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Abstract

We present Group Ratio Round-Robi#R?), the first pro-  work has been done to provide proportional share schedul-
portional share scheduler that combines accurate propoing on multiprocessor systems, which are increasingly com-
tional fairness scheduling behavior with(1) scheduling mon especially in small-scale configurations with two or
overhead on both uniprocessor and multiprocessor systemf&ur processors. Over the years, a number of scheduling
GR? uses a simple grouping strategy to organize clientsnechanisms have been proposed, and much progress has
into groups of similar processor allocations which can bebeen made. However, previous mechanisms have either su-
more easily scheduled. Using this strategy;> combines  perconstant overhead or less-than-ideal fairness piepert

the benefits of low overhead round-robin execution with a We introduce Group Ratio Round-RobiR?), the

novel ratio-based scheduling algorith@2” introduces a {5t proportional share scheduler that provides constant
novel frontlog mechanism and weight readjustn;ent alg0tairness bounds on proportional sharing accuracy @ith)
rithm to operate effectively on multiprocessosR” pro-  gchequling overhead for both uniprocessor and small-scale
vides fairness within a constant factor of the ideal genera'multiprocessor systems. In designitgz?, we observed
ized processor sharing model for _client weights \_/vith aﬁxedmat accurate, low-overhead proportional sharing is easy t
upper bound and preserves its faimess propge_rtles_ on Multichieve when scheduling a set of clients with equal pro-
processor systems. We have implemer@&@” in Linux  cessor allocations, but is harder to do when clients require
and measuresd its performance. Our exper!mental resulgsery different allocations. Based on this observatiGi>
show thatG:R* provides much lower scheduling overhead ;ses 4 simple client grouping strategy to organize clients
and much better scheduling accuracy than other schedulejs, groups of similar processor allocations which can be

commonly used in research and practice. more easily scheduled. Using this grouping strategi?
combines the benefits of low overhead round-robin execu-

1 Introduction tion with a novel ratio-based scheduling algorithm.

Proportional share resource management provides a erxibbeorit
and useful abstraction for multiplexing processor resesirc

t of clients. P tional sh heduling h notion of a frontlog. On a multiprocessor system, a client
among a set ot clients. Froportional share scheduling as|’Ff‘|ay not be able to be scheduled to run on a processor be-
clear colloquial meaning: given a set of clients with asso-

iated weiaht tional sh heduler should all cause it is currently running on another processor. To pre-
clated weights, a proportional snare scheduier Snoulel allog gy jts fajrmess propertieS R® keeps track of a frontlog
cate resources to each client in proportion to its respectiv

iaht. H developi heduli hper client to indicate when the client was already running
Weight. HOWEVEr, developing processor scheduling Mechy, v 414 have been scheduled to run on another processor.
anisms that combine good proportional fairness schedulin

#t then assigns the client a time quantum that is added to its
behavior with low scheduling overhead has been difficult to g a

A . . . —allocation on the processor it is running on. The frontlo
achieve in practice. For many proportional share schedulin P g g

. ; . ) ensures that a client receives its proportional sharealloc
mechanisms, the time to select a client for execution grows S while also taking advantage of any cache affinity by

with _the number of chents._ For server systems which maycontinuing to run the client on the same processor.
service large numbers of clients, the scheduling overhad o 5 ) i . .
algorithms whose complexity grows linearly with the num-  GR® provides a simple weight readjustment algo-
ber of clients can waste more than 20 percent of system rdithm that takes advantage of its grouping strategy. On

sources [3] for large numbers of clients. Furthermordelitt @ Multiprocessor system, proportional sharing is not fea-
sible for some client weight assignments, such as having

*also in Department of IEOR one client with weight 1 and another with weight 2 on a

G R? uses the same basic uniprocessor scheduling al-
hm for multiprocessor scheduling by introducing the
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two-processor system. By organizing clients with similaron some metric of fairness, and has a time complexity that
weights into groupsizR? adjusts for infeasible weight as- grows with the number of clients. The other way is to ad-
signments without the need to order clients, resulting injust the size of a client’s time quantum so that it runs longer
lower scheduling complexity than previous approaches [7]for a given allocation, as is done in weighted round-robin

We have analyze@ R? and show that with only(1) (WRR). This is fast, providing constant time complexity
overhead(=R? provides fairness withi(g?) of the ideal ~ scheduling overhead. However, allowing a client to mo-
Generalized Processor Sharing (GPS) model [16], where nopolize the resource for a long period of time results in ex-
the number of groups, grows at worst logarithmically with tended periods of unfairness to other clients which receive
the largest client weight. Singgis in practice a small con- no service during those times. The unfairness is worse with
stant, GR? effectively provides constant fairness boundsskewed weight distributions.

with only O(1) overhead. Moreover, we show th@ti? GR? is a proportional share scheduler that matches
uniguely preserves its worst-case time complexity and fairwith O(1) time complexity of round-robin scheduling but
ness properties for multiprocessor systems. provides much better proportional fairness guarantees in

We have implemented a prototygeéR® processor practice. At a high-level, th&R* scheduling algorithm
scheduler in Linux, and compared it against uniproces€an be briefly described in three parts:
sor and multiprocessor schedulers commonly used in prac-l Cli . - Cli di
tice and research, including the standard Linux sched- ~ lent grc:cup;_ngtstrat_i?y._ _Ilents qrehfep?rate "_F[t_lo
uler [2], Weighted Fair Queueing (WFQ) [11], Virtual-Time groups ot clients with simiiar weignt vaiues. —1he
Round-Robin (VTRR) [17], and Smoothed Round-Robin group of grderf+|1s assigned all clients with weights
(SRR) [9]. We have conducted both simulation studies and betweers™ t0 2 — 1, wherek > 0.
kemnel measurements on micro-benchmarks and real ap-2. intergroup scheduling: Groups are ordered in a list
plications. Our results show th&tR* can provide more from largest to smallest group weight, where the group

than an order of magnitude better proportional sharing ac-  weight of a group is the sum of the weights of all
curacy than these other schedulers, in some cases with more  ¢jients in the group. Groups are selected in a round-

than an order of magnitude less overhead. These results gpin manner based on the ratio of their group weights.

demonstrate tha® R* can in practice deliver better propor- If a group has already been selected more than its pro-
tional share control with lower scheduling overhead than  portional share of the time, move on to the next group
these other approaches. Furtherm6t&;’ is simple to im- in the list. Otherwise, skip the remaining groups in
plement anq easy to incorporate into existing scheduling  the group list and start selecting groups from the be-
frameworks in commodity operating systems. ginning of the group list again. Since the groups with

~ This paper presents the design, analysis, and evalua-  |arger weights are placed first in the list, this allows
tion of GR3. Section 2 describes the uniprocessor schedul-  them to get more service than the lower-weight groups
ing algorithm. Section 3 describes extensions for multipro at the end of the list.

cessor scheduling, which we refer to@&> M P. Section 4

analyzes the fairness and complexity@R3. Section 5 3. Intragroup scheduling: From the selected group, a
presents experimental results. Section 6 discussesdelate  client is selected to run in a round-robin manner that
work. Finally, we present some concluding remarks and accounts for its weight and previous execution history.

directions for future work. Using this client grouping strategy; R® separates

scheduling in a way that reduces the need to schedule enti-
2 GR? Uniprocessor Scheduling ties with skewed weight distributions. The client grouping
Strategy limits the number of groups that need to be sched-

Uniprocessor scheduling, the process of scheduling a tim - g
Uled since the number of groups grows at worst logarithmi-

multiplexed resource among a set of clients, has two basi . _ . .
steps: 1) order the clients in a queue, 2) run the first client i cally with the largest client weight. Even a very large 32-bi

the queue for itsime quanturwhich is the maximum time client weight Wo_uld limit th_e number of groups to no more
interval the client is allowed to run before another schedul 1720 32. The client grouping strategy also ensures that all

ing decision is made. We refer to the units of time quantaCllents within a group have weight within a factor of two.

