.

We surveyed over 21 tools that are used for the purpose of data
structure visualization [Jain et al 2005b] and found that most tools
(more than 14 in our survey) focused on conceptual
understanding. We found that only 7 implementation level tools
were available to help students during program comprehension
and debugging activities. But, none of these implementation tools
fulfilled all of our goals, viz.,
• serve the dual purpose of classroom demonstration and

development environment (i.e. can be used for lab exercises
and assignments)

• provide automatic generation of views
• provide multiple and synchronized views
• provide full control over the speed of the visualization
• bridge the gap between abstract learning and code

implementation

Felder and Silverman [Felder and Silverman 1988], in their 1988
study report that between 75—80% of students are visual learners.
Most students will retain more information when it is presented
with visual elements (pictures, diagrams, flow charts, etc). In
programming, visual learners can benefit from creating diagrams
of problem solutions (e.g., flow charts) before coding. Similarly,
visual representations of data structure states should help in data
structure understanding. Thus, it would be beneficial to have a
tool that enables students to visualize both the conceptual and the
implementation aspects of data-structures.

2 jGRASP Object Viewers

During execution, Java programs will usually create a variety of
objects from both user and library classes. Since these objects
only exist during execution, being able to visualize them in a
meaningful way can be an important element of program
comprehension. Although this visualization can be done mentally
for simple objects, most programmers can benefit from seeing
more tangible representations of complex objects while the
program is running.

27

Beginning with version 1.8, the jGRASP lightweight IDE
(http://jgrasp.org) provides a family of dynamic viewers for
objects and primitives. These viewers are the most recent
addition to the software visualizations provided by jGRASP. The
purpose of a viewer is to provide one or more views of a
particular class of objects. When a class has more than one view
associated with it, you can have multiple viewers open on the
same object with a separate view in each viewer. These viewers
are tightly integrated with the jGRASP workbench and debugger
and can be opened for any item in the Workbench or Debug tabs
from the Virtual Desktop (see Figure 1).

Visualizations for data structures are created in two steps. First an
external viewer class is implemented using the source code-based
API provided with the jGRASP framework. In the second step the
program that implements the data structure is executed using the
debugger or workbench. A user can simply drag and drop the
object reference anywhere on the screen to open the viewer (see
Figure 2). As the user steps through the code the viewer will be
automatically updated

 The jGRASP viewers fall into two main categories: interface-
based and structurally-based. For example, an interface-based
viewer might show a HashTable as a set of keys and values, while
a structurally-based viewer would show the array of hash slots,
the linked list of key-value pairs at each slot, etc.

Workbench and

Debug tabs

CSD and UML
windows

Message Tab

pane

Figure 1: jGRASP Virtual Desktop

Button to toggle
animation on or off

Slider to adjust the
width of elements

Slider to adjust the
scale of the entire
view

Change the type of view
(Basic/Verifying)

Slider to adjust the
animation time delay

Name of the data
structure being
viewed

Button to toggle
between embedded
and non-embedded
view

Button to toggle
between normal and
simple view

Figure 2: Details of the controls of the viewer window

Name of the reference
variable

28

The structurally-based viewers fall into two sub-categories: non-
verifying and verifying (all interface-based viewers are non-
verifying). The non-verifying viewers assume that the structure of
the object being viewed is correct, and generally use method calls
to elaborate the structure. When a structure gets beyond a certain
size, the non-verifying viewers will examine only the part of the
structure that is on-screen. Because of this, they may be used to
examine large structures without slowing the debugging process
excessively. The non-verifying viewers would generally be used
to examine the contents of a structure in the context of an
algorithm that uses it, rather than to examine the workings of the
data structure itself. Hendrix [Hendrix et al. 2004] discusses non-
verifying viewers in further details.

2.1 Advantages of Verifying Viewers

The purpose of the verifying viewers is to aid in the understanding
of the data structures themselves, and to assist in finding errors
while developing a data structure. To further this intended use,
any local variables of the structure's node type are also displayed,
along with the links between these local variable nodes or
structure fragments and the main. This allows mechanisms of the
data structure such as finding, adding, moving, and removing
elements to be examined in detail by stepping through the code.

