
Qualitative Comparison of Systems Facilitating Data
Structure Visualization

Jhilmil Jain, James H. Cross II, and Dean Hendrix
Department of Computer Science and Software Engineering

Auburn University, AL 36849

{jainjhi, cross, hendrix} @ eng.auburn.edu

ABSTRACT
The development of pedagogically sound learning tools using
software visualization (SV) techniques has been a very popular
area of research. In this paper we will conduct a qualitative
comparison of a few such tools with an emphasis on data
structure visualization. There are numerous tools available in
academia to aid in the instruction of introductory level data
structures. In this paper, we will evaluate a representative
sample of these tools using Price’s SV taxonomy and suggest
improvements that can be incorporated in future work.

Categories and Subject Descriptors
K.3.2 [Computers & Education]: Computer & Information
Science Education - Computer Science Education; E.1 [Data]:
Data Structures – Arrays, Graphs and networks, Lists, stacks,
and queues, Trees

General Terms
Algorithms, Human Factors

Keywords
Taxonomy, data structure visualization systems, qualitative
comparison

1. INTRODUCTION
Various taxonomies for SV can be found in the literature, with
Myers [5] publishing one of the first in 1990. He suggested
classifying systems based on a 2 x 3 grid of aspect vs. display
style. Aspect consists of what is being visualized (code, data or
algorithm) and display style consists of static or dynamic
illustrations. Shu described in her book [9] a classification of
SV systems based on what they present (data presentation,
program construction and/or execution, software design), and
their use as visual coaching systems (systems that bridge the gap
between the process of creating a mental model and a program
while solving a problem). Singh et.al. [10] published a
taxonomy for SV systems very similar to Myers. They use
aspect and form for classification purposes. Stasko and
Patterson [11] used four measures – aspect, abstraction,

animation, and automation. Stasko and Kraemar [4] classified
systems using two dimensions - visualization task (such as data
collection, data analysis, storage, display), and purpose (such as
debugging, performance evaluation, program visualization).
Brown [12] used three measures: content (direct, synthetic),
persistence (current, history), and transformation (incremental
or discrete). Roman and Cox [8] used five classification
dimensions - scope, abstraction, specification method, interface
and presentation. In 1993, Price et.al. [7, 12] published a
comprehensive taxonomy. This seems to be the most complete
taxonomy we have found in our research, and we will be using
Price’s nomenclature to classify data structure visualization
systems.

2. SYSTEMS
This section gives an overview of the six data structure
visualization systems that we consider in this paper. In our
research we found that these systems are a representative sample
of tools used in introductory level data structures and algorithms
courses.

ANIMAL: A New Interactive Modeller for Animations in
Lectures [14] is a system for creating algorithm and data
structure visualizations using a visual editor or scripting
commands. Using the editor, novice users can generate or edit
animations visually without using any programming code.
Objects such as points, polygon/polylines, text, list elements,
and arcs can be added to the animation using drag and drop.
Advanced users can also use ANIMAL’s scripting language for
creating animations. Using this tool, animations can be
displayed using video-player like features such as play, pause,
rewind, or jump to a given step. Source code or pseudo code and
textual descriptions can be embedded within the animation. The
system’s flexibility does not restrict it to introductory computer
science courses, and also provides platform independence.

JAWAA: The Java And Web based Algorithm Animation [1, 6,
13] is a scripting language that facilitates easy creation of web-
based animations. General-purpose animations as well as data
structure animations can be created in a matter of minutes. First,
a .anim file containing JAWAA commands or scripts is created
by hand or by using the JAWAA editor. The JAWAA editor
allows creation of animations using a GUI by laying out objects.
This .anim text file is then called as an applet from an html web
page to generate animations on the web. JAWAA is language
independent and no prior programming experience is required to
use it.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
43rd ACM Southeast Conference, March 18-20, 2005, Kennesaw, GA,
USA. Copyright 2005 ACM 1-59593-059-0/05/0003…$5.00.

jGRASP Object Viewers [3]: jGRASP is a lightweight
development environment created specifically to provide
automatic generation of software visualizations for the purpose

1-309

of improving the comprehensibility of software. In order to
generate data structure viewers, a program must run in the
jGRASP integrated Java debugger or from the jGRASP object
workbench. For any data structure class to be visualized, an
“external viewer” is first created using the flexible graph
drawing language (FLGL). FLGL is a jGRASP internal graph
drawing library that is used for the construction, display, and
layout of graphs. Multiple synchronized and dynamically
generated data structure views of varying degrees of detail are
also available. A graphical interface is also being developed
such that additional data structure viewers can be built
interactively without using any programming code.