as time units (tu) rather than an absolute time measure sucﬁs alresu“’ t.hﬁ w;(tragr(tj)up .sckrlleg_ulelrbne_verén;f ds to sched-
as seconds. A scheduler can therefore achieve proportion%\e c_|ents V_V't skewed weight distribution groups
sharing in one of two ways. One way, often called fair &re simple lists that do not need to be balanced; they do not
queueing [11, 18, 28, 13, 24, 10] is to adjust the frequencﬁequ're any use of more complex balanced tree structures.
that a client is selected to run by adjusting the position of, 3 —

the client in the queue so that it ends up at the front of thez'l G R’ Definitions

gueue more or less often. However, adjusting the client’s We now define the staté’'R? associates with each
position in the queue typically requires sorting clientsdzh ~ client and group, and describe in detail haw?* uses
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C; Client;. (also called 'task’) cuss dynamic changes in a client’s run state in Section 2.3.
¢c The weight assigned to clieit. We first focus on th& R? intergroup scheduling algorithm,
bj Shorthand notation fopc, . then discuss thé R3 intragroup scheduling algorithm.
D¢ The deficit ofC'. The GR? intergroup scheduling algorithm uses the
N The number of runnable clients. ratio of the group weights of successive groups to deter-
g The number of groups. mine which group to select. The next group to schedule
G, i’th group in the list ordered by weight. is selected using only the state of successive groups in the
|G| The number of clients in grou@. group list. Given a groufy; whose weight is: times larger
G(C) | The group to whickC belongs. than the group weight of the next grodfy, ;1 in the group
Do The group weight o&: > éc- list, GR? will select groupG; x times for every time that it
oy Shorthand notation fob., . selects7; 11 in the group list to provide proportional share
oo The order of groujs. allocation among groups. o

G| Lower bound for client weights iGr: 2. To implement the al_gonthrT_GR3 malntal_ns the to-
we The work of clientC. tal work done by groug-; in a variablelV;. An index: to

tracks the current group and is initializeditoThe schedul-

wj Shorthand notation fauc, . ) , Co o
We The group work of groug.. ing algorithm then executes the following simple routine:
W; Shorthand notation fai/, . INTERGROURSCHEDULE()
®p | Totalweight:>F | ¢, = S0, ;.
Wr Total work:zﬁ.vzl - ; g;— II;I/I';R—iA_GlROUP-SCHEDULE(Gi)
i — Wi
ec Service error of clien€: we — WTg—i 3 ifi<gand Witl s @ (1)
E Group service error off: Wg — W25 =9 Wisatl ~ Tipa
G P _ - G Top 4 theni «— i+ 1
ec,c | Group-relative service error of cliet with 5 else i — 1
respect to groug?: we — We $< 6 return C
Table 1:G R? terminology Let us negate (1) under the form:
that state to schedule clients. Table 1 lists terminology Wi +1 < Wir1+1 5
we use. For each clientGR? maintains the following ®, - B, (2)

three values: weight, deficit, and run state. Each client re-
ceives a resource allocation that is directly proportidnal We will call this relation thavell-ordering conditiorof two
its weight A client’s deficittracks the number of remaining consecutive groups R* works to maintain this condition
time quanta the client has not received from previous allofrue at all times. The intuition behind (2) is that we would
cations. A client'sun stateindicates whether or not it can like the ratio of the work of; andG,,.1 to match the ratio
be executed. A client iminnableif it can be executed. of their respective group weights afte?* has finished se-
For each group(*R® maintains the following four lecting both groups. Recalp; 2_ ®,;,1. Each time a client
values: group weight, group order, group work, and currenfrom Gii is run, GR?* would like to have run®;/®;.
client. Thegroup weightis the sum of the corresponding Worth of clients fromG;. (1) says thaG'R? should notrun
weights of the clients in the group run queue. A group with@ client fromG; and increment;’s group work if it will
group orderk contains the clients with weights betwegh ~ Make it impossible fotz; ., to catch up to its proportional
to 251 — 1. Thegroup workis the total execution time share allpcat|on by running one of its chenf[s once. .
clients in the group have received. Ttarent clientis the To illustrate how intergroup scheduling works, Fig-
most recently scheduled client in the group’s run queue. Uré 1 shows an example with three clierifs, C, and
GR3 also maintains the following scheduler state: 03’3Wh'Ch have weights of 5, 2, and 1, respectively. The
time quantum, group list, total weight, and current group.GR grouping strategy WO[_JId place each in group G,
The group list is a sorted list of all groups containing ordering the groups by weightsy, G2, andGs have or-

runnable clients ordered from largest to smallest grou!®s 2. 1 and 0 and weights of 5, 2, and 1 respectively.

weight, with ties broken by group order. Ttwgal weightis _In thi$ example, each group has only one client S0 there
the sum of the weights of all runnable clients. Therent 'S "° intragroup schedulingz 2> would start by selecting

roupis the most recently selected group in the group list. 97°UPG1, running clientCs;, and incrementingl; . Based
group y group group st i (1), -5 = 2 < £ = 2.5, SoGR? would select
. 3 . G, again and run client’;. After runningCy, G1's work
2.2 BasicGR" Algorithm would be 2 so that the inequality in (1) would hold a&&?
We initially only consider runnable clients in our dis- would then move on to the next grodfz and run clientCs.

cussion of the basi&' R? scheduling algorithm. We dis- Based on (1),‘,"5?1} =2< %ﬁ = 2, sSoGR? would reset
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G, [519[512[513[513[514[518[ 516 51F 1)~ g&+Dc(r—1)], with Do (0) = S Thus, in each
Go[211[211[213[213[ 212 214 22 2|3 round, ' is allotted one time quantummﬁius any additional
GylLld[2rd[i [ ari[ i 1]i 1)iEMd leftover from the previous round, ardl- (r) keeps track Qf
the amount of service tha missed because of rounding
¢, ¢, ¢, ¢, C; C; C, Cy4 ¢ down its allocation to whole time quanta. We observe that
L L L ! ! ! ! L - 0 < D¢(r) < 1 after any round- so that any clienC

will be allotted one or two time quanta. Note that if a client
Figure 1: GR? intergroup scheduling. At each time step, is allotted two time quanta, it first executes for one time
the shaded box contains the péis: | W + 1 for the group  quantum and then executes for the second time quantum
G before it is selected. the next time the intergroup scheduler selects its resgecti

group again (in general, following a timespan when clients

the current group to the largest weight groip and run  belonging to other groups get to run).
client C;. Based on (1) would be run for three time To illustrate how GR3 works with intragroup
guanta before selecting> again to run clientC,. After  scheduling, Figure 2 shows an example with six clients
runningC, the second timelV, would increase such that C; through Cs with weights 12, 3, 3, 2, 2, and 2, re-
WA =3 > 22 = 2, soGR® would then move on to  spectively. The six clients will be put in two groug
the last groufs and run clienC3. The resulting schedule and G»> with respective group order 1 and 3 as follows:
would then be:Gi, Gi, Ga, G1, G1, G1, G2, Gs. Each Gy = {C2,C5,C4,C5,Cs} andG2 = {C1}. The weight
group therefore receives its proportional allocation in ac of the groups ar@; = ®, = 12. GR? intergroup schedul-
cordance with its respective group weight. ing will consider the groups in this ordei&,, Go, Gy,
The GR? intragroup scheduling algorithm selects a G2, G1, G2, G1, G2, G1, G2, G1, G2. G2 will sched-
client from the selected group. All clients within a group ule clientC; every timeG, is considered for service since
have weights within a factor of two, and all client weights it has only one client. Since®! = 2, the normalized
in a groupG are normalized with respect to the minimum weights of clientCs, Cs, C4, Cs, andCy are 1.5, 1.5, 1,
possible weightpS, = 27¢, for any client in the group. 1, and 1, respectively. In the beginning of round 1dp,
GR? then effectively traverses through a group’s queueeach client starts with 0 deficit. As a result, the intragroup
in round-robin order, allocating each client its normalize scheduler will run each client i&'; for one time quantum
weight worth of time quantaGR? keeps track of subuni- during round 1. After the first round, the deficit f6%, Cs,
tary fractional time quanta that cannot be used and accumu4, Cs, andCs are 0.5, 0.5, 0, 0, and 0. In the beginning of
lates them in a deficit value for each client. Hence, eachiound 2, each client gets anothgr/¢S!, allocation, plus
client is assigned either one or two time quanta, based oany deficit from the first round. As a result, the intragroup
the client’s normalized weight and its previous allocation scheduler will select clientSy, Cs, Cy4, C5, andCg to run
More specifically, th&x R intragroup scheduler con- in order for 2, 2, 1, 1, and 1 time quanta, respectively, dur-
siders the scheduling of clients in rounds.r@undis one ing round 2. The resulting schedule would then ©g; C1,
pass through a grou@’s run queue of clients from begin- Cs, C1, Cy4, C1, Cs, C1, Cs, C1, Ca, Cy, Co, C1, Cs, (1,
ning to end. The group run queue does not need to be sorteds, C1, Cy, C1, Cs, Cy, Cs, Ch.
in any manner. During each round, t6&R? intragroup al-
gorithm considers the clients in round-robin order and exe2.3 G'R? Dynamic Considerations
cutes the following simple routine:

We now discuss howGR? allows clients to be
dynamically created, terminated, or change run state.