As an additional aid to understanding the mechanisms of the data
structure, the verifying viewers animate structural changes. In
order to do this, they store a representation of the entire data
structure at each update (viewer updates happen at a breakpoint or
after a step in the debugger). At each update, the value from the
previous update (which may or may not be the same as the current
value) is examined for changes. If any nodes in the structure have
moved, the viewer enters into animation mode. In this mode, an
“animation update” occurs at regular intervals. During animation,
the previous structure value and previous local variable nodes and
structure fragments (which may or may not be present any longer)
are displayed. Node locations are interpolated so that they move
smoothly from their old locations to the new ones, within and
between the main structure and local variable nodes and structure
fragments. At the end of animation, the new structure value and
new local variable nodes and structure fragments are displayed.

2. 2 An Example of Animated-Verifying Viewer

To view the local variables created as a method is being executed,
the user must step-into the method. This will enable the user to
see an animation that depicts object creation, pointer
manipulation, and the updates to variable values. Figure 2 shows
the controls available on the viewer window.

jGRASP provides a library of viewers for common data structures
that allow a viewer to be written using very little code. For
example, a linked list viewer only needs to know how to find the
first node in the list, and, given a node, how to find the
next node; or, alternately, the number of nodes and access to any
node by index.

Consider the following code fragments of two Java programs: a)
LinkedSet.java which implements a singly linked list, and b)
LinearNode.java which is the type of element contained by the
class LinkedSet.

In order to create a viewer for LinkedSet.java, only the instance
variables in the following methods should be updated in the
template provided with the jGRASP distribution for singly linked
list. We need to modifying only 5 lines of code to create a viewer
for LinkedSet.java.

a) getDisplayFields() - indicates the fields of the data structure
that we want to be displayed in the viewer. For our example we
have passed the variable count which is displayed in Figure 2.

b) getFirstNodeField() - indicates the pointer (if any) to be
displayed at the head of the list. For our example we have passed
the variable contents, which is displayed in Figure 2.

c) getNodeType() - indicates to the viewer the type of the nodes
contained in the linked list. For our example we have passed the
variable LinearNode.

d) getNext() - indicates to the viewer a path to the next node in
the linked list. For our example we have passed the variable next.

e) getNodeValue() - indicates to the viewer how to access the
value of the element in the linked list. For our example we have
passed the variable element.

Once a viewer is created for a class and the viewer path has been
set, a viewer can be opened on any instance of the class during the
execution of an arbitrary program.

In Figures 4-6, we will insert a node with value 6 in the index
position 3 of the linked list. Figure 4 shows the insert method, and
where we are in the debugging process. Figure 5 depicts the state
of the object viewer for singly linked list before the line is
executed, and Figure 6 shows the state after the line is executed.
The local variables created in the insert method – before, after,
node can be visualized in the viewer.

Figure 3: Code fragments of LinkedSet.java and
LinearNode.javaLinkedSet.java and

class LinkedSet
{
 // the current number of elements in the set
 private int count;

 //points to the last element in the list
 private LinearNode<T> contents;

}

class LinearNode
{
 //pointer to the next node
 private LinearNode<T> next;

 //generic type of element contained
 private T element;

}

29

Figure 5: Before the setNext() method is called

Figure 6: After the setNext() method is called

Figure 4: CSD window of jGRASP with the debugger stopped at a break point

30

3 Experiments

3.1 Purpose

We conducted two controlled experiments to test the following
hypotheses:
1. Students’ are able to code more accurately (with fewer bugs)

using the jGRASP data structure viewers.
2. Students are able to find and correct “non-syntactical” bugs

more accurately using jGRASP viewers.

3.2 Subjects

Two criteria are important when choosing subjects for our
controlled experiments. First, the subjects must be a close
representation of the target population. The jGRASP viewers are
being developed primarily for students enrolled in an introductory
level data structure and algorithms course. Students enrolled in
Fundamentals of Computing II (COMP 2210) at Auburn
University were used as subjects since they closely resemble the
target population. Second, the subjects must be relatively uniform
in regard to their programming abilities in order to minimize the
variance between groups. Additionally, we faced the following
challenges while designing the repeatable experiments:
1. seamless integration with the course
2. organization of a large subject population
3. scheduling experiments such that there are no conflicts with

course procedures
4. control over hardware and software used to ensure all

subjects use a similar apparatus
5. plagiarism

We designed experiments that were closely integrated with course
requirements and complemented the lab assignments. For
example, we conducted the experiments on singly linked lists, and
assigned project assignments on doubly linked lists. In Spring
2006 the students will be completing eight in-lab activities as a
part of the COMP2210 course. These are attendance-based,
ungraded, in-lab activities that comprise of 5% of the course
grade. All in-lab activities will be conducted during the respective
lab time of each section in a particular computer lab on campus.
This ensured control over the hardware and software used by the
subjects, and the schedule of experiments did not conflict with the
subjects’ course-work.

