
Interactive and Automated Debugging for Big Data Analytics
Muhammad Ali Gulzar

University of California, Los Angeles

ABSTRACT

An abundance of data in many disciplines of science, engineering,

national security, health care, and business has led to the emerging

field of Big Data Analytics that run in a cloud computing environ-

ment. To process massive quantities of data in the cloud, developers

leverage Data-Intensive Scalable Computing (DISC) systems such

as Google’s MapReduce, Hadoop, and Spark .

Currently, developers do not have easy means to debug DISC

applications. The use of cloud computing makes application devel-

opment feel more like batch jobs and the nature of debugging is

therefore post-mortem. Developers of big data applications write

code that implements a data processing pipeline and test it on their

local workstation with a small sample data, downloaded from a

TB-scale data warehouse. They cross fingers and hope that the

program works in the expensive production cloud. When a job fails

or they get a suspicious result, data scientists spend hours guessing

at the source of the error, digging through post-mortem logs. In

such cases, the data scientists may want to pinpoint the root cause

of errors by investigating a subset of corresponding input records.

The vision of my work is to provide interactive, real-time and

automated debugging services for big data processing programs

in modern DISC systems with minimum performance impact. My

work investigates the following research questions in the context

of big data analytics: (1) What are the necessary debugging prim-

itives for interactive big data processing? (2) What scalable fault

localization algorithms are needed to help the user to localize and

characterize the root causes of errors? (3) How can we improve

testing efficiency during iterative development of DISC applications

by reasoning the semantics of dataflow operators and user-defined

functions used inside dataflow operators in tandem?

To answer these questions, we synthesize and innovate ideas

from software engineering, big data systems, and program analysis,

and coordinate innovations across the software stack from the

user-facing API all the way down to the systems infrastructure.

CCS CONCEPTS

• Software and its engineering → Cloud computing; Soft-

ware testing and debugging; Error handling and recovery; • In-
formation systems→ Data cleaning; Data provenance;

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5663-3/18/05. . . $15.00

https://doi.org/10.1145/3183440.3190334

KEYWORDS

Debugging and testing, automated debugging, test minimization,

fault localization, data provenance, data-intensive scalable comput-

ing (DISC), big data, and data cleaning

ACM Reference Format:

Muhammad Ali Gulzar. 2018. Interactive and Automated Debugging for Big

Data Analytics. In ICSE ’18 Companion: 40th International Conference on
Software Engineering Companion, May 27-June 3, 2018, Gothenburg, Sweden.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3183440.3190334

1 INTERACTIVE DEBUGGING FOR BIG DATA

APPLICATIONS

Developers of DISC applications are notified of runtime failures or

incorrect outputs after many hours of wasted computing cycles on

the cloud. DISC systems such as Spark do provide execution logs

of submitted jobs. However, these logs present only the physical

view of Big Data processing and do not provide the logical view of

program execution. These logs do not convey which intermediate

outputs are produced from which inputs, nor do they indicate what

inputs are causing incorrect results or delays, etc. In Spark, crashes

cause the correctly computed stages to simply be thrown away

which results in valuable computed partial results to be wasted.

Finding intermediate data records responsible for a failure corre-

sponds to finding few records in millions, if not billions, of records.

The similar problem exists when a user wants to investigate the

probable cause of delay in the processing. Finding straggler records

are essential for a user to improve the runtime of the application.

1 10 100 1,000

100

1,000

10,000

Dataset(GB)

T
im

e(
s)

BiдDebuд −Maximum

ApacheSpark

Figure 1: BigDebug’s perfor-

mance and scalability

To address debugging

challenges, we design a

set of interactive, real-

time debugging primi-

tives for big data pro-

cessing in Apache Spark,

the next generation data-

intensive scalable cloud

computing platform. Our

tool BigDebug [5] pro-

vides simulated break-

points, which create the

illusion of a breakpoint with the ability to inspect program state in

distributed worker nodes and to resume relevant sub-computations,

even though the program is still running in the cloud. When a user

finds anomalies in intermediate data, currently the only option is

to terminate the job and rewrite the program to handle the outliers.