INTRAGROUP-SCHEDULE(G . .
(@) Runnable clients can be selected for execution by the sched-

1 C <Gl > k is the current position in the round yler, while clients that are not runnable cannot. With ns los

2 if Do <1 of generality, we assume that a client is created beforait ca
3 thenk < (k+1) mod|G]| become runnable, and a client becomes not runnable before
4 C — Gk it is terminated. As a result, client creation and termiorti

5 D¢ — D¢ + oo /95, have no effect on thé R? run queues.

6 D¢ — Do —1 When a clientC’ with weight ¢ becomes runnable,

7 retun C itis inserted into groups = G(C) such thaty¢ is between

) . 29¢ and2°¢+! — 1. If the group was previously empty, a
For each runnable cliert, the scheduler determines neyw group is created, the client becomes the current client
the maximum number of time quanta that the client can by the group, and, the number of groups, is incremented.
selected to runiin this round @3‘? +Dco(r=1)]. Da(r), i the group was not previously empty R? inserts the
the deficit of clientC' after roundr, is the time quantum client into the respective group’s run queue right befoee th
fraction left over after round: D¢ (r) = 4%1 + Dc(r —  currentclient; it will be serviced after all of the otheragiits
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Figure 2:G R? intragroup scheduling. At each time step, the shaded botagwthe deficit of the client before it is run.

in the group have first been considered for scheduling. They the same rules as for client insertion, depending on the

initial deficit D¢ will be initialized to 0. new position of the group and its next neighbor. After per-
When a newly runnable cliert' is inserted into its  forming these removal operationS,?* resumes schedul-

respective grougr, the group needs to be moved to its newing from the largest weight group in the system.

position on the ordered group list based on its new group Whenever a clienC' blocks during round-, we set

weight. Let this new position bé. The corresponding Dc(r) = min(De (r— 1)+ ¢¢ /¢S ) — [w], 1), wherew

group work and group weight @ need to be updated and is the service that the client received during rounhtil it

the client’s deficit needs to be initialized. The group weigh blocked. This preserves the client’s credit in case it retur

is simply incremented by the client’'s weight. We also wanthy the next round, while also limiting the deficit tso that

to scale the group work off such that the work ratio of a client cannot gain credit by blocking. However, the group

consecutive groups will continue to be proportional totthei consumes tu (its work is incremented) no matter how long

weight ratio: the client runs. Therefore, the client forfeits its extradit
{(Wkﬂ +1) 2 J 1 ifk<yg whenever it i_s unab_le to consume its allocation.
We = A If the client fails to return by the next round, we may
[(ngl + 1)(1:12G1—‘ 1 ifk=g remove it. Having kept the weight of the group to the old

value for an extra round has no adverse effects on fairness,

We will motivate these equations when analyzing the fair-despite the slight increase in service seen by the group dur-
ness of the algorithm in Section 4, but intuitively, we wanting the last round. By scaling the work of the group and
to preserve the invariants that result from (2). rounding up, we determine its future allocation and thus
When a clientC’ with weight ¢c becomes not Make sure the group will not have received undue servi.ce.
runnable, we need to remove it from the group’s run queue'Ve also immediately resume the scheduler from the first

This requires updating the group’s weight, which IOOten_(larg(?st) group.in the readjusted group list, so that any mi-
tially includes moving the group in the ordered group list, a Nor discrepancies caused by rounding may be smoothed out
well as adjusting the measure of work received according t&Y @ first pass through the group list.

the new processor share of the group. This can be achieved

in several waysG R3 is optimized to efficiently deal with 3 GR3 Multiprocessor Extensions GRgMP)
the common situation when a blocked client may rapidly, . 3 .
'e now present extensionsdaR® for scheduling aP-way

switch back to the runnable state again. This approach i . ) .
multiprocessor system from a single, centralized queue.

based on “lazy” removal, which minimizes overhead asso-_ . . . 3
ciated with adding and removing a client, while at the sameThIS simple schem_e, which we refer 1o @SR. MP, pre-
erves the good fairness and time complexity properties of

time preserving the service rights and service order of th%R3 : I | " ¢ hich .
runnable clients. Since a client blocks when it is running, In smatl-scale multiprocessor systems, which are in-

we know that it will take another full intragroup round be- creasingly common today, even in the form of multi-core

. . N ’
fore the client will be considered again. The only action PrOcessors. We first describe the baSi*M P schedul

when a client blocks is to set a flag on the client, marking it"Y algorith_m, then discuss dynamic _considerations. Tgble
for removal. If the client becomes runnable by the next time2 lists terminology we use. To deal with the problem of in-

. . ; 3 )
it is selected, we reset the flag and run the client as usuaﬁ?as'ble clientweights, we then show hGisk™ M/ P> uses its

Otherwise, we remove the client frof(C). In the lat- grouping strategy in a novel weight readjustment algorithm
ter situation, as in the case of client arrivals, the grougy ma . 3 .

need to be moved to a new position on the ordered group Iis%'1 BasicG: M P Algorithm

based on its new group weight. The corresponding group GR3M P uses the sam@R? data structure, namely
weight is updated by subtracting the client's weight froman ordered list of groups, each containing clients whose
the group weight. The corresponding group work is scaledveights are within a factor of two from each other. When a
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P Number of processors. pl xc2102103.C21C21C31 t
oF Processok. TN el s c L
C(p) | Client running on processar. y D VRSP RC
Fo Frontlog for clientC.
4 v
Table 2:GR3 M P terminology 4 // PR
c, Cc,C, C, C, C t
p 2 L 1 1 \l 1 1 | 1 1 \l 1 1 1 >
processor needs to be schedulgé®? M P selects the client TR0 RO

that would run next unde® R3, essentially scheduling mul-
tiple processors from its central run queue(@8® sched-  Figure 3: GR® multiprocessor scheduling. The two pro-
ules a single processor. However, there is one obstacle tessors schedule either from the central queue, or use the
simply applying a uniprocessor algorithm on a multipro- frontlog mechanism when the task is already running.
cessor system. Each client can only run on one processor

at any given time. As a resulGGR3>M P cannot select a
client to run that is already running on another processoMP'SCHEDULE(pk)
even if GR? would schedule that client in the uniproces-
sor case. For example, (FR3 would schedule the same
client consecutivelyGR3M P cannot schedule that client
consecutively on another processor if it is still running.

1 O« C(ph > Client just run

2

3

4
To handle this situation while maintaining fairness, 2 else iffic >0

7

8

9

0

if C' = NIL
thenif N < P
then return NIL > Idle

GR?M P introduces the notion of &ontlog. The front- then Fo — Fo —1
log F for some clientC' running on a processgr* (C = return ¢

C(p*)) is defined as the number of time quantadbaccu- C — INTERGROUPSCHEDULE()
mulated ag” gets selected bg R? and cannot run because while 3p s.t.C' = C(p)

it is already running og*. The frontlogF¢ is then queued do Fo — Fo +1
up ong*. C «— INTERGROUP SCHEDULE()

Given a client that would be scheduled 6?3 but 12 retun
is already running on another processef> M P uses the ) ) )
frontlog to assign the client a time quantum now but de- To illustrateG' R* M P scheduling, Figure 3 shows an
fer the client's use of it until later. Whenever a proces-€xample on a dual-processor system with three cli€hts
sor finishes running a client for a time quantufz3M/ P C2, andCs of weights 3, 2, and 1, respectively, and
checks whether the client has a non-zero frontlog, and, if’2 Will then be part of the order 1 group (assurfig is
so, continues running the client for another time quantunf€foreC in the round-robin queue of this group), whereas
and decrements its frontlog by one, without consulting the”'s IS part of the order 0 group. THER® schedule i,
central queue. The frontiog mechanism not only ensure§'1, C2, C1, C1, Cs. o' will then selectC; to run, andp®
that a client receives its proportional share allocatibaiso ~ SelectsCi. Whenp! finishes, according té:R?, it will

takes advantage of any cache affinity by continuing to rurs€lectC’> once more, wherea;s2_ selectsC'; again. When
the client on the same processor. o' again selects the nektR? client, which isCy, it finds

it i i 2 —
When a processor finishes running a client for atimethalt itis already running op~ and thus we sefg, = 1

! . . and select the next client, which@, to run onp'. When
quantum and its frontlog is zero, we call the processie 2 finishes running’; for its second time quantum, it finds
GR3MP schedules a client to run on the idle processor‘p ! N !