JIVE: The Java Interactive software Visualization Environment
[15] is a highly interactive system for automatically creating
visualizations of programs using its library of pre-coded
animated data structures such as graphs, hashtables, and search
trees. The graphs and binary search trees are based on the JDSL
library. Users can also create stand-alone Java applets with
interactive GUIs. JIVE provides an excellent interface for
visualizing large data sets using an innovative zooming
graphical framework. It also provides a multi-user distributed
learning environment such that teachers and students can
interact with the same animation or data structure
synchronously.

JSAVE: The Java Simple Automated Visualization
Environment [16] is an interactive system for the visualization
of Java Collection classes. Currently, only the List interface is
supported. It provides a library of classes that can be directly
used in Java programs or XML scripts can be written for
visualization purposes. The specialty of JSAVE is the flexibility
of user interaction in terms of excellent user control of color,
navigation, and multiple representations of the data structure
visualizations. Dynamic color customization of components is
possible while interacting with the visualizations. The user can
play the visualization as a movie, or step through it. JSAVE also
allows rewinding the visualization or stepping back through it.
The user can dynamically switch between singly linked list,
circular list, array, and relative comparison representations as
the visualization is running in order to compare the data
structures. The ultimate goal of JSAVE is to provide a complete
visualization of the functionality of the Java Collection classes.

LIVE: The Language-Independent Visualization Environment
[2] is a system that enables visualization and manipulation of
programs and data structures for multiple languages such as
subset of Java, C++, and ÜberLanguage (in-house Pascal like
language). The GUI of LIVE consists of two main components:
a canvas (on the left hand side) and a source code area (on the
right hand side). The user can enter and edit code in the source

code panel. When the code “Runs”, LIVE parses the program,
creates a syntax tree, and generates the animation automatically.
Since animations are created by interpreting the syntax tree, the
user can switch between various code modes, thus allowing the
user to view the same code in the syntax of multiple languages.
The user can also directly and dynamically manipulate data
structures displayed on the canvas and generate source code
statements for the same. LIVE is especially useful in
understanding the concepts of pointers, linked structures,
recursion and effects of the scope of nested variables.

3. COMPARISON DETAILS
We will be using the symbols given in Table 1 to evaluate the
features in each category of Price’s taxonomy.

Table 1: Symbols and meaning

Symbol

Meaning No or
Lowest

Below
Average

Average Above
Average

Yes or
Highest

3.1 Scope
In this category we have chosen seven features to describe
broadly the range of programs that serve as an input (see Table
2). The field “developed in” states the location of the research.
The field “URL” specifies the location from where the system
can be downloaded by the reader. The “generality” field
answers the question – can the system generate visualizations
for a generalized range of programs or does it display a fixed
(not very flexible) set of programs? It was observed that of the
six systems, LIVE and JSAVE were fixed and the others were
generalized. The “operating systems” field lists the various
platforms supported by the system. All the systems that we
assessed supported Windows, Mac, Unix, and Linux. The
“programming language of user programs” field lists the type of
programming language(s) used by user programs. LIVE was the
only system that supports multiple languages. In the field
“concurrency support”, we assess if the system can visualize
concurrent aspects (if the programming language of the user
programs supports concurrency). It was observed that except
jGRASP none of the other systems supported any form of
concurrent programming visualization. In jGRASP various
threads running in the program can be visualized using the
debugger. The user has the ability to pause and restart any
thread. Lastly, the “specialty” field lists what kind of programs
the system is especially good at visualizing. Most systems are
well developed in certain specialized areas, but are prototype
systems and are not able to handle large datasets.

Table 2: Assessing the “Scope” of the Systems

(1)