To save the cost of re-run, BigDebug allows a user to replace any

code in the succeeding RDDs after the breakpoint.

https://doi.org/10.1145/3183440.3190334
https://doi.org/10.1145/3183440.3190334

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Gulzar et al.

To help a user inspect millions of records passing through a data-

parallel pipeline, BigDebug provides on demand guarded watch-

points, which dynamically retrieve only those records that match a

user-defined guard predicate which can dynamically be updated

on the fly. By leveraging our previous work Titian [6], BigDebug

supports fine-grained forward and backward tracing at the level of

individual records. To avoid restarting a job from scratch in case of

a crash, BigDebug provides a real-time quick fix and resume feature

where a user can modify code or data at runtime. It also provides

fine-grained latency monitoring to notify which records are tak-

ing much longer than other records. BigDebug extends the current

Spark UI and provides a live stream of debugging information in

an interactive and user-friendly manner.

Overhead

Benchmark Dataset (GB)

Max w/o Latency

PigMix L1 1, 10, 50, 100, 150, 200 1.38X 1.29X

Grep 20, 30, 40, . . . 90 1.76X 1.07X

Word Count 0.5 to 1000 (increment with a log scale) 2.5X 1.34X

Table 1: Performance Evaluation on Subject Programs

We evaluated BigDebug in terms of performance overhead, scala-

bility, time saving, and crash localizability improvement on three

Spark benchmark programs with up to one terabyte of data. With

the maximum instrumentation setting where BigDebug is enabled

with record-level tracing, crash culprit determination, and latency

profiling, and every operation at every step is instrumented with

breakpoints and watchpoints, it takes 2.5 times longer than the

baseline Spark (see Figure 1). If we disable the most expensive

record-level latency profiling, BigDebug introduces an overhead of

less than 34% on average as shown in Table 1. BigDebug’s quick fix

and resume feature allows a user to avoid re-running a program

from scratch, resulting in up to 100% time saving. It exhibits less

than 24% overhead for record-level tracing, 19% overhead for crash

monitoring, and 9% for on demand watchpoint on average.

2 AUTOMATED DEBUGGING OF DISC

WORKFLOWS

Errors are hard to diagnose in big data analytics. When a program

fails, a user may want to investigate a subset of the original input

inducing a crash, a failure, or a wrong outcome. The user (e.g. data
scientist) may want to pinpoint the root cause of errors by in-

vestigating a subset of corresponding input records. One possible

approach is to track data provenance (DP) (input output record map-

pings created in individual distributed worker nodes). However,

according to our prior study [4], backward tracing based on data
provenance finds an input set of records in the order of millions,

which is still too large for a developer to manually sift through.

Delta Debugging (DD) is a well-known algorithm that re-executes

the same program with different subsets of input records [9]. Apply-

ing the DD algorithm naively on big data analytics is not scalable

because DD is a generic, black box procedure that does not con-

sider the key-value mapping generated from individual dataflow

operators.

To find the root cause of the failure from the input dataset in

DISC workflows with high precision, we have designed BigSift that

brings delta debugging (DD) closer to a reality in DISC environments

by combining DD with data provenance and by also implementing

Test	Predicate	
Pushdown

Prioritizing	
Backward	
Traces

Bitmap	based	
Test	

Memoization

Input:	
A	Spark	Program,	A
Test	Function,	and	
Input	data	

Output:	
Minimum	Fault-
Inducing	Input	
Records

Data	Provenance	+	Delta	Debugging

Figure 2: BigSift’s Overall Architecture

a unique set of systems optimizations geared towards repetitive

DISC debugging workloads (see Figure 2). We re-define data prove-

nance [6] for the purpose of debugging by leveraging the semantics

of data transformation operators. BigSift then prunes out input

records irrelevant to the given faulty output records, significantly

reducing the initial scope of failure-inducing records before apply-

ing DD. We also implement a set of optimization and prioritization

techniques that uniquely benefit the iterative nature of DD work-

loads. Our current implementation targets Apache Spark [8] but

it can be generalized to any data processing system that supports

data provenance.