by performing aGR?® scheduling decision on the central Fo, =1, SeFSFcl ~ Qand contlgues running’, without
. : . any scheduling decision on tlieR® queue.
queue. If the selected client is already running on some

other processor, we increase its frontlog and repeafiie . . .

schedFlJJIing, each time incrementing thge frontlcl)og of the se—?"2 GR*M P Dynamic Considerations

lected client, until we find a client that is not currently fun GR3M P basically does the same thing as &>
ning. We assign this client to the idle processor for one timealgorithm under dynamic considerations. However, the
quantum. This description assumes that there arefeast  frontlogs used inGR*M P need to be accounted for ap-
clients in the system. Otherwise, scheduling is easy: @&n idlpropriately. If some processors have long frontlogs foirthe
processor will either run the client it just ran, or idles un- currently running clients, newly arriving clients may net b

til more clients arrive. In effect, each client will simpleb run by those processors until their frontlogs are processed
assigned its own processor. Whenever a processor needsrisulting in bad responsiveness for the new clients. Al-
perform a scheduling decision, it thus executes the followthough in between any two client arrivals or departures,
ing routine: some processors must have no frontlog, the set of such
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processors can be as small as a single processor. Inthi§ x = C1,Cs,...,Cny With ¢1 > ¢ > ... > ¢n.
case, newly arrived clients will end up competing with otherWe call the subsequenc®, v = Ci, Ci+1,...,.Cn Q-
clients already in the run queue only for those few procesfeasible if ¢, < % Z;\’:k b;.
sors, until the frontlog on the other processors is exhduste

GR3M P provides fair and responsive allocations by Lemma 1. The client mix in the system fsasibleif and
creating frontlogs for newly arriving clients. Each new only if S; y is P-feasible.
client is assigned a frontlog equal to a fraction of the to-
tal current frontlog in the system based on its proportionaProof. If ¢; > 2Z, C is infeasible, so the mix is infea-
share. Each processor now maintains a queue of frontlogible. Conversely, ify; < 2z, then for any clientC;,
clients and a new client with a frontlog is immediately as-¢, < ¢; < 22, implying all clients are feasible. The mix
signed to one of the processor frontlog queues. Rather thag then feasible<= ¢; < =3 Z;V:l ;, or, equiva-
running its currently running client until it completes its |ently, 5,  is P-feasible. ' O
frontlog, each processor now round robins among clients '
in its frontlog queue. Given that frontlogs are small in prac
tice, round-robin scheduling is used for frontlog clierds f
its simplicity and fairnessG R3 M P balances the frontlog
load on the processors by placing new frontlog clients ornp ¢ op < éZ;V:k &; — Qbr < o +
the processor with the smallest frontlog summed across all_ 5 L N )
its frontlog clients. j=k1 9 T O S gy dljpe 9 SinCeGEL1 <
ok, the lemma follows. O

Lemma 2. Sy n is Q-feasible= Syi11 n is (Q — 1)-
feasible.

More precisely, whenever a cliedi’ arrives, and
it belongs in groupG(C), GR*M P performs the same
group operations as in the single process? algorithm. The feasibility problem is then to identify the least
GR3M P finds the processop* with the smallest front- # (denoted thefeasibility threshold f) such thatSy v is
log, then creates a frontlog for clierit on o* of length (P — k + 1)-feasible. Iff = 1, then the client mix is feasi-
Fo = Pr%<, whereFy is the total frontlog on all the ble. Otherwise, théinfeasible setSy ;. = Ci,..., Cy—1
processors. Lef” = C(p*). Then, assuming no further contains the infeasible clients, whose weight needs to be

clients arrive o will round-robin betweerC' andC’ and ~ Scéled down td /P of the resulting total weight. The car-

runC for Fe andC for Fe time quanta. dinality f — 1 of the mfe_asmle set_|s less th_al?h _However,
When a client becomes not runnabdeR? M P uses the sor'_[ed _Seq“ef‘&lfv_ IS expensive to maintain, Such that

the same lazy removal mechanism usedGiR®. If it is traversing it and identifying the feasibility thresholdnist

removed from the run queue and has a frontlG&> M P an efﬁuegt solution. . )
simply discards it since each client is assigned a frontlo GR°MP leverages its grouping strategy to perform

: : A i
based on the current state of the system when it becoma@st weight readjustment &M P starts with the unmod-
runnable again. ified client weights, finds the sétof infeasible clients, and

adjust their weights to be feasible. To constriicthe al-
3.3 GR3M P Weight Readjustment gor_ithm traverses the Ii_st_ of groups in decreasing order of
their group ordepr, until it finds a group not all of whose
Since no client can run on more than one processoglients are infeasible. We denote Ky the cardinality off
at a time, no client can consume more thaty & fraction  and by®; the sum of weights of the clients if Scerdc-
of the processing in a multiprocessor system. A cliént TheGR3M P weight readjustment algorithm is as follows:
with weight ¢ greater tharb; /P is considerednfeasi-
ble since it cannot receive its proportional share allocationy g gH1-READIUSTMENT()
¢c /P without using more than one processor simultane-
ously. GR3M P should then give the client its maximum
possible service, and simply assign such a client its own
processor to run on. However, since the scheduler uses3

RESTOREORIGINAL-WEIGHTS

I—10

G « greatest order group

while |G| < P — |I| and 2°¢ > 2r=%1-%c

client weights to determine which client to run, an infea- 4 P—I]—[G|
sible client's weight must be adjusted so that it is feasi- 2 do/ —TUG

ble to ensure that the scheduling algorithm runs correctly 6 G — nextG) > by group order
to preserve fairness (assuming there are at [Bagtents). 7 if |G| <2(P —|I|)

GR3M P potentially needs to perform weight readjustment 8  then «— I UINFEASIBLE(G, P — |I|, &7 — @)
whenever a client is inserted or removed from the run queue® <I>rfp — &y — Py
to make sure that all weights are feasible. 10 o7 «— P%mcbifp

To understand the problem of weight readjustment11 for eachC € I

consider the sequence of all clients, ordered by weight12 do ¢ — %
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The correctness of the algorithm is based on Lemmaveights of all feasible cIientsl>§ =

2. Let some groufs span the subsequengg; of the se-
quence of ordered client$; 5. Then27¢+1 — 1 > ¢; >
... > ¢; > 299 and itis easy to show:
4 Pr—P;—D
* 2°9 > pomriraf
infeasible).

= j < f (all clients inS, ; are

° 20’(;' < <I>T7¢’17<I>G
= P—[I]-]G]
are feasible).

=j+1> f(allclientsinS; 1~

Once we reach line 7, we kna$ ., v is (P — j)-feasible,
andi < f < j+ 1. If |G| > 2(P — |I|), GR®MP can
stop searching for infeasible clients since all cliefite G
are feasible, ang’ = i (equivalently,S; v is (P — |I])-
feasible): ¢ < 27¢F! < 2@‘1)0 < P_lmtbg <
P—1|I|((I)T — ®y). Otherwise, if|G| < 2(P — |I|), then

i < f < j+1andGR3>M P needs to search through

to determine which clients are infeasible (equivalenthyfi

f). Since the number of clients i@ is small, we can sort

all clients inG by weight. Then, starting from the largest .
weight client inG, find the first feasible client. A simple

algorithm is then the following:

INFEASIBLE(G, @, D)

1 740

2 for eachC € G in sorted order
3 do if ¢c > ot (@ — @r)
4 thenl — TU{C}

5 else returnl

6 return I

GR3MP can alternatively use a more complicated
but lower time complexity divide-and-conquer algorithm to

find the infeasible clients id7. In this case(R3M P par-
titions G around its mediad’ into Gg, the set ofG clients
that have weight less thafy: andG g, the set ofG clients
that have weight larger thagy,. By Lemma 2, ifC is fea-
sible,Gs U {C} is feasible, and we recurse 6. Other-

wise, all clients inGz U{C?} are infeasible, and we recurse
on G to find all infeasible clients. The algorithm finishes

when the set we need to recurse on is empty:

INFEASIBLE(G, Q, D)

ifG=10
_ thenreturn
C «— MEDIAN(G)

(Gs,Gp) < PARTITION(G, ¢¢)
(.
Mo > g1as] _
then return G U {C}U
INFEASIBLE(Gs,Q — |G| — 1,® — g, — d¢)
7 else returnINFEASIBLE(G g, @, D)

O Ul hWN PP

b — &;. We can
now compute the new total weight in the systembgs =
P_mebl}, namely the solution to the equatid. + 1| % =

x. Once we have the adjustéd-, we change all the weights
for the infeasible clients i to %T. Lemma 6 in Section 4.2
shows the readjustment algorithm runs in ti®eP) and is
thus asymptotically optimal, since there card@”) infea-

sible clients.