SCOPE
Developed
In

URL Generality Operating
Systems

Programming
Language of

User Programs

Concurrency
Support

Specialty

ANIMAL University
of Siegen,
Germany

http://www.animal.ahrgr.de/ Windows,
Mac, Unix,
Linux

Animal Script N/A Algorithm
animation

1-310

JAWAA Duke
University,
USA

http://www.cs.duke.edu/csed/jaw
aa2

 Windows,
Mac, Unix,
Linux

JAWAA Script N/A Data
structure
animation

jGRASP
Object
Viewers

Auburn
University,
USA

http://jgrasp.org/ Windows,
Mac, Unix,
Linux

Java Program and
data
visualization

JIVE University
of Roma
“Tor
Vergata",
Italy

http://jive.dia.unisa.it/index.html Windows,
Mac, Unix,
Linux

Java Algorithm
animation,
zooming

JSAVE Hope
College,
USA

http://www.cs.hope.edu/jsave/ Windows,
Mac, Unix,
Linux

Java, XML Algorithm
visualization

LIVE Hamilton
College,
USA

http://big-
oh.cs.hamilton.edu/~alistair/LIV
E/

 Windows,
Mac, Unix,
Linux

subset of Java,
C++,
ÜberLanguage

 Pointers,
linked
structures,
recursion
visualization

3.2 Content
In this category, we specifically disregard the fields associated
with algorithm visualization since we are concentrating on
systems for data structure visualization (see Table 3). The
“program code visualization” field assesses the ability of the
system to visualize the program source code. jGRASP and
LIVE were the only systems that allowed the user to observe the
visualizations and source code simultaneously. jGRASP has
various features such as the control structure diagram (CSD);
the UML class dependency diagram; and a graphical debugger
that support program code scalability. In the field “program data
flow visualization” we answer how well does the system
visualize the flow of data in the program source code? Most
systems except jGRASP handle the data flow very poorly. The
jGRASP debugger has call stacks to represent data flow. The
field “fidelity and completeness” answers the question - does the
visualization system present the true behavior of the underlying
virtual machine or how closely do the visualizations represent
the actual data structures? Hand-designed systems such as
ANIMAL and JAWAA are difficult to rank because they
depend so much on the individual visualizer. JSAVE and LIVE
create

visualizations that are easier to understand, but do not
necessarily reflect the underlying virtual machine. jGRASP and
JIVE have highest values since they are closely tied to the
program code. The field “data gathering time” lists when the
data (used in the visualization) is gathered. The field “temporal
control mapping” indicates the mapping between “program
time” and “visualization time”. All the systems we evaluated
had a dynamic-dynamic mapping – i.e. is the data used in the
visualization was gathered over a period of time during the
program's execution to generate an animation. The field
“visualization generation time” lists whether the visualization is
created from data gathered in the previous run (post-mortem) or
from data produced dynamically as the program executes (live).
Systems designed for classroom teaching do not make the
connection between the source code used for data structure
implementation and the algorithm-level visualization. Though
such systems are useful for classroom demonstration purposes,
they offer no help to perform lab exercises or assignments. We
need a system that is flexible enough to be used in both settings
so that students do not have to cope with a number of different
tools.

Table 3: Assessing the “Content” of the Systems

(2)CONTENT Program
Code
Visualization

Program Data
Flow
Visualization

Fidelity and
Completeness

Data Gathering
Time

Temporal
Control
Mapping

Visualization
Generation Time

ANIMAL Depends on
individual
visualizer

Run time dynamic-
dynamic

Post-mortem

JAWAA Depends on
individual
visualizer

Run time dynamic-
dynamic

Post-mortem

jGRASP Object
Viewers

 Compile and
run time

dynamic-
dynamic

Live

JIVE Compile and
run time

dynamic-
dynamic

Live

JSAVE Compile and
run time

dynamic-
dynamic

Live and post-
mortem

LIVE Compile and dynamic- Live

1-311

run time dynamic
3.3 Form
In this category, we evaluated the characteristics of the display
or the output of the visualization (see Table 4). The field “color”
measures how well the system uses color for effective
visualization. If data gathered is at run time, the field
“animations” answers the question - how well does the system
use animation? All the tools evaluated used color and
animations somewhat effectively. The field “dimensions” lists
the dimensions a system uses for generating visualizations and
“sound” assesses how well the system uses sound to convey
information. Almost all of the systems that we evaluated did not
explore the benefits of sound and multi-dimensional
visualizations. The field “granularity” assesses if the user can
manipulate or switch between degrees of detail of the
visualization. Most tools were not able to allow the user to
switch between the various levels of granularity in order to
show/hide data complexities. jGRASP and JIVE (to a certain
extent) offer this feature. The field “multiple views” reports
whether the system can provide multiple synchronized views (of
varying granularity) of the data structures or not. It was
observed that most systems did not offer multiple synchronized
views of a particular data structure. jGRASP and JSAVE were
the only two systems that do offer multiple views. jGRASP is
unique in the sense that it offers four views simultaneously – the
source code; the low-level object view as seen by the virtual
machine; the pedagogical picture of the data structure (example
red-black tree); and the high-level view (example sorted list
maintained by the red-black tree). Lastly, the field “program
synchronization” indicated whether the user can visualize
multiple programs simultaneously. Except for jGRASP no other
system had this feature. In jGRASP, multiple objects can be
created on the workbench and visualized simultaneously.