An equal number of subjects were assigned to two separate
groups. The groups were balanced based on two specific
programming skills – the ability to detect and correct logical
errors and the ability to comprehend and trace programs. To test
for the above abilities we conducted two tests as a part of the first
in-lab activity. We identified common logical errors that are
specific to the implementation of data structures [Eisenstadt 1997;
Hristova et al. 2003; Metzger 2003; Rubey 1975; Youngs 1974].
In the first test we created problems designed to test for each of
the common logical errors (a total of 25). In the second test, we
chose eight questions from the twelve created by the multi-
national study of reading and tracing skills in novice programmers
[Lister et al. 2004]. We omitted questions on sorting since

students had not been taught these concepts. Groups were
balanced in week 5 of the course.

Internal validity implies the presence of evidence to indicate that
the special conditions imposed in an experiment caused the
observed outcome. Selection-bias is said to exist if distinct groups
are not comparable before an experiment. Selection-bias is a
major threat to internal validity for multiple-group experiment
design. In our case a selection-bias would imply that factors other
than the viewers that were used in the experiments caused
different outcomes for the two groups.

We designed experiments based on the between-group approach
to avoid the transfer of concepts learned in early experiments to a
later experiment. Using the steps described above we balanced the
programming expertise of all the groups thus having two
comparable groups.

We address the above issued by forming two comparable, groups
balanced on the basis of programming expertise. The following
steps were taken to determine group assignments:
1. Students were sorted in a list in ascending order of their
combined scores in Lab Activity 1.
2. The list was divided into pairs starting from the lowest score.
Each student from a pair was randomly assigned to group 1 or 2.
3. Groups 1 and 2 were randomly assigned as the control group
(no viewers) and the treatment group (state based viewers).

Students in Group 1 were familiarized with the jGRASP debugger
and students in Group 2 were familiarized with both the debugger
and jGRASP viewers. We conducted in-lab activity 2 to
accomplish these goals.

3.3 Experiment 1

Our hypothesis was that students will be more productive (will
code faster and with greater accuracy) using the jGRASP data
structure viewers.

3.3.1 Materials and Procedure

Students were asked to implement four basic operations for singly
linked lists. The program LinkedSet.java (from the class textbook
[Lewis and Chase 2004]) was used in this experiment. Students
were provided a detailed description of the programming
assignment and the grading policy. Students were required to
work independently and were timed (although there was no time
limit to complete the assignment). The independent variable was
the visualization medium (coding using jGRASP viewers vs.
without viewers). The dependent variables were: time taken to
complete the assignment, and the accuracy of the assignment.

The control group implemented all the four methods – entry(),

delete(), insert(), and contains() using the jGRASP visual
debugger. Details of these methods are provided in Appendix A.
The driver program provided to this group contained a toString()
method so that they could print out the contents of the list without
writing additional code. The treatment group implemented the
same methods using the jGRASP object viewers. The driver
program given to this group did not contain

31

the toString() method, so the subjects had to use the viewers in
order to see the contents of the list. The machines in the lab were
set up with permissions such that only the treatment group had
access to the viewers.

3.4 Experiment 2

Our hypothesis was that students are able to detect and correct
logical bugs more accurately and in less time when using jGRASP
viewers.

 3.4.1 Materials and Procedure

A Java program implementing a singly linked list with 9 errors in
four methods add(), insert(), delete() and contains() was provided.
Details of these methods are provided in Appendix A. Students
were asked to find and correct all the non-syntactical errors. The
independent variable was the visualization medium (finding errors
using jGRASP viewers vs. without viewers). The dependent
variables were: number of bugs found, number of bugs accurately
corrected, and number of new bugs introduced in the program
while performing the experiment.

Both the groups were first required to identify and document
errors. Next, similar to experiment 1, the control group corrected
the detected errors using the jGRASP visual debugger and the
treatment group corrected the errors using the jGRASP object
viewers.

4 Results and Discussions

Collection of data was strictly contingent on student consent.
Students were eligible for 5% of the course grade for the in-lab
activities even if they decided to opt-out of data collection.
Students that decided to opt-in for data collection were eligible for
a 3% grade bonus. Our scoring of the students' work will
constitute a grade that will be used to calculate up to 3 extra
points on their final numeric average. For each group, we will
create four quartiles. Quartile 1 (i.e. top 25% of the students) will
get 3 bonus points, quartile 2 will get 2 bonus points, quartile 3
will get 1 bonus point. Using this scheme both groups will be
awarded similarly regardless of the experimental treatment they
receive.