4 G R? Fairness and Complexity

We analyze the fairness and complexity 6fR? and
GR3M P. To analyze fairness, we use a more formal notion
of proportional fairness defined asrvice error a measure
widely used [1, 7, 9, 17, 18, 19, 25, 27] in the analysis of
scheduling algorithms. To simplify the analysis, we will
assume that clients are always runnable and derive fairness
bounds for such a case. Subsequently, we address the im-
pact of arrivals and departures.

We use a strict measure of service error (equivalent
in this context to thd&lormalized Worst-case Fair Ind¢x])
relative to Generalized Processor Sharing (GPS) [16], an
idealized model that achievgserfect fairness we =
WTg—i, an ideal state in which each clieat always re-
ceives service exactly proportional to its weight. Althbug

all real-world schedulers must time-multiplex resourges i
time units of finite size and thus cannot maintain perfect
fairness, some algorithms stay closer to perfect fairiess t
others and therefore have less service error. We quantify
how close an algorithm gets to perfect fairness using the
client service time errgrwhich is the difference between
the service received by clield and its share of the total
work done by the processots = we — WTg—CT‘. A pos-

itive service time error indicates that a client has reagive
more than its ideal share over a time interval; a negative
error indicates that it has received less. To be precise, the
errorec measures how much time a cligfithas received
beyond its ideal allocation. A proportional share schedule
should minimize the absolute value of the allocation error
of all clients with minimal scheduling overhead.

We provide bounds on the service error@R? and
GR?®M P. To do this, we define two other measures of ser-
vice error. Thegroup service time errois a similar mea-
sure for groups that quantifies the fairness of allocatirg th
processor among groupBg = Wg — WTg—g. Thegroup-
relative service time errorepresents the service time error
of client C if there were only a single grou@ = G(C)
in the scheduler and is a measure of the service error of a
client with respect to the work done on behalf of its group:
ec,g = wo — ng—g. We first show bounds on the group
service error of the intergroup scheduling algorithm. We
then show bounds on the group-relative service error of the
intragroup scheduling algorithm. We combine these results

Once all infeasible clients have been identified,to obtain the overall client service error bounds. We also
WEIGHT-READJUSTMENT() determines the sum of the discuss the scheduling overhead®®?* and GR3*M P in
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terms of their time complexity. We show that both algo- Dynamic Fairness of GR®> We can consider a client ar-
rithms can make scheduling decisions(1) time with  rival or removal as an operation where a group is first re-
O(1) service error given a constant number of groups. Duanoved from the group list and added in a different place
to space constraints, most of the proofs are omitted. Furthevith a different weight. We argue that fairness is pre-
proof details are available in [5]. served by these operations: when graslp is removed,
then Gy_1, Gk, and Gy were well-ordered as defined
in (2), so after the removal7;_; and Gy, now neigh-
bors, will be well-ordered by transitivity. When a group,
allit Giy(1/2), is inserted betwee@; andG; 1, it can be

4.1 Analysis ofGR?

Intergroup Fairness For the case when the weight ratios
of consecutive groups in the group list are integers, we ge

the followina: proven that the work readjustment formula in Section 2.3
9 ensuress; (1/2) andG;,, are well-ordered. In the case of
Lemma 3. If ;il €N, 1<j<gthen—1< Eg, < G; and Gy (1/2), we can show that we can achieve well-
J

ordering by running;  (; /2y at most one extra time. Thus,
modulo this readjustment, the intragroup algorithm’s-fair
ness bounds are preserved. An important property of our
algorithm that follows is that the pairwise ratios of work
of clients not part of the readjusted group will be unaf-
fected. Since the intragroup algorithm has constant fagne
®ounds, the disruption for the work received by clients in-
side the adjusted group is ony(1).

(g — k)¢ for any groupG.

Proof sketchf the group currently scheduled (s,
then the work to weight ratio of all grougs;, j < k, is
the same. Foy > k, witl < Wi < Winitl 1 g4

41 Lj ®j+1 j
consequence of the well-ordering condition (2). After som
rearrangements, we can sum overjand bound¥}, and
thusE, above and below. The additiv% will cause the
g — 1 upper bound.

o ] Time Complexity GR? manages to bound its service er-
In the general case, we get similar, but slightly weake

'ror by O(g?) while maintaining a stricO(1) scheduling

bounds. overhead. The intergroup scheduler either selects the next

Lemma 4. For any groupGy, — W=R@=k=1 & _ 1 _ group in the list, or reverts to theﬂrsto_ne, WhICh takes con-

Fo <g—1 2 @7 stant time. The intragroup scheduler is even simpler, as it
G - 4.

just picks the next client to run from the unordered round

The proof for this case (omitted) follows reasoning similar obin list of the group. Adding and removing a client is
to that of the previous lemma, but with several additionalVorst-cas&)(g) when a group needs to be relocated in the

complications.
It is clear that the lower bound is minimized when
settingk = 1. Thus, we have

Corollary 1. —Wg—i —1< Eg <g—1 forany
groupG.

Intragroup Fairness Within a group, all weights are
within a factor of two and the group-relative error is bound
by a small constant. The only slightly subtle pointis to deal
with fractional rounds.

Lemma5. -3 < ec,¢ < 4 forany clientC € G.

Overall Faimess of GR® Based on the identitgc
ec,g + i—ZEG which holds for any groug’ and any client

C € G, we can combine the inter- and intragroup analyses

to bound the overall fairness 6fR3.

Theorem 1. —@=D@=2) éc

_ 5 = —4 <ec <g+3 forany
clientC.

The negative error o&; R? is thus bounded by (g?) and
the positive error by)(g). Recall,g, the number of groups,
does not depend on the number of clients in the system.

ordered list of groups. This could of course be done in
O(log g) time (using binary search, for example), but the
small value ofy in practice does not justify a more compli-
cated algorithm.

The space complexitpf GR? is O(g) + O(N) =
O(N). The only additional data structure beyond the un-
ordered lists of clients is an ordered list of lengtto orga-
nize the groups.

4.2 Analysis of GR*M P

Overall Fairness of GR?*MP  Given feasible client
weights after weight readjustment, the service error for
GR3MP is bounded below by th&R? error, and above
by a bound which improves with more processors.

Theorem 2. —@=D=2) éc

2 P
o=Dl=2) for any clientC.

-4 < ec < 29410+

Time Complexity of GR3M P  The frontlogs create an
additional complication when analyzing the time complex-
ity of GR3M P. When an idle processor looks for its next
client, it runs the simpleD(1) GR? algorithm to find a
client C. If C is not running on any other processor, we
are done, but otherwise we place it on the frontlog and then
we must rerun theZR? algorithm until we find a client
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that is not running on any other processor. Since for eaclSRR [9]. The simulator enabled us to isolate the impact
such client, we increase its allocation on the processor ibf the scheduling algorithms themselves and examine the
runs, the amortized time complexity remaiél). Theup-  scheduling behavior of these different algorithms across
per bound on the time that any single scheduling decisiomundreds of thousands of different combinations of clients
takes is given by the maximum length of any schedulingwith different weight values.

sequence of/R® consisting of only some fixed subset of Section 5.2 presents detailed measurements of real
P — 1 clients. kernel scheduler performance by comparing our prototype
GR? Linux implementation against the standard Linux

scheduler, a WFQ scheduler, and a VTRR scheduler. The
experiments we have done quantify the scheduling over-
head and proportional share allocation accuracy of these

Thus, the length of any schedule consisting of at mosgchedulers in a real operating system environment under a
P — 1 clients isO(g2P). Even when a processor has front- humber of different workloads.
logs for several clients queued up on it, it will schedule in All our kernel scheduler measurements were per-
O(1) time, since it performs round-robin among the front- formed on an IBM Netfinity 4500 system with one or two
logged clients. Client arrivals and departures takg) 933 MHz Intel Pentium Il CPUs, 512 MB RAM, and 9
time because of the need to readjust group weights in th&B hard drive. The system was installed with the Debian
saved list of groups. Moreover, if we also need to useGNU/Linux distribution version 3.0 and all schedulers were
the weight readjustment algorithm, we incur an additionaimplemented using Linux kernel version 2.4.19. The mea-
O(P) overhead on client arrivals and departures. surements were done by using a minimally intrusive trac-

_ ) ) ing facility that writes timestamped event identifiers into

Lemma 6. The complexity of the weight readjustment al- 3 memory log and takes advantage of the high-resolution
gorithm isO(P). clock cycle counter available with the Intel CPU, providing

Proof. Restoring the original weights will worst case touch Meéasurementresolution at the granularity of a few nanosec-

a number of groups equal to the number of previously inonds. Getting a timestamp simply involved reading the

feasible clients, which i©(P). Identifying the infeasible nardware cycle counter register. We measured the times-
clients involves iterating over at moBtgroups in decreas- t@Mp overhead to be roughly 35 ns per event.

ing sequence based on group order, as described in Sec- The kernel scheduler measurements were performed
tion 3.3. For the last group considered, we only attemp@n @ fully functional system. All experiments were per-

to partition it into feasible and infeasible clients of itses ~ formed with all system functions running and the system
is less tharP. Since partitioning of a set can be done in connected to the network. At the same time, an effort was

linear time, and we recurse on a subset half the size, thig'ade to eliminate variations in the test environmentto make
operation isO(P) as well. ] the experiments repeatable.