3.4 Method
In this category, we evaluated the features the system uses to
create visualizations (see Table 5). The field “visualization
specification style” lists the methods used to produce the
visualizations. It was observed that the visualizations had to be
hand-coded for four out of six of the systems evaluated. For
both ANIMAL and JAWAA, the visualizations have to be hand-
coded, but both also provide a graphical interface such that
visualizations can be built interactively instead of using
programming language/code. This is very useful for novice
students who have no prior programming experience. In
jGRASP, once an external viewer is created, it is automatically
added to the viewer list for that class. The user can then open
this viewer on an instance of the class during a debug or a
workbench session. JIVE and JSAVE both use a library of
classes which must be manually included in the user programs.
jGRASP, JSAVE, and JIVE were the only three systems that
allow the user to re-use code for visualizations. The field
“intelligence” measures if the system uses advanced AI
techniques for visualization. Most systems evaluated do not
explore this area. The field “tailorability” assesses if the user
can customize the visualizations, and if it can, the field
“customizable language” specifies the methods used. JIVE
allows the user to change the shape of nodes and JSAVE allows
the user to change the color and shape during interaction. If a
system is not automatic, the field “code ignorance allowance”
measures how much knowledge of program code is required for
visualization generation. ANIMAL and JAWAA have very low
code ignorance, since the user must change the program code to
change visualization. jGRASP and LIVE have high code
ignorance since visualizations are automatically generated.

Table 4: Assessing the “Form” of the Systems

(3) FORM Color Dimensions Animations Sound Granularity Multiple

Views
Program
Synchronization

ANIMAL 2D

JAWAA 2D

jGRASP
Object
Viewers

 2D

JIVE 2D with
zooming

JSAVE 2D

LIVE 2D

3.5 Interaction
In this category, we evaluate how the user controls and
communicates with the system (see Table 6). The field “style”
lists the methods used by the user to interact with the system.
The majority of tools have buttons or menus to interact with the
visualization, but JIVE and JGRASP are the only ones that
allow the user to enter data sets while dynamically interacting

with the visualizations. The field “navigation” assesses how
effectively the system displays visualizations of very large
datasets. Except for JIVE, most systems are not able to display
large data sets effectively. JIVE has a unique zooming interface
that allows the user to zoom in and out without a loss in
resolution. The field “elision control” measures if the user can
suppress information/detail from the display. The ability of the
user to reverse or rewind the visualization and control the speed

1-312

of the visualization are indicated by the fields “temporal control of direction” and “temporal control of speed”.
Table 5: Assessing the “Method” of the Systems

(4) METHOD Visualization Specification

Style
Intelligence Tailorability Customizable

Language
Code Ignorance
Allowance

ANIMAL Hand-coded, interactive

 procedural

JAWAA Hand-coded, interactive

 procedural

jGRASP Object
Viewers

Automatic, interactive procedural,
interactive
manipulation

JIVE Hand-coded, library procedural,
interactive
manipulation

JSAVE Hand-coded, library interactive
manipulation

LIVE Automatic

 procedural,
interactive
manipulation

Most systems except ANIMAL and JSAVE do not allow the
user to step back or rewind. This is a very useful feature that a
student can use to compare the state of the data structure before
and after applying an operation. Animal and JSAVE offer
absolute control over the visualization speed – it can be played
as a movie (speed of that can be adjusted) or the user can step
through. JAWAA also allows the user to step through or play it
as a movie but it offers no control over the speed of the movie.
jGRASP and LIVE allow the user to step through the code and
view the visualization dynamically. JIVE on the other hand does
not allow the step through feature, but the animation and be
paused and played. The field “scripting facilities” indicated if
the interactions with the visualization can be recorded and
played back. Most systems lack in scripting facilities. LIVE

offers very basic features to store interactions with the
visualization – no other system has this ability.

3.6 Effectiveness
This category is a very subjective measure (see Table 7). The
field “purpose” lists the intended goals of the system. The field
“experimental evaluation” shows that none of the systems
assessed were evaluated empirically. The field “production use”
shows that all the systems that we chose are used in an academic
environment. We have observed that even though systems have
been in use for a long time they have not being evaluated for
their effectiveness. This is one area of software visualization
that calls for further research.

