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ABSTRACT
Recent effort to test deep learning systems has produced an intuitive
and compelling test criterion called neuron coverage (NC), which
resembles the notion of traditional code coverage. NC measures the
proportion of neurons activated in a neural network and it is implic-
itly assumed that increasing NC improves the quality of a test suite.
In an attempt to automatically generate a test suite that increases
NC, we design a novel diversity promoting regularizer that can be
plugged into existing adversarial attack algorithms. We then assess
whether such attempts to increase NC could generate a test suite
that (1) detects adversarial attacks successfully, (2) produces natural
inputs, and (3) is unbiased to particular class predictions. Contrary
to expectation, our extensive evaluation finds that increasing NC
actually makes it harder to generate an effective test suite: higher
neuron coverage leads to fewer defects detected, less natural inputs,
and more biased prediction preferences. Our results invoke skep-
ticism that increasing neuron coverage may not be a meaningful
objective for generating tests for deep neural networks and call for
a new test generation technique that considers defect detection,
naturalness, and output impartiality in tandem.
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• Software and its engineering → Software testing and de-
bugging; Software reliability; • Computing methodologies →

Neural networks.

KEYWORDS
Testing, Software Engineering, Machine Learning, Neuron Cover-
age, Adversarial Attack

ACM Reference Format:
Fabrice Harel-Canada, Lingxiao Wang, Muhammad Ali Gulzar, Quanquan
Gu, and Miryung Kim. 2020. Is Neuron Coverage a Meaningful Measure for
Testing Deep Neural Networks?. In Proceedings of the 28th ACM Joint Euro-
pean Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE ’20), November 8–13, 2020, Virtual Event,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3368089.
3409754

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7043-1/20/11.
https://doi.org/10.1145/3368089.3409754

1 INTRODUCTION
Extensive progress in machine learning has enabled computers
to model expected behavior with minimal human guidance and
has led to its integration into many safety-critical systems [5, 24].
Since all software is prone to unanticipated and undesirable defects,
creating test suites and assessing their quality is an important part
of building confidence during the software lifecycle.

To assess the test adequacy of neural networks, prior work pro-
posed neuron coverage (NC) [47] and its variants [37, 58]. This
notion of NC builds on the intuition of code coverage, whilst rec-
ognizing the unique challenges and structures of neural networks.
NC describes the proportion of neurons activated beyond a given
threshold. The intuition here is that NC captures the magnitude
of individual neuron activations independently and thus serves as
a proxy for observing model behavior. Based on the implicit as-
sumption that increasing NC can improve test suite quality, NC was
used to guide test generation [47, 58]. Prior work found preliminary
evidence that NC is correlated with defect detection capability [58].

To systematically increase NC during test generation, we de-
velop a novel diversity-promoting regularizer that can be plugged
into existing adversarial attack algorithms such as PGD [39] and
CW [8]. This regularizer penalizes skewed layer-wise activations to
promote more diverse neuron activation distributions. As a result,
our regularizer can be added to augment existing adversarial at-
tack methods so that these methods can induce previously inactive
neurons to fire and thereby increase NC. While prior work [47, 58]
has attempted to improve a few neurons’ activation magnitudes at
each optimization step, our diversity-promoting regularizer makes
this process more systematic by incorporating NC increase and
diversification into the optimization objective.

We then assess the generated test suites using three criteria. The
first is defect detection capability, i.e., the ability to detect adver-
sarial attacks. The second is the naturalness of the generated test
inputs and we use the Inception Score (IS) [4, 51] and the Frèchet
Inception Distance (FID) [17, 42] to assess how realistic the gener-
ated test inputs are. The third criterion is output impartiality, the
degree to which model predictions are biased (or unbiased) towards
particular class labels. Assessing impartiality is inspired by the
output-uniqueness test selection criteria [2], as the test suite must
exercise diverse output behavior and should not prefer only a few
output values. We quantify output impartiality via Pielou’s even-
ness [49], an entropy-based measure [54] from the field of ecology.

* This research was done while the third author was a graduate student at UCLA.
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Equipped with the above evaluation metrics and the novel di-
versity promoting input generation method, we investigate the
trade-o�s between neuron coverage, defect detection, naturalness
and output impartiality. We study two image classi�cation datasets
(MNIST and CIFAR10), one autonomous vehicle dataset (Udac-
ity Self-Driving Car), six classi�cation-based DNN models, two
regression-based DNN models, and two attack algorithms (CW and
PGD). In total, 2095 test suites, over 200,000 images, are gener-
ated. Each test suite represents a di�erent con�guration of models,
datasets, attack algorithms, and hyperparameter combinations used
for targeting certain layers and promoting diversity in neuron acti-
vations. This extensive analysis �nds that increasing NC actually
makes it harder to generate an e�ective test suite.