We used Hotelling’s T2 statistic to analyze our data since we have
two dependent matched groups and more than one response
variable for each experiment. Hotelling’s T2 is a multivariate
counterpart of Student's-t test which is typically performed for
univariate data [Johnson and Wichern 1998].

4.1 Results of Experiment 1

The null hypothesis is that there is no difference in the accuracy
and time taken for both groups. For 31 samples in each group,
Hotelling’s T2 statistic was calculated to be 23.732087. The
critical value for α = 0.05, p=2 (two response variables), and n=31
(sample size) was 4.1708768. P-value was calculated to be

0.0000335. Since the T2 value is much greater than the critical
value, and p-value is much less than the alpha value, we can
strongly reject the null hypothesis. Thus, there is a statistical
significant difference between the two groups. Figure 7 shows
that the mean time taken by the group with viewers is 109 minutes
while the mean time taken by the group without viewers is 112
minutes.

Time Taken - Experiment 1

0

25

50

75

100

125

A
v

e
ra

g
e

 T
im

e
 i

n
 M

in
s

112.0689655 109.3448276

Without View ers With View ers

Figure 8 shows that the mean accuracy of the treatment group
with viewers is 6.34 points, while the mean accuracy of the
control group without viewers is 4.48 points.

Raw Score - Experiment 1

0

2

4

6

8

A
v

e
ra

g
e

 R
a

w
 S

c
o

re

4.482758621 6.344827586

Without View ers With View ers

Table 1 and 2 shows the breakdown of the number of students in
each group that correctly implemented each of the given method.
We see that students in the treatment group consistently
performed better than the control group for all cases.

Thus, we can say that in 95% of all cases, jGRASP object viewers
will help increase the accuracy and reduce time taken for
programs implementing data structures.

Figure 7: Comparison of mean time

Figure 8: Comparison of mean accuracy

32

4.2 Results of Experiment 2

The null hypothesis is that there is no difference in the number
of bugs detected, corrected, introduced, and the time taken for
both groups. For 26 samples in each group, Hotelling’s T2
statistic was calculated to be 12.833955. The critical value for α
= 0.05, p=4 (four response variables), and n=26 (sample size)
was 7.0892211. P-value was calculated to be 0.0069295. Since
the T2 value is much greater than the critical value, and p-value
is much less than the alpha value, we can strongly reject the null
hypothesis. Thus, there is a statistical difference between the
two groups.

Figure 9 shows that the mean time taken by the group with
viewers is 88.23 minutes while the mean time taken by the
group without viewers is 87.6 minutes. Figure 10 shows that the
group with viewers is able to detect and correct more errors. In
addition this group introduced fewer errors.

Table 3 and 4 shows the breakdown of the number of students in
each group that correctly implemented each of the given
method. We see that students in the treatment group consistently
performed better than the control group for all cases.

Thus, we can say that in 95% of all cases, jGRASP object
viewers will help increase the accuracy, but the time taken to
write programs implementing data structures is a bit more. We
will need to perform further analysis to explore this issue.

Table 1 – Details for each method for Experiment 1 (Group 1)

Group 1 (Without Viewers) – Control Group

 1. Entry 2. Insert 3. Delete 4. Contains

No. Correct 12 4 4 15
% Correct

38.71% 12.9% 12.9% 51.61%

Table 2 – Details for each method for Experiment 1 (Group 2)

Group 2 (With Viewers) – Treatment Group

1. Entry 2. Insert 3. Delete 4. Contains

No. Correct 15 8 7 18
% Correct

48.39% 25.81% 22.58% 58.06%

Time Taken - Experiment 2

0

50

100

150

200

A
v

e
ra

g
e

 T
im

e
 T

a
k

e
n

 i
n

 M
in

s

87.61538462 88.23076923

Without View ers With View ers

Figure 9: Comparison of mean time

33

Bugs Information - Experiment 2

0

1

2

3

4

5

6

7

8

9
A

v
e
ra

g
e
 P

o
in

ts

4.961538462 6.807692308 4.230769231 5.615384615 1.346153846 0.653846154

Grp1Located Grp2Located Grp1Corrected Grp2Corrected Grp1Introduced Grp2Introduced

