/*BEGIN_LEGAL Intel Open Source License Copyright (c) 2002-2005 Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of the Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE INTEL OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. END_LEGAL */ /* ===================================================================== */ /* @ORIGINAL_AUTHOR: Robert Muth @Modified by: Ramesh Peri */ /* ===================================================================== */ /*! @file * This file contains a static and dynamic instruction mix profiler */ #include "pin.H" #include "instlib.H" //#include #include "portability.H" #include #include #include // for sort #include #include #include using namespace INSTLIB; /* ===================================================================== */ /* Commandline Switches */ /* ===================================================================== */ KNOB KnobOutputFile(KNOB_MODE_WRITEONCE, "pintool", "o", "insmix.out", "specify file name for insmix profile "); KNOB KnobOutput2File(KNOB_MODE_WRITEONCE, "pintool", "o2", "bblcnt.out", "specify file name for bblcnt profile"); KNOB KnobPid(KNOB_MODE_WRITEONCE, "pintool", "i", "0", "append pid to output"); KNOB KnobProfilePredicated(KNOB_MODE_WRITEONCE, "pintool", "p", "0", "enable accurate profiling for predicated instructions"); KNOB KnobProfileRoutines(KNOB_MODE_WRITEONCE, "pintool", "r", "1", "enable per routine profiling"); KNOB KnobProfileStaticOnly(KNOB_MODE_WRITEONCE, "pintool", "s", "0", "terminate after collection of static profile for main image"); KNOB KnobProfileDynamicOnly(KNOB_MODE_WRITEONCE, "pintool", "d", "1", "Only collect dynamic profile"); KNOB KnobNoSharedLibs(KNOB_MODE_WRITEONCE, "pintool", "no_shared_libs", "0", "do not instrument shared libraries"); LOCALFUN string longstr(int rtn_no, const char *name) {return string("rtn[") + decstr(rtn_no) + string(",") + string(name) + string("]");} /* ===================================================================== */ INT32 Usage() { cerr << "This pin tool computes a static and dynamic instruction mix profile\n" "\n"; cerr << KNOB_BASE::StringKnobSummary(); cerr << endl; return -1; } /* ===================================================================== */ /* INDEX HELPERS */ /* ===================================================================== */ const UINT32 MAX_INDEX = 4096; // enough even for IPF const UINT32 INDEX_SPECIAL = 3000; const UINT32 MAX_MEM_SIZE = 520; const UINT32 INDEX_TOTAL = INDEX_SPECIAL + 0; const UINT32 INDEX_MEM_ATOMIC = INDEX_SPECIAL + 1; const UINT32 INDEX_STACK_READ = INDEX_SPECIAL + 2; const UINT32 INDEX_STACK_WRITE = INDEX_SPECIAL + 3; const UINT32 INDEX_IPREL_READ = INDEX_SPECIAL + 4; const UINT32 INDEX_IPREL_WRITE = INDEX_SPECIAL + 5; const UINT32 INDEX_MEM_READ_VARIABLE = INDEX_SPECIAL + 6; const UINT32 INDEX_MEM_WRITE_VARIABLE = INDEX_SPECIAL + 7; const UINT32 INDEX_MEM_READ_SIZE = INDEX_SPECIAL + 8; const UINT32 INDEX_MEM_WRITE_SIZE = INDEX_SPECIAL + 8 + MAX_MEM_SIZE; const UINT32 INDEX_SPECIAL_END = INDEX_SPECIAL + 8 + MAX_MEM_SIZE + MAX_MEM_SIZE; BOOL IsMemReadIndex(UINT32 i) { return (INDEX_MEM_READ_SIZE <= i && i < INDEX_MEM_READ_SIZE + MAX_MEM_SIZE ); } BOOL IsMemWriteIndex(UINT32 i) { return (INDEX_MEM_WRITE_SIZE <= i && i < INDEX_MEM_WRITE_SIZE + MAX_MEM_SIZE ); } LOCALFUN UINT32 IndexStringLength(BBL bbl, BOOL memory_acess_profile) { UINT32 count = 0; for (INS ins = BBL_InsHead(bbl); INS_Valid(ins); ins = INS_Next(ins)) { count++; if( memory_acess_profile ) { if( INS_IsMemoryRead(ins) ) count++; // for size if( INS_IsStackRead(ins) ) count++; if( INS_IsIpRelRead(ins) ) count++; if( INS_IsMemoryWrite(ins) ) count++; // for