(1) Defect Detection : Only 2 out of 64 experimental results
supported the hypothesis that NC is both strongly and posi-
tively correlated with defect detection (i.e., adversarial attack
success), whereas 33 were negatively correlated, implying
that increasing NC is likely to harm defect detection.

(2) Naturalness: Only 1 out of 64 results supported the hypoth-
esis that NC is both strongly and positively correlated with
the realism and naturalness of the inputs, whereas 44 were
negatively correlated, implying that increasing NC is likely
to make the generated inputs more unnatural.

(3) Output Impartiality : Only 3 out of 64 results supported the
hypothesis that NC is both strongly and positively correlated
with impartiality in output predictions, whereas 21 were
negatively correlated. Certain class labels have higher NC
by default and the process of increasing NC in fact biases
perturbations towards those output class labels.

Our key contributions are summarized as follows:

� We develop a novel regularization technique that can be
seamlessly integrated into existing adversarial attack meth-
ods to promote neural activation diversity and increase neu-
ron coverage during test suite generation.

� We adopt the Inception Score (IS) [51] and Frèchet Inception
Distance (FID) [17] as generic, scalable, and automatic means
of evaluating naturalness. We are the �rst to apply Pielou's
evenness [49] to examine the previously under-investigated
issue of output impartiality in test suites.

� We conduct extensive evaluations to show that NC is nei-
ther positively nor strongly correlated with attack success,
input realism, and output impartiality, which we argue are
important properties to consider when testing DL systems.

� We put forward the complete code and artifacts to automati-
cally generate test suites and replicate our empirical analysis
at https://doi.org/10.5281/zenodo.4021473

Overall, our �ndings invoke skepticism that neuron coverage
may not be a meaningful measure for testing deep neural networks.
This result is aligned with recent skepticism that, while code cov-
erage remains a widely used test adequacy criterion [6, 23], code
coverage may not be correlated with defect detection [22] and thus
may not be a meaningful metric by itself. Similar to how Inozem-
sevaet al.[22] highlight an empirical lack of correlation between
traditional code coverage and defect defection, our result is about
a lack ofcorrelation, not causation. We do not claim that NC is
useless; rather, we warn researchers about the potential misuse of

NC asthe objectivefor test generation because a naive attempt to
increase NC could sacri�ce other desired properties.

These �ndings call for a new test generation method that not
only improves defect detection, but also promotes naturalness and
output impartiality to createrealisticinputs and to exercisediverse
output behavior. This argument to incorporate additional objectives
is aligned with a recent survey of testing ML-based systems [62]
that lists multiple desired testing properties, including correctness,
model relevance, robustness, security, e�ciency, fairness, inter-
pretability, privacy, and surprise adequacy. Satisfying such multiple
objectives may necessitate the use of multi-objective search tech-
niques [31] or enable users to easily add domain-speci�c constraints
to guide meaningful input transformation and oracle checking in
metamorphic testing [52].

2 RELATED WORK
This section reviews related work on DL systems, DNN testing, and
adversarial attacks. Work relevant to our methodology is described
in greater detail in Section 3.
Deep Learning Systems.DNNs have achieved many breakthroughs
in the �eld of arti�cial intelligence, such as speech recognition [18],
image processing [28], statistical machine translation [3], and game
playing [55]. Each DNN contains basic computational units called
neurons, which are connected with one another via edges of vary-
ing importance or weight. Neurons apply a nonlinear activation
function to the inner product of their inputs and weights to output
a value, which becomes the input to a subsequent neuron. Layers
are used to organize the directed connections between neurons and
there is always one or more hidden layers between one input and
one output layer. Overall, a DNN can be viewed as a meta-function
that aggregates the weighted contributions from its neural sub-
functions to map some input into some target output. Suboptimally
set weights make the DL system vulnerable to erroneous behav-
iors and the opacity of these numerically-derived rules make them
di�cult to understand and debug.
DNN Testing. With the success of deep learning, there emerged
a line of research into testing DNNs by leveraging the ideas in
traditional software testing methods [15, 40]. We discuss several of
the most relevant DNN testing methods that utilize the NC-based
criteria as follows.