Given a DISC program, an input dataset, and a user-defined test

function that distinguishes the faulty outputs from the correct ones,

BigSift automatically finds a minimum set of fault-inducing input

records responsible for a faulty output in three phases. Phase 1

applies test driven data provenance to remove input records that are

not relevant for identifying the fault(s) in the initial scope of fault

localization. BigSift re-defines the notion of data provenance by

taking insights from predicate pushdown [7]. By pushing down a

test oracle function from the final stage to an earlier stage, BigSift

tests partial results instead of final results, dramatically reducing

the scope of fault-inducing inputs. In Phase 2, BigSift prioritizes the

backward traces by implementing trace overlapping, based on the

insight that faulty outputs are rarely independent i.e.the same input

record may propagate to multiple output records through opera-

tors such as flatMap or join. BigSift also prioritizes the smallest

backward traces first to explain as many faulty output records as

possible within a time limit. In Phase 3, BigSift performs optimized
delta debugging while leveraging bitmap based memoization to

reuse the test results of previously tried sub-configurations, when

possible. BigSift augments the current Spark UI and provides a live

stream of debugging information.

Running Time (s) Debugging Time (s)

Program Original Job DD BigSift Improvement

Movie Histogram 56.2 232.8 17.3 13.5X

Inverted Index 107.7 584.2 13.4 43.6X

Rating Histogram 40.3 263.4 16.6 15.9X

Sequence Count 356.0 13772.1 208.8 66.0X

Rating Frequency 77.5 437.9 14.9 29.5X

College Students 53.1 235.2 31.8 7.4X

Weather Analysis 238.5 999.1 89.9 11.1X

Transit Analysis 45.5 375.8 20.2 18.6X

Table 2: Fault localization time improvement by BigSift (Pro-

grams are explained elsewhere [4])

BigSift: Automated Debugging of Big Data Analytics in DISC ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

In comparison to using DP alone, BigSift finds a more concise

subset of fault-inducing input records, improving its fault local-

ization capability by several orders of magnitude. In most subject

programs, data provenance stops at identifying failure inducing

records at the size of up to ∼103 to 107 records, which is still infeasi-

ble for developers to manually sift through. In comparison to using

DD alone, BigSift reduces the fault localization time (as much as

66×) by pruning out input records that are not relevant to faulty

outputs. Further, our trace overlapping heuristic decreases the total

debugging time by 14%, and our test memoization optimization

provides up to 26% decrease in debugging time. Indeed, the total

debugging time taken by BigSift is often 62% less than the original

job running time per single faulty output. In software engineering

literature, the debugging time is generally much longer than the

original running time [1, 2, 9].

3 WHITE-BOX TEST DATA SAMPLING AND

GENERATION IN DISC

Testing big data applications is an expensive and time consuming

process because the input data for DISC applications is extremely

large. It is clearly infeasible for developers to read through the

production data apriori and design test inputs for their application.

This problem is exacerbated by the fact that data is originating

from diverse sources and is often unstructured, ill-formatted, and

schema less. Even though all data records follow the same data-

parallel pipeline, many of those records may not share the same

program path for each user-defined function. Currently there are

no easy means of reducing the size of input data for testing big

data applications. Random sampling of data is inadequate, as it may

sacrifice test adequacy such as code coverage or fault detection

ratios.

During iterative program development, when a developer makes

modifications to a dataflow program, he or she may want to select

only the subset of data relevant to the modification or determine

whether additional records are necessary for testing the modified

behavior of the program. During program evolution, when exist-

ing input data miss certain program behaviors (i.e., control flow

paths), developers must generate new input records to fully test

program logic. The interaction of user defined functions and the

semantics of data flow operators may make regression testing of

data flow programs difficult. Thus, test selection and augmentation

techniques must reason about both semantics in tandem.

We propose a new test selection and augmentation technique for

DISC applications, BigSample, that improves code statement cover-

age and fault detection rates of big data analytics applications by

reasoning about the semantic of dataflow program directly. BigSam-

ple comprises of a new symbolic execution technique for dataflow

programs that directly models the path conditions of user-defined

functions (UDFs) in conjunction with the semantics of dataflow

operators such as join and group-by. By leveraging this symbolic

execution engine, BigSample performs test minimization, augmenta-

tion, and selection consequently reducing the testing time. To test

big data workflows, BigSample first converts the path conditions ob-

tained from UDFs and the specifications of dataflow operators into

a test input selection query and produce a subset of input records

Dataflow	
Program	

Dataflow	
Operations	
Graph

User	Defined	
Functions

in => in.split ..
s => s < 0
pair => pair._2.length
...