Theorem 3. The time complexity per scheduling decision
in GR®*M P is bounded above b _k)(g_k“) + (k +
1)(g—k+1)P+1wherel <k <g.

For small P, the O(Plog(P)) sorting approach to 51  Sjmulation Studies
determine infeasible clients in the last group considesed i . ] ]
simpler and in practice performs better than ®eP) re- ~We built a scheduling simulator that measures the
cursive partitioning. Finally, altering the active groupus- ~ Service time error, described in Section 4, of a scheduler
ture to reflect the new weights is@(P + g) operation, as ©N @ set of clients. The simulator takes four inputs, the

two groups may need to be re-inserted in the ordered list ofcheduling algorithm, the number of client, the total
groups. sum of weightsbr, and the number of client-weight combi-

nations. The simulator randomly assigns weights to clients

and scales the weights to ensure that they add up;to
5 Measurements and Results It then schedules the clients using the specified algorithm
We have implemente@ R? uniprocessor and multiproces- as a real scheduler would, assuming no client blocks, and
sor schedulers in the Linux operating system and measuredacks the resulting service time error. The simulator runs
their performance. We present some experimental datthe scheduler until the resulting schedule repeats, then co
guantitatively comparingzR> performance against other putes the maximum (most positive) and minimum (most
popular scheduling approaches from both industrial prachegative) service time error across the nonrepeatinggorti
tice and research. We have conducted both extensive sinof the schedule for the given set of clients and weight as-
ulation studies and detailed measurements of real kernaignments. This process is repeated for the specified num-
scheduler performance on real applications. ber of client-weight combinations. We then compute the

Section 5.1 presents simulation results comparingnaximum service time error and minimum service time er-

the proportional sharing accuracy 6fR3 and GR3M P ror for the specified number of client-weight combinations
against WRR, WFQ [18], SFQ [13], VTRR [17], and to obtain a “worst-case” error range.

10
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Service Error Service Error Service Error Service Error

800 t=
600

195000 2000 195000 2000 195000 2000 195000 2000
260000 g0 6000 4000 260000 "g700" 6000 4000 260000 "g700"6000 4000 260000 g0 600! 4000
Sum of weights Number of clients Sum of weights Number of clients Sum of weights Number of clients Sum of weights Number of clients
Figure 4: WRR error Figure 5: WFQ error Figure 6: SFQ error Figure 7: VTRR error

Service Error Service Error . Service Error Scheduling Decisions per Task Selection

195000 195000 195000
260000550 6000 4000 2000 2600005500 6000 4000 2000 260000550 6000 4000 2000 2600005500 6000 4000 2000
Sum of weights Number of clients ~ Sum of weights Number of clients ~ Sum of weights Number of clients ~ Sum of weights Number of clients
Figure 8: SRR error Figure 9: GR error Figure 10:GR3M P error Figure 11: GR3MP over-

head

To measure proportional fairness accuracy, we rarime error since it is bounded below-atl. Similarly, GR?
simulations for each scheduling algorithm on 45 differenthas a much smaller negative service error than SFQ, though
combinations of N and & (32 up to 8192 clients and SFQ’s positive error is less since it is bounded above at
16384 up to 262144 total weight, respectively). Since theConsidering the total service error range of each scheduler
proportional sharing accuracy of a scheduler is often most’R? provides well over two orders of magnitude better pro-
clearly illustrated with skewed weight distributions, one portional sharing accuracy than WRR, WFQ, SFQ, VTRR,
of the clients was given a weight equal to 10 percent ofand SRR. Unlike the other schedulers, these results show
1. All of the other clients were then randomly assignedthat G R3 combines the benefits of low service time errors
weights to sum to the remaining 90 percendef. For each  with its ability to schedule ifD(1) time.
pair (N, ®7), we ran 2500 client-weight combinations and Note that as the weight skew becomes more accentu-
determined the resulting worst-case error range. ated, the service error can grow dramatically. Thus, irsrea

The worst-case service time error ranges for WRR,ing the skew from 10 to 50 percent results in more than
WFQ, SFQ, VTRR, SRR, and‘R* with these skewed j fivefold increase in the error magnitude for SRR, WFQ,
weight distributions are in Figures 4 to 9. Due to spaceand SFQ, and also significantly worse errors for WRR and
constraints, WFEQ error is not shown since the results sim- VTRR. In contrast, the error offR? is still bounded by
ply verify its known mathematical error bounds-eft and  small constants=2.3 and4.6.

1 tu. Each figure consists of a graph of the error range for We also measured the service erro6dt? M P using
the respective scheduling algorithm. Each graph shows twe,is simulator configured for an 8 processor system, where
surfaces representing the maximum and minimum servicge eight distribution was the same as for the uniprocessor

time error as a function oV and ®r for the same range  gimylations above. Note that the client given 0.1 of thel tota
of values of N and ®r. Figure 4 shows WRR'’s service weight was feasible, sinde1 < 1 = 0.125. Figure 10

time error is betweer-12067 tu and23593 tu. Figure 5 ghows R3 M P’s service error is %etween2.5 tu and2.8

shows WFQ's service time error is betweei tu ands19  y, glightly better than for the uniprocessor case, a benefit

tu, which is much less than WRR. Figure 6 shows SFQyt peing able to run multiple clients in parallel. Figure 11

service time error is betweens19 tu and1 tu, which is  ghows the maximum number of scheduling decisions that

almost a mirror image of WFQ. Figure 7 shows VTRR'S 4, jgle processor needs to perform until it finds a client that

service error is between2129 tu and10079 tu. Figure 8 s not running. This did not exceed seven, indicating that

shows SRR's service error is betweeficd tu and369 tu. e number of decisions needed in practice is well below
In comparison, Figure 9 shows the service time erne worst-case bounds shown in Theorem 3.

ror for GR? only ranges from-2.5 to 3.0 tu. GR? has

a smaller error range than all of the other schedulers me .

sured except WE. GR? has both a smaller negative anda‘;'2 Linux Kernel Measurements

smaller positive service time error than WRR, VTRR, and To evaluate the scheduling overhead @R>, we

SRR. WhileGR? has a much smaller positive service er- compare it against the standard Linux 2.4 scheduler, a WFQ

ror than WFQ, WFQ does have a smaller negative servicecheduler, and a VTRR scheduler. Since A@Fhas the-

11
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As shown in Figure 12, the increase in scheduling

100 * S?SR eep v;,‘,,% e overhead as the number of clients increases varies a great
I . « WFQ [O(log %1)1%4'5";5'”5 = deal between different scheduler&R* has the smallest
= s WEQe[CYNY] scheduling overhead. It requires roughly 300 ns to select a
8 10t "ﬁ;",’.;;"'mx | client to execute and the scheduling overhead is essgntiall
2 ' constant for all numbers of clients. While VTRR schedul-
3 N ing overhead is also constard,R> has less overhead be-
% #' T xowexe O cause its computations are simpler to perform than the vir-
° 1t :O oo eiee e oo oo lualtime calculations required by VTRR. In contrast, the
g o i1 overhead for Linux and fo© (V) WFQ scheduling grows
2 7 - linearly with the number of clients. Both of these sched-
("1 ulersimpose more than 200 times more overheadch@h
0.1 w w w w w w w when scheduling a mix of 400 client®(log N) WFQ has
0 50 100 150 200 250 300 350 400 much smaller overhead than Linux &(N) WFQ, but it
Number of clients still imposes significantly more overhead th@#®?, with 8
times more overhead tha®R? when scheduling a mix of
Figure 12: Average scheduling overhead 400 clients. Figure 12 also shows th@R?M P provides

the sameO(1) scheduling overhead on a multiprocessor,

loretlcally the sarge time c?rrr]]plexny las.WFfQ (but with although the absolute time to schedule is somewhat higher
arger constants, because of the complexity of its stes), Wdue to additional costs associated with scheduling in mul-
present WFQ as a lower bound for the overhead oPQ/F