DeepXplore [47] is a white-box di�erential testing algorithm that
leverages NC to guide systematic exploration of DNN's internal
logic. Input images are modi�ed by several domain-speci�c trans-
formations, and a transformed image is selected for inclusion into
a test suite if it fools at least one of several similarly trained DNNs.
Their study �nds that NC is a better metric than code coverage and
increasing NC tends to increase`1-distance among inputs.

DeepTest [58] is a gray-box, NC-guided test suite generation ap-
proach using metamorphic relations. This e�ort introduced a wider
range of a�ne transformations to predict the steering angle of an
autonomous vehicle. DeepRoad [63] is a GAN-based metamorphic
testing approach that utilizes a shared latent space representation
to perform a sophisticated style transfer of some target road condi-
tion, i.e., rain, snow, etc., to a given source image. DeepRoad makes
no attempt to systematically explore the possible input space via
a metric like NC but �nds that GAN-based transformations could
expose new faulty behaviors.



Is Neuron Coverage a Meaningful Measure for Testing Deep Neural Networks? ESEC/FSE '20, November 8�13, 2020, Virtual Event, USA

DeepGauge expands on the idea of NC [37] by introducing three
new neuron-level coverage criteria and two layer-level coverage
criteria to produce a multi-granular set of DNN coverage metrics.
To argue for the utility of these metrics, DeepGauge uses standard
adversarial attack techniques [8, 14, 30, 46] to generate test suites.
It then compares the NC of the original test suite against that of the
new, augmented test suite, boosted by the generated adversarial
examples. By doing so, it �nds some evidence that adding adversar-
ial examples tends to increase NC in terms of most of the proposed
criteria. In Section 5, we report our results that explicit e�ort to
increase NC actually does not improve defect detection and is often
harmful in terms of naturalness and output impartiality.

Recent on-going work [11, 33, 53] found preliminary evidence
that the correlation between NC and DNN robustness is rather
limited and that similar structural coverage metrics for DNNs could
be misleading. Speci�cally, their test suites are generated using the
standard adversarial attack methods, and their evaluation is limited
to defect detection only. Our study scope is morecomprehensive:
we use automated, quantitative measures of naturalness and out-
put impartiality in addition to defect detection and systematically
investigate the trade-o�s; we design a novel diversity promoting
regularizer to extend existing adversarial attack algorithms; and we
include both classi�cation models and regression models (8 models
in total), as opposed to classi�cation models only.

While our evaluation focuses ongeneratingtest suites, others
focus on selecting existing tests based on model uncertainty [38] or
surprise adequacy (i.e., signi�cantly di�erent and adversarial) [25].

Finally, it is worth noting that our proposed output impartiality
criteria discussed in Section 4.3 is di�erent from the concept of
fairness in machine learning [9]. Fairness in ML is concerned with
the bias of an ML model with respect to sensitive attributes, such
as gender or race. Along a similar vein, Themis, a software fairness
testing tool by Galhotraet al. [12], automatically detects causal
discrimination between input-output pairs for user-speci�ed at-
tributes. In sharp contrast with these notions of fairness, our output
impartiality is a measure of the bias on how atest suiteexercises
diverse output behaviors in an ML model.
Adversarial Attacks. Recent studies show that DNNs are vulner-
able to adversarial examples [14, 57], i.e., by adding a very small, of-
ten visually imperceptible, perturbation to an input, a well-trained
DNN may produce misclassi�cations. While adversarial attacks
employ a variety of methods to induce erroneous behavior, their
e�ectiveness is largely measured by the attack success rate of the
perturbed inputs and its distortion from the original inputs. Most
optimization-based adversarial attacks [8, 39] are based oǹ2 or
`1 norm-based perturbation. Some work [47, 58] has attempted
to improve or side step the norm constraint with domain speci�c
transformations. In our evaluation of neuron coverage, we use the
standard attack methods with̀1 norm constraint, because these
methods are e�cient and can generate natural examples.

Adversarial attack algorithms o�er both targeted and untargeted
attacks for perturbing inputs to be predicted as some other class.
Untargeted attacks aim to turn the prediction into any incorrect
class, while targeted attacks aim to turn the prediction into a speci�c
class. We use untargeted attacks to give them more freedom to
perturb the input in whichever way NC maximization incentivizes.