Symbolic	
Execution

Logical	
Specifications

Paths	
Constraints	
and	Effects

Input
Sample	Test	

Data

Theorem	
Solver	i.e.	Z3

Selection	
Query

Generating	Input

Figure 3: BigSample’s Overall Architecture

to be used for iterative development and testing. This test mini-

mization technique can be seen as a new white-box data sampling

technique. When the reduced set of records do not cover certain

path conditions, BigSample’s test augmentation algorithm generates

the respective input records by leveraging off-the-shelf theorem

provers such as Z3 [3]. This process is also illustrated in Figure 3.

Lastly, BigSample performs regression test selection by computing

the impact of application logic changes on data.

In terms of evaluation, we plan to assess the efficiency and ef-

fectiveness of our test selection and augmentation technique in

comparison to two baseline techniques: (1) a testing technique that

only reasons about the semantics of data flow operators at a coarse

grained level during test selection and augmentation and (2) a naive

re-testing technique that re-runs the program on the entire input

records. Our investigation will assess testing efficiency in terms

of (1) the reduction in the size of original input records that are

selected (2) the trade-offs between fault detection rates and the size

of selected input records.

REFERENCES

[1] Jong-Deok Choi and Andreas Zeller. 2002. Isolating Failure-inducing Thread

Schedules. In Proceedings of the 2002 ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA ’02). ACM, New York, NY, USA, 210–220.

https://doi.org/10.1145/566172.566211

[2] Holger Cleve and Andreas Zeller. 2005. Locating Causes of Program Failures. In

Proceedings of the 27th International Conference on Software Engineering (ICSE ’05).
ACM, New York, NY, USA, 342–351. https://doi.org/10.1145/1062455.1062522

[3] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. Tools
and Algorithms for the Construction and Analysis of Systems (2008), 337–340.

[4] Muhammad Ali Gulzar, Matteo Interlandi, Xueyuan Han, Mingda Li, Tyson Condie,

and Miryung Kim. 2017. Automated Debugging in Data-intensive Scalable Com-

puting. In Proceedings of the 2017 Symposium on Cloud Computing (SoCC ’17). ACM,

New York, NY, USA, 520–534. https://doi.org/10.1145/3127479.3131624

[5] Muhammad Ali Gulzar, Matteo Interlandi, Seunghyun Yoo, Sai Deep Tetali, Tyson

Condie, Todd Millstein, and Miryung Kim. 2016. BigDebug: Debugging Primitives

for Interactive Big Data Processing in Spark. In Proceedings of the 38th International
Conference on Software Engineering (ICSE ’16). ACM, New York, NY, USA, 784–795.

https://doi.org/10.1145/2884781.2884813

[6] Matteo Interlandi, Kshitij Shah, Sai Deep Tetali, Muhammad Ali Gulzar, Se-

unghyun Yoo, Miryung Kim, Todd Millstein, and Tyson Condie. 2015. Titian:

Data Provenance Support in Spark. Proc. VLDB Endow. 9, 3 (Nov. 2015), 216–227.
https://doi.org/10.14778/2850583.2850595

[7] Jeffrey D. Ullman. 1990. Principles of Database and Knowledge-Base Systems: Volume
II: The New Technologies. W. H. Freeman & Co., New York, NY, USA.

[8] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-

silient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster

Computing. In Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation (NSDI’12). USENIX Association, Berkeley, CA, USA,

2–2. http://dl.acm.org/citation.cfm?id=2228298.2228301

[9] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and isolating failure-

inducing input. Software Engineering, IEEE Transactions on 28, 2 (2002), 183–200.

https://doi.org/10.1145/566172.566211
https://doi.org/10.1145/1062455.1062522
https://doi.org/10.1145/3127479.3131624
https://doi.org/10.1145/2884781.2884813
https://doi.org/10.14778/2850583.2850595
http://dl.acm.org/citation.cfm?id=2228298.2228301