. . . ) , which suffers from complexity that grows lin-
increases. For the first experiment, we measure scheduhq;{garly with the number of clients. Because of the impor-
overgead _for lrunnmg isethof Cl'kemf]’_ (:]ach ]?f Wh'gh ixe'tance of constant scheduling overhead in server systems,
cuted a simple micro-benchmark which performed a few i,y jas switched to Ingo Molnar®®(1) scheduler in the
operations in a while loop. A control program was used {0, j, \y 5 g kernel. As a comparison, we also repeated this

fork a specified number of chents._ Onpe all clients were ;o ophenchmark experiment with that scheduler and found
runnable, we measured the execution time of each SChEdL{hatGRg till runs over 30 percent faster

ing operation that occurred during a fixed time duration of

30 seconds. The measurements required two timestamps As another experiment, we measured the scheduling

for each scheduling decision, so measurement error of 70 r@verhead of the various schedulers farckbench [21],

are possible due to measurement overhead. We performé@dLinux benchmark used for measuring scheduler perfor-

these experiments on the standard Linux scheduler, WFQ@nance with large numbers of processes entering and leav-

VTRR, andG R?3 for 1 to 400 clients. ing the run queue at all times. It creates groups of readers
Figure 12 shows the average execution time require&md writers, each group having 20 reader tasks and 20 writer

by each scheduler to select a client to execute. Results fdRSKS: and each writer writes 100 small messages to each of
GR?, VTRR, WFQ, and Linux were obtained on uniproces- the other 20 readers. This is a total of 2000 messages sent
sor system, and results f6i7:3 M/ P and LinuxMP were ob-  PEr writer, per group, or 40000 messages per group. We
tained running on a dual-processor system. Dual-process6fn & modified version of hackbench to give each reader

results for WFQ and VTRR are not shown since MP-ready?"d €ach writer a random weight between 1 and 40. We
implementations of them were not available. performed these tests on the same set of schedulers for 1

For this experiment, the particular implementationgroulo up to 100 groups. Using 100 groups results in up to

details of the WFQ scheduler affect the overhead, SO8000 processes running. Because hackbench frequently in-

. ) . : serts and removes clients from the run queue, the cost of
we include results from two different implementations of

. B " client insertion and removal is a more significant factor for
WFQ In the first, Iabele_d WFQQ(N)].’ the fun queue this benchmark. The results show that the simple dynamic
is implemented as a simple linked list which must be : . . .

. g roup adjustments described in Section 2.3 have low over-
searched on every scheduling decision. The second, label Lad, since(g) can be considered constant in practice
“WFQ [O(log N)]", uses a heap-based priority queue with ' g P '
O(log N) insertion time. To maintain the heap-based pri- Figure 13 shows the average scheduling overhead for
ority queue, we used a fixed-length array. If the numberach scheduler. The average overhead is the sum of the
of clients ever exceeds the length of the array, a costly artimes spent on all scheduling events, selecting clientsrio r
ray reallocation must be performed. Our initial array sizeand inserting and removing clients from the run queue, di-
was large enough to contain more than 400 clients, so thigided by the number of times the scheduler selected a client
additional cost is not reflected in our measurements. to run. The overhead in Figure 13 is higher than the av-
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1000 e third experiment, we ran five virtual servers which assigned
o \C/;JI?I%R a random weight between 1 and 10 to each process. For the
,,,,,, «- WFQ [O(log N)] et Linux scheduler, weights were assigned by seleatinge
100 L e WFQO(N)] =" . =4 Vvalues appropriately. Figures 14 to 19 present the results
o ggg),\(,lp o from the first experiment with one server with weight 10
) - Liqui’MﬁPD e /'_,,./*-;;f;j;’;; processes and all other servers with weight 1 processes. The
P 10 | gt o0 Lt St total load on the system for this experiment consisted of
.E e o e 600 processes running simultaneously. For illustration pu
T gk et poses, only one process from each server is shown in the
1 'ﬁ?" e L figures. Conclusions drawn from the other experiments are
the same; those results are omitted due to space constraints
3 GR3? andGR?M P provided the best overall propor-
0.1 S tional fairness for these experiments while Linux provided
0 10 20 30 40 50 60 70 80 90 100 the worst overall proportional fairness. Figures 14 to 17
Number of Groups show the amount of processor time allocated to each client

over time for the Linux scheduler, WFQ, VTRR, aGd?3.
Figure 13: Hackbench weighted scheduling overhead Al of the schedulers excepER? and GR3M P have a

ronounced “staircase” effect for the search engine psces

erage cost per scr_]edule In Figure 12 fpr ‘f’“.l the SChedUIer\%ith weight 10, indicating that CPU resources are provided
measured since Figure 13 includes a significant compones irregular bursts over a short time interval. For the ap-

of tmeé;; t(:_"clr;entl;nsferu%n and Irlenlovari f:jOT the run plications which need to provide interactive responsigsne
queue. stll has by 1ar the smaflest scheauling Over 4, \yep ysers, this can result in extra delays in system re-

head agmong .aII the schedullers measured. The OVGVhEQBonse time. It can be inferred from the smoother curves
for GR” remains constant while the overhead@dlog N) ¢ Figure 17 thatG R? andGR3 M P provide fair resource

WFQ’O.(N) WF.Q’ V.TRR’ _and Linux grows with thg NUM-=" 5llocation at a finer granularity than the other schedulers.
ber of clients. Clientinsertion, removal, and selectioruto

in GR? are independent of the number of clients. The cost
for GR? is 3 times higher than before, with client selection 6 Related Work

to run, insertion, and removal each taking approximatelyz o nd robin is one of the oldest, simplest and most widely
300 to 400 ns. For VTRR, although selecting a client to runyseq proportional share scheduling algorithms. Weighted
is also independent of the number of clients, insertion-over,, nd-robin (WRR) supports non-uniform client weights by
head grows with the number of clients, resulting in muchy,nning all clients with the same frequency but adjustireg th
higher VTRR overhead for this benchmark. size of their time quanta in proportion to their respective
To demonstrat& R*’s efficient proportional sharing weights. Deficit round-robin (DRR) [22] was developed to
of resources on real applications, we briefly describe thregupport non-uniform service allocations in packet schedul
simple experiments running web server workloads usingng. These algorithms have lo@(1) complexity but poor
the same set of scheduler§¥R* and GR®*MP, Linux  short-term fairness, with service errors that can be on the
2.4 uniprocessor and multiprocessor schedulers, WFQ, angtder of the largest client weight in the systefiR® uses a
VTRR. The web server workload emulates a number ohovel variant of DRR for intragroup scheduling with(1)
virtual web servers running on a single system. Eachcomplexity, but also provide®(1) service error by using
virtual server runs the guitar music search engine usedls grouping mechanism to limit the effective range of dien
at guitarnotes.com, a popular musician resource web sitgeights considered by the intragroup scheduler.
with over 800,000 monthly users. The search engine is a Fair-share schedulers [12, 14, 15] provide propor-
perl script executed from an Apache mod-perl module thational sharing among users in a way compatible with a
searches for guitar music by title or author and returns ajNIX-style time-sharing framework based on multi-level
list of results. The web server workload configured eachfeedback with a set of priority queues. These schedulers
server to pre-fork 100 processes, each running consecutiygpically had lowO(1) complexity, but were often ad-hoc
searches simultaneously. and could not provide any proportional fairness guaran-
We ran multiple virtual servers with each one hav-tees. Empirical measurements show that these approaches
ing different weights for its processes. In the first experi-only provide reasonable proportional fairness over rela-
ment, we used six virtual servers, with one server havingdively large time intervals [12].
all its processes assigned weight 10 while all other servers Lottery scheduling [26] gives each client a number of
had processes assigned weight 1. In the second experimetitkets proportional to its weight, then randomly selects a
we used five virtual servers and processes assigned to eatibket. Lottery scheduling take@(log N) time and relies
server had respective weights of 1, 2, 3, 4, and 5. In then the law of large numbers for providing proportional fair-
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ness. Thus, its allocation errors can be very large, tylgical skipping some of them at different frequencies without
much worse than WRR for clients with smaller weights.  having to reorder clients on each schedule. This is done
Weighted Fair Queueing (WFQ) [11, 18], was first de- by combining round-robin scheduling with a virtual time
veloped for network packet scheduling, and later applied tanechanism.GR*'s intergroup scheduler builds on VTRR
uniprocessor scheduling [26]. It assigns each client a&irt but uses weight ratios instead of virtual times to provide be
time and schedules the client with the earliest virtual time ter fairness. Smoothed Round Robin (SRR) [9] uses a dif-
Other fair queueing variants such as Virtual-clock [28], ferent mechanism for skipping clients using a Weight Ma-
SFQ [13], SPFQ [24], and Time-shift FQ [10] have also trix and Weight Spread Sequence (WSS) to run clients by
been proposed. These approaches all liaileg N) time ~ simulating a binary counter. VTRR and SRR provide pro-
complexity, whereV is the number of clients, because the portional sharing wittO(1) time complexity for selecting a
clients must be ordered by virtual time. It has been showrelientto run, though inserting and removing clients from th
that WFQ guarantees that the service time error for anyun queue incur higher overhead(log N) for VTRR and
client never falls below-1 [18]. However, WFQ can allow O(k) for SRR , whereék = 1og ¢max andémax is the max-
a client to get far ahead of its ideal allocation and accumuimum client weight allowed. However, unliké R*, both
late a large positive service time error@f V), especially ~ algorithms can suffer from large service time errors espe-