Table 1: DNN Architectural Details

DNNs Dataset
Primary
Layer Type

# Layers # Neurons

FCNet5 MNIST Fully Connected 5 478
FCNet10 MNIST Fully Connected 10 3,206
Conv1DNet MNIST Conv1D 4 35,410
Conv2DNet MNIST Conv2D 4 15,230
ResNet56[16] CIFAR10 Conv2D 56 532,490
DenseNet121[19] CIFAR10 Conv2D 121 563,210
DAVE2 [5] Driving Conv2D 10 82,669
DAVE2-N [47] ` Driving Conv2D 10 82,669

3 STUDY METHODS
This section describes the datasets, DNN models, and adversarial
attack algorithms used for our empirical study and describes our
diversity promoting regularizer to increase neuron coverage.

3.1 Datasets and DNNs
Table 1 summarizes architectural details of all the DNNs under test.

CIFAR10 [27] is a dataset containing 32x32x3 RGB pixel images
representing ten mutually exclusive classes of naturally occurring
entities that are suitable for IS and FID realism measurement. We use
two well-known pre-trained DNNs: a 56-layer ResNet [16, 20] and
a 121-layer DenseNet [19, 48], both of which achieve competitive
performance on this dataset.

MNIST [32] is a large, well-studied dataset containing 28x28x1
gray-scale pixel images representing handwritten digits from 0 to
9. For this dataset, we consider two fully connected neural net-
works: FCNet5 with 5 hidden layers and FCNet10 with 10 hidden
layers, and two convolutional neural networks: Conv1DNet and
Conv2DNet. Both convolutional neural networks have 2 convo-
lutional layers followed by 2 fully connected layers, but vary the
primary convolutional layer type from 1D to 2D. All MNIST DNNs
were trained for 10 epochs using an Adam optimizer [26].

The two realism metrics we employ�IS [51] and FID [17]�are
tuned on the internal structures of natural images which generally
have both foregrounds and backgrounds. Because such naturalism
is not applicable to a digit recognition task, we exclude MNIST
when studying the relationship between NC and naturalness.

Udacity Self-Driving Car [1] is a dataset containing480� 640�
3 RGB pixel images extracted from video footage shot by a camera
mounted to the front of a moving vehicle and the corresponding
angle of the steering wheel (� 25� ) for each frame. We use two pre-
trained DNNs: DAVE2 and DAVE2-Norminit (abbreviated DAVE2-
N), used by DeepXplore [47] and originally from NVIDIA [5].

3.2 Measuring Neuron Coverage
Peiet al.[47] formally de�ne neuron coverage by the following:

neuron_cov¹T; x; t º =
jfnj8x 2 T;out¹n; xº > t gj

jN j

whereN = fn1;n2; :::g represents all the neurons in the DNN;T =
f x1; x2; :::g represents all test inputs (i.e., those to be perturbed);
out¹n; xº is a function that returns the output value of neuronn
for a given test inputx scaledto be between 0 and 1 based on
the minimum and maximum neuron activations for the layer; and
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Ê

Ë

Ì

Figure 1: Single Layer DNN. Ê represents inputs (i.e., pix-
els, features, etc.).Ë represents a hidden layer of 5 neurons,
where parentheses denote activations scaled between 0 and
1 for comparison against a NC threshold. Ì represents an
output layer of 1 neuron (i.e., class logits, probabilities, etc.).

t is the user-set threshold for determining whether a neuron is
su�ciently activated.

Figure 1 depicts an example neural network with a single hid-
den layer. Each circular node corresponds to a neuron organized
and color-coded by layer. The hidden layer neurons also contain
their layer-wise scaled activations in parentheses for comparison
against a chosen thresholdt . If t = 0, thenNCt =0 = 4•6 = 0:67,
or if t = 0:75, then NCt =0:75 = 1•6 = 0:17. Selecting an appro-
priate thresholdt was an open issue in early NC research. When
measuring NC, we vary a thresholdt for the range used by prior
work [37, 47, 58],t 2 { 0, 0.2, 0.5, 0.75 }.

3.3 Adversarial Attack Algorithms
Using adversarial attacks for test generation is analogous to fuzzing
in software testing and acts as a means of introducing targeted
perturbations. We select the following two adversarial attack algo-
rithms [8, 39] due to their widespread usage in the ML literature.