Table 4: Details for each method for Experiment 2 (Group 2)

Group 2 (With Viewers) – Treatment Group

 Add Insert Delete Contains

22 18 15 18 Located

 84.62% 69.23% 57.69% 69.23%

16 14 14 18 Corrected

 61.54% 53.85% 53.85% 69.23%

3 1 0 2 Introduced
 11.54% 3.85% 0.00% 7.69%

Table 3: Details for each method for Experiment 2 (Group 1)

Group 1 (Without Viewers) – Control Group

 Add Insert Delete Contains

16 14 11 14 Located

 61.54% 53.85% 42.31% 53.85%

9 9 10 15 Corrected

 34.62% 34.62% 38.46% 57.69%

4 2 3 4 Introduced

 15.38% 7.69% 11.54% 15.38%

Figure 10: Comparison of mean bugs located, corrected and introduced

34

Conclusions and Future Work

The decline in CS students over the years at Auburn University,
especially in COMP 2210 prompted us to do conduct extensive
surveys and interviews. We discovered that the main problem that
the students were facing in this course was transitioning from
abstract, static text book concepts to actual, dynamic
programming implementation. So solve this problem we design
and implemented a set of jGRASP object viewer framework.

In this paper we discussed the advantages of the animated
verifying viewers. We have designed and conducted formal,
repeatable experiments to investigate the effect of these viewers
for singly linked lists on student performance. We found a
statistically significant improvement over traditional methods of
visual debugging that use break-points. Students were more
productive and were able to detect and correct logical bugs more
accurately using the jGRASP viewers.

We plan to repeat these experiments for linked binary search
trees. Currently the scoring of student solutions for Experiment 2
was done only by one grader. In the next round of experiments we
will use multiple grades and then run an inter-reliability analysis
[Shrout and Fleiss 1979] to ensure that our grading scheme is
reliably reproduced. We need to explore why the group with
viewers takes a slightly longer time to finish the tasks in
experiment 2. We also plan to conduct these experiments in
multiple schools with different instructors, different environment
variables, and students to determine if we get repeatable results.

We are currently working on a set of generalized viewers that will
work for most linked structures. The goal is to eliminate the need
for a user to create custom viewers. However, the viewer API will
be published to encourage users to create their own viewers if the
desire to do so.

References

EISENSTADT, M. 1997. My hairiest bug war stories.
Communications of the ACM, vol. 40, issue 4, pp. 30-37.

FELDER, R.M., AND SILVERMAN, L.K. 1988. Learning and
Teaching Styles in Engineering Education. Engr. Education,
1988, vol. 78, pp. 674-681.

HENDRIX, D.T., CROSS, J.H., AND BAROWSKI, L.A. 2004.
An extensible framework for providing dynamic data structure
visualizations in a lightweight IDE. In Proceedings of the 35th

SIGCSE technical symposium on Computer science education,
pp.387-391.

HRISTOVA, M., MISRA, A., RUTTER, M., AND MERCURI,
R. 2003. Identifying and correcting Java programming errors for
introductory computer science students. . In Proceedings of the

34th SIGCSE Technical Symposium on Computer Science

Education, Reno, Nevada, USA, pp. 153-156.

JAIN, J., BILLOR, N., HENDRIX, D., AND CROSS, J. H. 2005.
Survey to Investigate Data Structure Understanding. Submitted to
the International Conference on Statistics, Combinatorics,

Mathematics and Applications, Auburn, AL, December 2-4, 2005.

JAIN, J., CROSS, J. H., AND HENDRIX, D. 2005. Qualitative
Assessment of Systems Facilitating Visualization of Data
Structures. In Proceedings of 2005 ACM Southeast Conference,
Kennesaw, GA, March 18-20, 2005.

JOHNSON, R. A., AND WICHERN, D. W. 1998. Applied
multivariate statistical analysis, 4th Edition, ISBN: 0130925535.
LEWIS, J. AND CHASE J. 2004. Java Software Structures :
Designing and Using Data Structures, 2nd Edition, ISBN:
0321245849.

LISTER, R., ADAMS, E. S., FITZGERALD, S., FONE, W.,
HAMER, J., LINDHOLM, M., MCCARTNEY, R., MOSTRÖM,
J. E., SANDERS, K., SEPPÄLÄ, O., SIMON, B., AND
THOMAS, L. 2004. A multi-national study of reading and tracing
skills in novice programmers. In Working Group Reports From

ITiCSE on innovation and Technology in Computer Science

Education, pp. 119-15.