with skewed weight distributions. cially for skewed weight distributions. For example, we can
Several fair queueing approaches have been proposé&ow that the service error of SRR is worst-cagé V).
for reducing thisO(N) service time error. A hierar- Grouping clients to reduce scheduling complexity has

chical scheduling approach [26] reduces service time erbeen used by [20], [8] and [23]. These fair queueing ap-
ror to O(log N). Worst-Case Weighted Fair Queueing proaches group clients into buckets based on client virtual
(WF2Q) [1] introduced eligible virtual times and can guar- timestamps. With the exception of [23], which uses expo-
antee both a lower and upper bound on errodfand  nential grouping, the fairness of these virtual time birt-sor
+1, respectively for network packet scheduling. It has alsang schemes depends on the granularity of the buckets and
been applied to uniprocessor scheduling as Eligible Viris adversely affected by skewed client weight distribugion
tual Deadline First (EEVDF) [25]. These algorithms pro- On the other handZR3 groups based on client weights,
vide stronger proportional fairness guarantees than othewhich are relatively static, and uses groups as schedulable
approaches, but are more difficult to implement and still re-entities in a two-level scheduling hierarchy.
quire at leasO(log N) time. The grouping strategy used HR? was first intro-
Motivated by the need for faster schedulers with goodduced by two of the authors for uniprocessor scheduling [6]
fairness guarantees, one of the authors developed Virtuaknd generalized by three of the authors to network packet
Time Round-Robin (VTRR) [17]. VTRR first introduced scheduling [4]. A similar grouping strategy was indepen-
the simple idea of going round-robin through clients butdently developed in Stratified Round Robin (StRR) [19] for
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network packet scheduling. StRR distributes all clienthwi been done in proportional share multiprocessor scheduling
weights betweerz—* and2~(*~1 into classF; (F here WRR and fair-share multiprocessor schedulers have been
not to be confused with our frontlog). StRR splits time into developed, but have the fairness problems inherent in those
scheduling slots and then makes sure to assign all theslienapproaches. The only multiprocessor fair queueing algo-
in classF}, one slot every scheduling interval, using a creditrithm that has been proposed is Surplus Fair Scheduling
and deficit scheme within a class. This is also similar to(SFS) [7]. SFS also adapts a uniprocessor algorithm, SFQ,
GR3, with the key difference that a client can run for up to multiple processors using a centralized run queue. No
to two consecutive time units, while i6G'R3, a client is  theoretical fairness bounds are provided. If a selectettli

allowed to run only once every time its group is selectedis already running on another processor, it is removed from
regardless of its deficit. the run queue. This operation may introduce unfairness if

StRR has weaker fairness guarantees and highé%sed in low overhead, round-robin variant algorithms. In
scheduling complexity tha R?. StRR assigns each client contrast, GR3>M P provides strong fairness bounds with
weight as a fraction of the total processing capacity of thdower scheduling overhead.
system. This results in weaker fairness guarantees whenthe ~ SFS introduced the notion déasibleclients along
sum of these fractions is not close to the limitlofFor ex- ~ With a O(P)-time weight readjustment algorithm, which
ample, if we haveV = 2% + 1 clients, one of weight.5 requires however that the clients be sorted by their orlgina
and the rest of weight~(++2) (total weight =0.75), StRR ~ Weight. By using its grouping strateg#,?* M P performs
will run the clients in such a way that aftef+ slots, the ~the same weight readjustment i) time without the
error of the large client is2Y, such that this client will then need to order clients, thus avoiding SF8glog V) over-
run uniterruptedly forV tu to regain its due service. Client head per maintenance operation. The optimality of SFS’s
weights could be scaled to reduce this error, but with addiand our weight readjustment algorithms rests in preserva-
tional O(V') complexity. StRR require®(g) worst-case tion of ordering of clients by weight and of weight pro-
time to determine the next class that should be selectedPOrtions among feasible clients, and not in minimal overall
whereg is the number of groups. Hardware support canWeight change, as [7] claims.
hide this complexity assuming a small, predefined maxi-
mum numl_)erofgroups [19], bu_t running an StRR processoz  ~gnclusions and Future Work
scheduler in software still requir€s(g) complexity.

GR? also differs from StRR and other deficit round-
robin variants in its distribution of deficit. In DRR, SRR,
and StRR, the variation in the deficit of all the clients af-
fects the fairness in the system. To illustrate this, caersid
N + 1 clients, all having the same weight except the first
one, whose weight iV times larger. If the deficit of all

]E.r;gt(;l:_eer:f e')l(lct()a:;tt?: ft'{,St_onoeJ'\S; clc1)_sheel:gg)er:rtrr?é C(;Ltfhft better fairness than th@(N) service error bounds of most
! ient wi ut; = O(N). ' I eair queuing algorithms that need(log N) time for their

mechanism as employed in round-robin schemes doesn’t aﬁ- . . ) .
operation. GR?® achieves these benefits due to its group-
low for better thanO(N) error. In contrast(zR® ensures P group

that a group consumes all the work assigned to it, so thalpg strategy, ratio-based intergroup scheduling, andlpigh

> N e efficient intragroup round robin scheme with good fairness
the deficit is a tool used only in distributing work within a group g

certain aroup. and not within the svstem. Thus. Grouns ef_bounds.GR3 introduces a novel frontlog mechanism and
ain group, . Y - 1NuS, groups €ty weight readjustment algorithm to schedule small-scale
fectively isolate the impact of unfortunate distributioofs

deficit in the scheduler. This allows for the error bounds inmulUprocessor s_ystems Wh"e preserving its good bounds
on fairness and time complexity.

GR? to depend only on th.e number of groups instead of the Our experiences witli; R® show that it is simple to
much larger number of clients. : ) . L .
implement and easy to integrate into existing commodity
A rigorous analysis on network packet schedulingoperating systems. We have measured the performance
[27] suggests thad (V') delay bounds are unavoidable with of ¢ 3 using both simulations and kernel measurements
packet scheduling algorithms of less th@xilog V) time  of real system performance using a prototype Linux im-
complexity.GR3's O(g?) error bound and)(1) time com- plementation. Our simulation results show tiéaR>? can
plexity are consistent with this analysis, since delay amd s provide more than two orders of magnitude better pro-
vice error are not equivalent concepts. Thus, if adapted t®ortional fairness behavior than other popular propogion
packet scheduling; > would worst-case incud(N) de-  share scheduling algorithms, including WRR, WFQ, SFQ,
lay while preserving a®(¢*) service error. VTRR, and SRR. Our experimental results using Gut>
Previous work in proportional share scheduling hasLinux implementation further demonstrate th@f2® pro-
focused on scheduling a single resource and little work hasides accurate proportional fairness behavior on real ap-

We have designed, implemented, and evaluated Group Ra-
tio Round-Robin scheduling in the Linux operating system.
We prove thatG R? is the first and onlyD(1) uniprocessor
and multiprocessor scheduling algorithm that guarantees a
service error bound of less th& V) compared to an ide-
alized processor sharing model, whe¥ds the number of
runnable clients. In spite of its low complexity,R> offers
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plications with much lower scheduling overhead than other[12] R. Essick. An Event-Based Fair Share SchedulerPrim
Linux schedulers, especially for larger workloads.

While small-scale multiprocessors are the most

widely available multiprocessor configurations today, the[13]
use of large-scale multiprocessor systems is growing given
the benefits of server consolidation. Developing accurate,
low-overhead proportional share schedulers that scae-eff

tively to manage these large-scale multiprocessor systemLéL

remains an important area of future work.
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