Carlini-Wagner (CW) [8] constructs the adversarial example
x + � , wherex is the original input to attack,� is the adversarial
perturbation, by solving the following optimization problem:

min
�

� � L
�
h¹x + � º;y

�
+ k� kp subject to x + � 2 »0; 1¼n ;

wherey is the label ofx, L is a suitable loss function,h is the target
model,k � kp denotes thè p-norm such as̀ 1 , `0, `2 norms, and�
is a scaling constant to balance the the lossL and the`p-norm. The
intuition behind the CW attack is to �nd some small perturbation
� that we can add to the original inputx such that it will lead the
target model to change its classi�cation. To achieve this, the CW
attack exploits the loss functionL to guide the generation of�
that will make the target model's classi�cation onx + � di�erent
from x. By minimizing the`p-norm of � , the CW attack can ensure
that such perturbation is small. In this e�ort, we use thè1 norm,
where distance is measured by the pixel with the greatest magni-
tude change from its original value. As for the loss functionL, we
use the loss function provided by Carlini and Wagner[8] for our
classi�cation tasks. For our regression models, we substitute the
standard CW loss function for a custom loss designed for regression
tasks by Menget al.[41].

Figure 2: Neural activation before and after regularization:
our regularization signi�cantly promotes NC at t = 0:2.

Projected Gradient Descent (PGD) [39] �nds the adversarial
examplex + � by solving the following maximization problem:

max
�

L
�
h¹x + � º;y

�
subject to k� kp � � ;

wherey is the label ofx, h represents the target model,L is the
loss function for trainingh, � is the perturbation limit. The max-
imization step will guide us to �nd the adversarial example and
the `p norm constraint will make the perturbation small. For the
PGD attack, projected gradient descent is performed to solve the
above constrained optimization problem. We consider the`1 norm
constraint as in the CW attack, and use the sign of the gradient
[14] to e�ciently solve the maximization problem. For the loss
function L, we choose the cross-entropy loss for classi�cation tasks
and mean square error for regression tasks. We vary a di�erent
perturbation limit � 2 {0.1, 0.2, 0.3} for the norm bounds to explore
its possible e�ects on NC.

3.4 Extending Attacks to Increase NC
Adversarial attacks aim at creating perturbed inputs to achieve
two primary objectives�maximizing loss while keeping̀p-norm
distance from the original inputs small. Previous research [37, 47]
found that these algorithms do not produce any signi�cant varia-
tion in NC. To increase NC while leveraging the skeleton of existing
adversarial attacks, we design a novel adversarial attack regularizer
to incorporate the maximization of NC as an additional objective.
Our regularizer works by penalizing skewed layer-wise activations
and thus promotes more diverse neural activation distributions. Di-
versity promotion has the e�ect gravitating all neurons toward the
average magnitude of activation. Here we show the extended CW
attack, augmented with our new diversity-promoting regularizer:

min
�

� � L
�
h¹x + � º;y

�
+ k� kp + � �

Õ

l

div¹outl ¹x + � º;Uº

subject to x + � 2 »0; 1¼n ;

where� > 0 is a user-set diversity weight to control how strongly
we wish to induce higher NC;div¹�º is a divergence function;outl ¹�º
is a function that returns the neural activations from thel th layer
of the DNN for the perturbed inputsx + � ; U represents a uniform
distribution; and we consider̀1 norm in our method (i.e., choosing
p = 1 ). We use the Kullback-Leibler (KL) divergence [29] to im-
plement ourdiv¹�º function, but any other measure of the distance
between two probability distributions could be suitable. KL diver-
gence measures how much information is lost by approximating
the neural activations as if they were perfectly uniform�the higher
the loss, the less diverse the activations. With a su�ciently high
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Table 2: Original NC, Average % Increase from Original NC, and Maximum % Increase from Original NC

NCt =0 (%) NCt =0:2 (%) NCt =0:5 (%) NCt =0:75 (%)

DNNs Orig Avg " Max" Orig Avg " Max" Orig Avg " Max" Orig Avg " Max"