Table 6: Assessing the “Interaction” of the Systems

(5) INTERACTION Style Navigation Elision

Control
Temporal
Control of
Direction

Temporal Control
of Speed

Scripting
Facilities

ANIMAL buttons

JAWAA buttons

jGRASP Object
Viewers

buttons, menus,
text box

JIVE buttons, menus,
text box

JSAVE buttons

LIVE buttons, menus

4. CONCLUSIONS
It would be ideal to have a data structure visualization system
that serves the dual purpose of a classroom demonstration tool
and a development environment to be used for lab exercises and
assignments. This way, students and instructors will not have to
deal with a number of different tools. Future systems should

enable visualization of concurrent programming features,
multiple synchronized views of data structures, and program
synchronization. It would also be useful to explore the benefits
of features such as sound and multi-dimensional rendering. The
ability to save the interactions with visualizations for future
playback would aid students in revisiting material covered in
class. The user should be able to visualize large data sets and

1-313

trace program data flow. It would be useful if students had full control over the speed and direction of the visualization.

Table 7: Assessing the “Effectiveness” of the Systems

(6) EFFECTIVENESS Purpose Experimental

Evaluation
Production Use

ANIMAL novice and expert classroom
demonstration

 Academic (1998)

JAWAA novice classroom demonstration Academic (1998)

jGRASP Object Viewers novice and expert classroom
demonstration, development and
debugging

 Academic (2004)

JIVE novice and expert demonstration and
algorithm development (local and
remote)

 Academic (2002)

JSAVE novice classroom demonstration Academic (2003)

LIVE novice classroom demonstration and
development

 Academic (2002)

Lastly, empirical evaluations must be carried out to gauge the
effectiveness of data structure visualization tools.
The work presented in this paper is part of a project in progress.
The comparisons presented are of a subjective nature.
Subsequent work will be directed toward the collection of
sufficient data to enable us to quantify the results using
statistical metrics.

5. REFERENCES
[1] Akingbade, A., Finley T., Jackson D., Patel P., and Rodger

S. H., JAWAA: easy web-based animation from CS 0 to
advanced CS courses, Proceedings of the 34th technical
symposium on Computer science education (SIGCSE),
February 19-23, 2003, Reno, Nevada, USA.

[2] Campbell A. E. R., Catto G.L., and Hansen E. E.,
Language-independent interactive data visualization,
Proceedings of the 34th technical symposium on Computer
science education (SIGCSE), February 19-23, 2003, Reno,
Nevada, USA.

[3] Hendrix D.T., Cross J.H., and Barowski L.A, An extensible
framework for providing dynamic data structure
visualizations in a lightweight IDE, Proceedings of the
35th SIGCSE technical symposium on Computer science
education (SIGCSE) 2004, pp.387-391.

[4] Kraemer E. and Stasko J., The visualization of parallel
systems: an overview, Journal of Parallel and Distributed
Computing, vol. 18, no. 2, June 1993, pp. 105-117.

[5] Myers, B.A., Taxonomies of Visual Programming and
Program Visualization, Journal of Visual Languages and
Computing, vol. 1, no. 1, 1990, pp. 97-123.

[6] Pierson W.C., and Rodger, S.H., Web-based animation of
data structures using JAWAA, Proceedings of the twenty-

ninth SIGCSE technical symposium on Computer science
education (SIGCSE) 1998, pp.267 - 271.

[7] Price, B.A., Baecker, R.M., and Small, I.S., A Principled
Taxonomy of Software Visualization, Journal of Visual
Languages and Computing, vol. 4, no. 3, 1993, pp. 211-
266.

[8] Roman, G.-C., and Cox, K. C., A taxonomy of program
visualization systems, IEEE Computer, vol. 26, no. 12, pp.
11-24, December 1993.

[9] Shu N. C., Visual programming, Van Nostrand Reinhold
Co., New York, NY, 1988.

[10] Singh G. and Chignell M.H., Components of the visual
computer: a review of relevant technologies, Visual
Computer vol. 9, issue 3, November 1992, pp. 115-142.

[11] Stasko, J. and Patterson, C., Understanding and
Characterizing Software Visualization Systems,
Proceedings of the 1992 IEEE International Workshop on
Visual Languages, September 1992, pp. 3-10.

[12] Stasko, J., Brown M.H., and Price B. A., Software
Visualization, MIT Press, Cambridge, MA, 1997.

[13] Rodger, S.H., Introducing computer science through
animation and virtual worlds, ACM SIGCSE Bulletin,
vol.34, no.1, March 2002.

[14] Rößling, G., Freisleben, B., ANIMAL: A System for
Supporting Multiple Roles in Algorithm Animation,
Journal of Visual Languages and Computing, vol. 13, no.
3, pp. 341-354, Elsevier, Amsterdam, The Netherlands,
2002.

[15] JIVE. Available at http://jive.dia.unisa.it/
[16] JSAVE. Available at http://www.cs.hope.edu/jsave/

1-314