size if( INS_IsStackWrite(ins) ) count++; if( INS_IsIpRelWrite(ins) ) count++; if( INS_IsAtomicUpdate(ins) ) count++; } } return count; } /* ===================================================================== */ LOCALFUN UINT32 INS_MemsizeIndex(INS ins, BOOL write) { UINT32 size = write ? INS_MemoryWriteSize(ins) : INS_MemoryReadSize(ins); if( size == VARIABLE_MEMORY_REFERENCE_SIZE ) { return write ? INDEX_MEM_WRITE_VARIABLE : INDEX_MEM_READ_VARIABLE; } else { ASSERT( size < MAX_MEM_SIZE && size > 0, "write="+decstr(write)+" found bad size " + decstr(size) + " in " + INS_Disassemble(ins)); return (write ? INDEX_MEM_WRITE_SIZE : INDEX_MEM_READ_SIZE ) + size; } } /* ===================================================================== */ LOCALFUN UINT16 *INS_GenerateIndexString(INS ins, UINT16 *stats, BOOL memory_acess_profile) { const UINT32 offset = 0; *stats++ = offset + INS_Opcode(ins); if( memory_acess_profile ) { if( INS_IsMemoryRead(ins) ) *stats++ = INS_MemsizeIndex(ins,0); if( INS_IsMemoryWrite(ins) ) *stats++ = INS_MemsizeIndex(ins,1); if( INS_IsAtomicUpdate(ins) ) *stats++ = INDEX_MEM_ATOMIC; if( INS_IsStackRead(ins) ) *stats++ = INDEX_STACK_READ; if( INS_IsStackWrite(ins) ) *stats++ = INDEX_STACK_WRITE; if( INS_IsIpRelRead(ins) ) *stats++ = INDEX_IPREL_READ; if( INS_IsIpRelWrite(ins) ) *stats++ = INDEX_IPREL_WRITE; } return stats; } /* ===================================================================== */ LOCALFUN string IndexToOpcodeString( UINT32 index ) { if( INDEX_SPECIAL <= index && index < INDEX_SPECIAL_END) { if( index == INDEX_TOTAL ) return "*total"; else if( IsMemReadIndex(index) ) return "*mem-read-" + decstr( index - INDEX_MEM_READ_SIZE ); else if( IsMemWriteIndex(index)) return "*mem-write-" + decstr( index - INDEX_MEM_WRITE_SIZE ); else if( index == INDEX_MEM_READ_VARIABLE ) return "*mem-read-variable"; else if( index == INDEX_MEM_WRITE_VARIABLE ) return "*mem-write-variable"; else if( index == INDEX_MEM_ATOMIC ) return "*mem-atomic"; else if( index == INDEX_STACK_READ ) return "*stack-read"; else if( index == INDEX_STACK_WRITE ) return "*stack-write"; else if( index == INDEX_IPREL_READ ) return "*iprel-read"; else if( index == INDEX_IPREL_WRITE ) return "*iprel-write"; else { ASSERTX(0); return ""; } } else { return OPCODE_StringShort(index); } } /* ===================================================================== */ /* ===================================================================== */ typedef UINT64 COUNTER; /* zero initialized */ class STATS { public: COUNTER unpredicated[MAX_INDEX]; COUNTER predicated[MAX_INDEX]; COUNTER predicated_true[MAX_INDEX]; VOID Clear() { for ( UINT32 i = 0; i < MAX_INDEX; i++) { unpredicated[i] = 0; predicated[i] = 0; predicated_true[i] = 0; } } }; STATS GlobalStatsStatic; STATS GlobalStatsDynamic; class RTN_TABLE_ENTRY { public: ADDRINT _address; const char *_name; RTN_TABLE_ENTRY(ADDRINT address, const char *name):_address(address), _name(name) { } }; map rtn_table; class BBLSTATS { public: COUNTER _counter; const UINT16 * const _stats; const ADDRINT _addr; const int _rtn_num; const UINT32 _size; const UINT32 _numins; public: BBLSTATS(UINT16 * stats, ADDRINT addr, int rtn_num, UINT32 size, UINT32 numins ) : _counter(0), _stats(stats), _addr(addr), _rtn_num(rtn_num), _size(size),_numins(numins) {}; }; LOCALFUN BOOL CompareLess(const BBLSTATS * const & s1 , const BBLSTATS *const & s2) { return ((rtn_table[s1->_rtn_num]->_address) < (rtn_table[s2->_rtn_num]->_address)); } LOCALVAR vector statsList; /* ===================================================================== */ LOCALVAR INT32 enabled = 0; LOCALFUN VOID Handler(CONTROL_EVENT ev, VOID *val, CONTEXT *d1, VOID *d2, VOID *d3) { switch(ev) { case CONTROL_START: enabled = 1; break; case CONTROL_STOP: enabled = 0; break; default: ASSERTX(false); } } LOCALVAR CONTROL control; /* ===================================================================== */ VOID docount(COUNTER * counter) { (*counter) += enabled; } /* ===================================================================== */ #define FINI_BROKEN #if defined(FINI_BROKEN) VOID Syscall(UINT32 code) { extern VOID Fini(int, VOID * v); //std::cerr << "found syscall " << hex << code << " \n" << flush; if( code == 24 ) Fini(0,0); } #endif /* ===================================================================== */ VOID Trace(TRACE trace, VOID *v) { if ( KnobNoSharedLibs.Value() && IMG_Type(SEC_Img(RTN_Sec(TRACE_Rtn(trace)))) == IMG_TYPE_SHAREDLIB) return; RTN rtn = TRACE_Rtn(trace); ADDRINT rtn_address; const char *rtn_name; int rtn_num; if (!RTN_Valid(rtn)) { //cerr << "Cannot find valid RTN for trace at address" << TRACE_Address(trace); rtn_address = 0; rtn_name = "UNKNOWN"; rtn_num = 0; } else { rtn_num = RTN_No(rtn); rtn_address = RTN_Address(rtn); rtn_name = RTN_Name(rtn).c_str(); } map::const_iterator it = rtn_table.find(rtn_num); if (it == rtn_table.end()) { RTN_TABLE_ENTRY *rtn_table_entry = new RTN_TABLE_ENTRY(rtn_address, strdup(rtn_name)); rtn_table[rtn_num] = rtn_table_entry; } const BOOL accurate_handling_of_predicates = KnobProfilePredicated.Value(); for (BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl); bbl = BBL_Next(bbl)) { // Summarize the stats for the bbl in a 0 terminated list // This is done at instrumentation time const UINT32 n = IndexStringLength(bbl, 1); UINT16 *const stats = new UINT16[ n + 1]; UINT16 *const stats_end = stats + (n + 1); UINT16 *curr = stats; UINT32 numins = 0; UINT32 size = 0; for (INS ins = BBL_InsHead(bbl); INS_Valid(ins); ins = INS_Next(ins)) { numins += 1; size += INS_Size(ins); // Count the number of times a predicated instruction is actually executed // this is expensive and hence disabled by default if( INS_IsPredicated(ins) && accurate_handling_of_predicates ) { INS_InsertPredicatedCall(ins, IPOINT_BEFORE, AFUNPTR(docount), IARG_PTR, &(GlobalStatsDynamic.predicated_true[INS_Opcode(ins)]), IARG_END); } curr = INS_GenerateIndexString(ins,curr,1); #if defined(FINI_BROKEN) if( INS_IsSyscall(ins) ) { INS_InsertPredicatedCall(ins, IPOINT_BEFORE, AFUNPTR(Syscall), IARG_SYSCALL_NUMBER, IARG_END); } #endif } // string terminator *curr++ = 0; ASSERTX( curr == stats_end ); // Insert instrumentation to count the number of times the bbl is executed BBLSTATS * bblstats = new BBLSTATS(stats, INS_Address(BBL_InsHead(bbl)), rtn_num, size, numins ); INS_InsertCall(BBL_InsHead(bbl), IPOINT_BEFORE, AFUNPTR(docount), IARG_PTR, &(bblstats->_counter), IARG_END); // Remember the counter and stats so we can compute a summary at the end statsList.push_back(bblstats); } } /* ===================================================================== */ LOCALFUN VOID DumpStats(ofstream& out, STATS& stats, BOOL predicated_true, BOOL print_zeros, const string& title) { out << "#\n" "# " << title << "\n" "#\n" "# opcode count-unpredicated count-predicated"; if( predicated_true ) out << " count-predicated-true"; out << "\n#\n"; for ( UINT32 i = 0; i < INDEX_SPECIAL; i++) { stats.unpredicated[INDEX_TOTAL] += stats.unpredicated[i]; stats.predicated[INDEX_TOTAL] += stats.predicated[i]; stats.predicated_true[INDEX_TOTAL] += stats.predicated_true[i]; } for ( UINT32 i = 0; i < MAX_INDEX; i++) { if( !print_zeros && stats.unpredicated[i] == 0 && stats.predicated[i] == 0 ) continue; out << setw(4) << i << " " << ljstr(IndexToOpcodeString(i),20) << " " << setw(16) << stats.unpredicated[i] << " " << setw(16) << stats.predicated[i]; if( predicated_true ) out << " " << setw(16) << stats.predicated_true[i]; out << endl; } } /* ===================================================================== */ VOID Fini(int, VOID * v) { string filename; std::ofstream out; // dump insmix profile filename = KnobOutputFile.Value(); if( KnobPid ) { filename += "." + decstr( getpid_portable() ); } out.open(filename.c_str()); out << "INSMIX 1.0 0\n"; DumpStats(out, GlobalStatsStatic, false, 0, "$static-counts"); out << endl; // dynamic Counts sort( statsList.begin(), statsList.end(), CompareLess ); statsList.push_back(0); // add terminator marker STATS DynamicRtn; int rtn_num = 0; for (vector::iterator bi = statsList.begin(); bi != statsList.end(); bi++) { const BBLSTATS *b = (*bi); if( b == 0 || rtn_num != b->_rtn_num ) { if( rtn_num>0 && KnobProfileRoutines ) { DumpStats(out, DynamicRtn, false, 0, "$rtn-counts " + longstr(rtn_num, rtn_table[rtn_num]->_name) + " at " + hexstr(rtn_table[rtn_num]->_address) ); out << "#" << endl; } if( b != 0 ) { rtn_num = b->_rtn_num; DynamicRtn.Clear(); } else { break; } } for (const UINT16 * stats = b->_stats; *stats; stats++) { ASSERT( *stats < MAX_INDEX,"bad index " + decstr(*stats) + " at " + hexstr(b->_addr) + "\n" ); DynamicRtn.unpredicated[*stats] += b->_counter; GlobalStatsDynamic.unpredicated[*stats] += b->_counter; } } DumpStats(out, GlobalStatsDynamic, KnobProfilePredicated, 0, "$dynamic-counts"); out << "# $eof" << endl; out.close(); // dump bblcnt profile filename = KnobOutput2File.Value(); if( KnobPid ) { filename += "." + decstr( getpid_portable() ); } out.open(filename.c_str()); out << "BBLCOUNT 1.0 0\n"; for (vector::iterator bi = statsList.begin(); bi != statsList.end(); bi++) { const BBLSTATS *b = (*bi); if (b == 0) break; // sentinel out << "0x" << hex << b->_addr << " " << dec << b->_counter << " " << b->_numins << " " << b->_size << endl; } out << "# $eof" << endl; out.close(); } /* ===================================================================== */ VOID Image(IMG img, VOID * v) { for (SEC sec = IMG_SecHead(img); SEC_Valid(sec); sec = SEC_Next(sec)) { for (RTN rtn = SEC_RtnHead(sec); RTN_Valid(rtn); rtn = RTN_Next(rtn)) { // Prepare for processing of RTN, an RTN is not broken up into BBLs, // it is merely a sequence of INSs RTN_Open(rtn); for (INS ins = RTN_InsHead(rtn); INS_Valid(ins); ins = INS_Next(ins)) { UINT16 array[128]; UINT16 *end = INS_GenerateIndexString(ins,array,1); if( INS_IsPredicated(ins) ) { for( UINT16 *start= array; start < end; start++) GlobalStatsStatic.predicated[ *start ]++; } else { for( UINT16 *start= array; start < end; start++) GlobalStatsStatic.unpredicated[ *start ]++; } } // to preserve space, release data associated with RTN after we have processed it RTN_Close(rtn); } } if( KnobProfileStaticOnly.Value() ) { Fini(0,0); exit(0); } } /* ===================================================================== */ int main(int argc, CHAR *argv[]) { PIN_InitSymbols(); if (PIN_Init(argc, argv)) { return Usage(); } control.CheckKnobs(Handler, 0); TRACE_AddInstrumentFunction(Trace, 0); PIN_AddFiniFunction(Fini, 0); if( !KnobProfileDynamicOnly.Value() ) IMG_AddInstrumentFunction(Image, 0); // Never returns PIN_StartProgram(); return 0; } /* ===================================================================== */ /* eof */ /* ===================================================================== */