FCNet5 96.09 0.56 0.6661.21 22.59 61.7215.01 45.75 173.984.33 38.72 171.88
FCNet10 78.52 7.65 18.6316.79 54.68 98.90 3.70 38.27 71.63 0.89 63.77 123.91
Conv1DNet 68.08 4.82 14.5012.67 8.77 45.33 1.26 12.85 139.580.48 15.16 63.38
Conv2DNet 94.96 1.77 4.1823.89 9.11 36.47 6.66 25.48 55.69 1.23 67.88 122.04
ResNet56 95.07 0.22 0.4026.87 4.31 11.77 5.42 6.17 21.76 1.29 6.20 15.71
DenseNet121 96.46 0.04 0.0612.88 7.00 14.49 1.20 6.59 15.85 0.16 11.77 31.87
DAVE2 78.11 9.99 15.0913.32 4.39 30.62 2.45 -5.78 9.28 0.72 -16.17 29.23
DAVE2-N 77.57 11.90 17.2614.69 26.77 59.26 2.54 2.63 28.91 0.46 -1.26 37.14

Average 85.61 4.62 8.8522.79 17.20 44.82 4.78 16.50 64.59 1.20 23.26 74.40

Table 3: Experimental Variables

Variable Values

Adversarial Attacks CW, PGD
DNNs FCNet5, FCNet10, Conv1DNet

Conv2DNet, ResNet56, DenseNet121
Datasets MNIST, CIFAR10
Target Layers Varies
� Diversity Weights 0; 100; 101; 102; 103; 104; 105

c Con�dence (CW) 1 0; 20; 40
� Limit (PGD) 0:1; 0:2; 0:3

regularization weight placed on this objective, diversity promotion
can induce previously inactive neurons to �re and increase NC. It is
important to note that adding the regularizer does not necessarily
harm the attack success rate as approximately23%of our generated
suites have100%attack success. However, there tends to be an
inverse relationship between the regularization weight (� ) and the
attack success rate. For example, the average attack success rate is
65%when� is 0, and with increasing� to 1, 101, 102, 103, 104, and
105, the average attack success rate is53%, 51%, 48%, 43%, 38%, and
35%, demonstrating some decrease. Figure 2 shows how our regu-
larization promotes higher NC by having more neurons activated
by visualizing neuron activation at a given layer in Conv2DNet.

Table 2 shows our regularizer's e�ectiveness in terms of the
average and maximum percent increases in NC over the baseline
NC of the original test suite images for all models. Naturally, already
highly activated DNNs are more di�cult to activate further, making
NCt =0 undesirable for comparison purposes. On the other hand,
NCt =0:5 and NCt =0:75 activate signi�cantly smaller portions of the
network. We report primarily on NCt =0:2 for visual �gures.

As an implementation note, our diversity-promoting regularizer
can target a speci�c layer, contiguous and non-contiguous layer
subsets, or all layers simultaneously. In our experiments, we vary
the target layer one at a time, primarily to evaluate the sensitivity
of NC to this regularization. For the MNIST models, we target each
layer in turn. However, for larger models, we targetk layers (default
k = 6) evenly spaced in the model, starting from the �rst hidden
layer and ending at the output layer.

Figure 3: NCt =0:2 vs ASR: the results show that NC does not
consistently correlate with defect detection.

4 FINDINGS
For each con�guration, we construct a test suite of 100 randomly
selected images such that each class is equally represented. This
is to ensure that the suite has complete output impartiality before
perturbation. We then use the NC-augmented adversarial attack
algorithm to perturb the original tests before computing NC at
thresholdt 2 f 0; 0:2; 0:5; 0:75g, defect detection, IS, FID, and output
impartiality. Finally, we perform an analysis of 2,095 test suites to
measure the strength, direction, and signi�cance of correlation. The
experimental conditions are listed in Table 3.

1The parameterc encourages the solver to �nd an adversarial instance that is classi�ed
as a speci�c class with high con�dence, see Carlini and Wagner [8] for detail.
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Table 4: Correlation between NC & ASR: Gray indicates a p-value > 0:05

CW - ASR Correlations PGD - ASR Correlations

DNNs NCt =0 NCt =0:2 NCt =0:5 NCt =0:75 NCt =0 NCt =0:2 NCt =0:5 NCt =0:75

FCNet5 -0.20 -0.23 -0.18 0.07 -0.10 -0.52 -0.52 -0.32
FCNet10 -0.67 0.76 0.75 0.04 -0.18 -0.16 -0.10 0.14
Conv1DNet NA NA NA NA 0.58 -0.37 0.10 0.05
Conv2DNet -0.16 -0.20 -0.29 -0.23 0.08 -0.04 -0.16 -0.36
ResNet56 -0.46 0.59 0.58 0.57 -0.11 0.52 0.53 0.21
DenseNet121 -0.83 -0.21 -0.06 0.13 0.19 0.18 0.20 0.11
Dave2 0.02 -0.17 -0.27 -0.21 0.30 -0.16 -0.45 -0.34
Dave2-N NA NA NA NA 0.00 -0.10 0.00 -0.08