METZGER, R. C. 2003. Debugging by Thinking: A
Multidisciplinary Approach (HP Technologies), ISBN:
1555583075.

RUBEY, R. J. 1975. Quantitative aspects of software validation.
In Proceedings of the International Conference on Reliable

Software, Los Angeles, California, pp. 246-251.

SHAFFER, C., HEATH, L.S., AND YANG, J. 1996. Using the
swan data structure visualization system for computer science
education. In Proceedings of the SIGCSE, ACM Press, 1996, pp.
140-144.

SHROUT, PATRICK E., AND FLEISS, JOSEPH L. Intraclass
correlations: Uses in assessing rater reliability. Psychological

Bulletin. vol. 86, issue 2, Mar 1979, pp. 420-428.

YOUNGS, E. 1974. Human Errors in Programming. International

Journal of Man-Machine Studies, vol. 6, pp. 361- 376.

35

Appendix A

Methods used for Experiment 1 and Experiment 2

1) void add (element) – this method adds a new node to the end of the linked list. (Note: The list can have duplicates).

For example, if the list contains the following elements in the given order: “a”, “b”, “b”, “c”, “d”. After the method add(“e”) is called, node
“e” should be added to the END of the list. So after the add(“e”) method is executed, the contents of the list are: “a”, “b”, “b”, “c”, “d”, “e”

2) void insert (element, position) – should insert a given element at the given position (it is added before the element which is currently in
that position). (Note: The list can have duplicates).

Example 1) For example, if the list contains the following elements in the given order: “a”, “b”, “c”, “d”, “e”. After the method
insert (“f”, 0) is called, node “f” should be inserted before “a” (which is at index 0). So after the insert(“f”, 0) method is executed,
the contents of the list are: “f”, “a”, “b”, “c”, “d”, “e”

Example 2) For example, if the list contains the following elements in the given order: “a”, “b”, “c”, “d”, “e”. After the method
insert (“f”, 5) is called, node “f” should be inserted after “e” (which is at index 4). So after the insert(“f”, 5) method is executed,
the contents of the list are: “a”, “b”, “c”, “d”, “e”, “f”

Example 3) For example, if the list contains the following elements in the given order: “a”, “b”, “c”, “d”, “e”. After the method
insert (“f”, 1) is called, node “f” should be inserted between “a” (which is at index 0) and “b” (which is at index 1). So after the
insert(“f”, 1) method is executed, the contents of the list are:
“a”, “f”, “b”, “c”, “d”, “e”

3) boolean contains (element) – this method returns true is the list contains this element and false otherwise.

For example, if the list contains the following elements in the given order: “a”, “b”, “c”, “d”. The method call contain(“e”) will return false.
The method call contain(“b”) will return true.

4) void delete (index) – this method deletes the node at a given index.

Example 1) For example, if the list contains the following elements in the given order: “a”, “b”, “c”, “d”, “e”. After the method
delete (0) is called, the node “a” which is at index 0 should be deleted. So after the delete(0) method is executed, the contents of
the list are: “b”, “c”, “d”, “e”

Example 2) For example, if the list contains the following elements in the given order: “a”, “b”, “c”, “d”, “e”. After the method
delete (4) is called, the node “e” which is it index 4 should be deleted. So after the delete(4) method is executed, the contents of
the list are: “a”, “b”, “c”, “d”

Example 3) For example, if the list contains the following elements in the given order: “a”, “b”, “c”, “d”, “e”. After the method
delete (1) is called, the node “b” which is at index 1 should be deleted. So after the delete(1) method is executed, the contents of
the list are:
“a”, “c”, “d”, “e”

5) LinearNode<T> entry (index) – this method returns the object reference of the node at given index position. This method will be used
by insert and delete methods

Example 1) For example, if the list contains the following elements in the given order: “a”, “b”, “c”, “d”, “e”. After the method
entry (0) is called, the object reference for node “a”, which is at index 0 should be returned.

Example 2) For example, if the list contains the following elements in the given order: “a”, “b”, “c”, “d”, “e”. After the method
entry (4) is called, the object reference for node “e”, which is at index 4 should be returned.

Example 3) For example, if the list contains the following elements in the given order: “a”, “b”, “c”, “d”, “e”. After the method
entry (2) is called, the object reference for node “c”, which is at index 2 should be returned.

36