Average -0.38 0.09 0.09 0.06 0.10 -0.08 -0.05 -0.07

All correlations are presented in a tabular form and we visualize
a sample of the NCt =0:2 results for PGD for presentation purposes.
We adopt a standardized delineation of correlative signi�cance
laid out by Ratner [50] to characterize values between0 and� 0:3
as weak,� 0:3 to � 0:7 as moderate, and� 0:7 to � 1:0 as strong.
Correlation coe�cients are also color-coded according to whether
or not they are statistically signi�cant. Gray indicates a p-value
> 0:05and such values are discounted in our subsequent analysis.
Emboldened values indicate that the results support the associated
hypothesis and all others do not.

4.1 Defect Detection
4.1.1 Study Method.Since our approach relies on adversarial at-
tacks to generate test suites, we equate the attack success rate
(ASR) with defect detection rate (DDR) and use both measures in-
terchangeably. Letpert_accrepresent the classi�cation accuracy
on the adversarially perturbed suite of test inputs (T), then DDR
is simplyASR¹Tº = 1 � pert_acc. In order to use the same metric
for the regression driving models, we discretize their continuous
outputs into 25 equal-width intervals [59], each representing a2�

di�erence in steering angle.

4.1.2 Results.Figure 3 visualizes the relationship between NC and
ASR, broken down by DNN for the PGD attack, which shows that
NC is volatile and NC does not consistently correlate with defect
detection. Even for models that share a large degree of architectural
similarity, like the FCNet5 and FCNet10 models, the correlations dif-
fer in both strength and direction, reinforcing the unpredictability
of NC.

Table 4 shows the results of all con�gurations broken down by
an attack algorithm, network, andt threshold. Only 2 out of 64
correlations satisfy the hypothesis that NC is both positively and
strongly correlated with defect detection. Independent of direction,
58% of experimental con�gurations show a weak correlation, while
25% are merely moderate. The correlation is positive in only 36% of
con�gurations, negative in 52%, and non-existent in 12%.

Defect Detection. Our �ndings reject the hypothesis that
NC is strongly and positively correlated with defect detec-
tion. Only 3% of the con�gurations supported this.

4.2 Naturalness
DL systems are designed to solve real-world problems and there-
fore a test suite must have realistic and natural inputs. In fact,
several prior techniques are motivated by this naturalness goal
and state this requirement. For example, DeepXplore [47] uses
domain-speci�c constraints to generate test images that arevalid
and realistic. DeepTest also states that it seeks to apply well-behaved
transformations to preserve realism [58, 63]. We explicitly inves-
tigate whether maximizing NC can generate test suites re�ecting
the naturalness of the expected input space.

4.2.1 Study Method.Appraising the visual quality of an image can
be highly subjective and there is still no de�nitive solution on how
to formalize its naturalness. Fortunately, research into generative
adversarial networks (GANs) [13] has produced several popular
metrics for this purpose. We select the two most highly cited metrics
from the GAN literature to objectively measure naturalness.

TheInception Score (IS) [4, 51] formalizes the concept of nat-
uralness by decomposing it into the following two sub-concepts:

� Salience. Of the possible class labels that could be applied
to an individual image, only one has a high probability and
the others are very low. This corresponds to the image being
highly recognizable.

� Diversity. There are many di�erent kinds of classes present
across all images in the set.

The Frèchet Inception Distance (FID) [17, 42] is a measure
of similarity between two datasets of images. It is calculated by
computing the Frèchet distance between two Gaussians �tted to
feature representations of the �nal average pooling layer within
the InceptionV3 network [56]. The inventors, Heuselet al., �nd
evidence that FID captures the similarities of generated images
better than IS and that FID correlates well with human judgement
of visual quality. Unlike IS, the lower the FID value, the more real-
istic the images are, since the distance from the original images is
smaller. Therefore, we investigate whether NC has a strongnegative
correlation with FID.

In the ML community, ImageNet [10] is considered as a com-
prehensive data set for image classi�cations. Thus, the authors of
IS and FID derived these metrics based on the models trained on
ImageNet and demonstrated generalizability to other datasets such
as SVHN [43], CelebA [35], CIFAR10 [27], and LSUN Bedrooms [60].
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