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ABSTRACT

In software merge, the edits from different branches can textually
overlap (i.e., textual conflicts) or cause build and test errors (i.e.,
build and test conflicts), jeopardizing programmer productivity and
software quality. Existing tools primarily focus on textual conflicts;
few tools detect higher-order conflicts (i.e., build and test conflicts).
However, existing detectors of build conflicts are limited. Due to
their heavy usage of automatic build, current detectors (e.g., Crystal)
only report build errors instead of identifying the root causes; de-
velopers have to manually locate conflicting edits. These detectors
only help when the branches-to-merge have no textual conflict.

We present a new static analysis-based approach Bucond (“build
conflict detector”). Given three code versions in a merging scenario:
base b, left l , and right r , Bucond models each version as a graph,
and compares graphs to extract entity-related edits (e.g., class re-
naming) in l and r . We believe that build conflicts occur when
certain edits are co-applied to related entities between branches.
Bucond realizes this insight via pattern matching to identify any
cross-branch edit combination that can trigger build conflicts (e.g.,
one branch adds a reference to field F while the other branch re-
moves F). We systematically explored and devised 57 patterns, cov-
ering 97% of the build conflicts in our experiments. Our evaluation
shows Bucond to complement build-based detectors, as it (1) de-
tects conflicts with 100% precision and 88%–100% recall, (2) locates
conflicting edits, and (3) works well when those detectors do not.

CCS CONCEPTS

• Software and its engineering→ Softwaremaintenance tools;
Collaboration in software development.

KEYWORDS

software merge, build conflicts, static analysis, pattern matching

This work is licensed under a Creative Commons Attribution-Share Alike
International 4.0 License.

ASE ’22, October 10–14, 2022, Rochester, MI, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9475-8/22/10.
https://doi.org/10.1145/3551349.3556950

ACM Reference Format:

Sheikh Shadab Towqir, Bowen Shen, Muhammad Ali Gulzar, and Na Meng.
2022. Detecting Build Conflicts in Software Merge for Java Programs via
Static Analysis. In 37th IEEE/ACM International Conference on Automated

Software Engineering (ASE ’22), October 10–14, 2022, Rochester, MI, USA.ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3551349.3556950

1 INTRODUCTION

Developers create software branches for tentative feature addition
or bug fixing. They periodically integrate (i.e., merge) code changes
from distinct branches to release software with new features or
patches. In practice, the merge process is rarely straightforward
due to conflicts, i.e., the conflicting edits simultaneously applied in
branches-to-merge. Developers often spend hours or days detecting
and resolving conflicts before correctly merging branches [42].

A typical merging scenario in software version history in-
volves four program commits: the baseb, left version l , right version
r , and developers’ merge resultm (see Figure 1). Between l and r ,
there can be three types of merge conflicts [33, 59]: textual, build,
and test conflicts.Textual conflicts are caused by divergent branch
edits to the same line(s) of text, while higher-order conflicts (i.e.,
build and test conflicts) are caused by edits simultaneously applied
to different lines. In particular, build conflicts produce build fail-
ures whenm is compiled. Test conflicts trigger test errors when
m compiles successfully and gets executed with test cases.

Master Branch

Feature Branch

New Merge 
Commit

Common Base

Version b Version l

Version r

Version m

Figure 1: An exemplar merging scenario

Table 1: Existing tool support for conflict detection

Textual conflicts Build conflicts Test conflicts

Tools git-merge, FSTMerge, Au-
toMerge JDime, AutoMerge,
IntelliMerge, Crystal, WeCode

Crystal, WeCode,
IntelliMerge

Crystal,
WeCode,
SafeMerge

Existing tools offer limited support for conflict detection in Java
programs [6, 28, 29, 33–35, 40, 44, 48, 56, 57, 59, 62]. As shown in
Table 1, majority of the tools target textual conflicts. Crystal [33]
and WeCode [40] are among the few tools that detect all types of
conflicts. They apply textual-merge of version control systems (e.g.,
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Changes in l Changes in r

public class A {
public void foo() {

+     C.m();
… } } …

public class C {
public static void m() {…}    

}

public class A {
public void foo() {

…
} } …

public class C {
- public static void m() {…}
+   public static void m(int p) {…}

}
Figure 2: An exemplar build conflict
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Figure 3: Bucond comprises three phases

git-merge) to tentatively merge two branches into one version Am ,
revealing textual conflicts along the way. Notice that developers
often createm based on Am , so Am can be different fromm for two
reasons: (1) it shows all detected textual conflicts for developers to
resolve; (2) it may have build or test errors that developers should
fix to createm. If Am does not show any textual conflict, Crystal
and WeCode use automatic build to compile Am . If l and r compile
successfully butAm fails, there are build conflicts between branches.
Lastly, the tools test the compiled version of Am . If the compiled
versions of l and r pass all tests but Am fails any test, there are test
conflicts between branches.

The compiler-based (i.e., build-based) detectors of build conflicts
have three limitations. First, when textual conflicts coexist with
build conflicts, Am marks all detected textual conflicts with spe-
cial lines ‘‘<<<<<<< Head’’, ‘‘=======’’, and ‘‘>>>>>>>...’’ in
code. Such program versions do not compile; thus, the automatic
build process is not runnable to reveal any error. Second, given a
build error in Am , developers must manually locate the conflicting
edits responsible for that error. This manual localization process
can be challenging and time-consuming, especially when the symp-
tom of error is geographically separated from the the root cause.
Third, during the build process, the build errors found earlier can
prevent compilers from detecting subsequent errors. In such cases,
developers must resort to multiple iterations of automatic build,
manual diagnosis of root causes, and manual conflict resolution
to expose all errors. Because manual conflict resolution can take
hours or days [42], such an iterative process can be very tedious
and error-prone.

To overcome all limitations mentioned above, we created Bu-
cond, a new approach that detects build conflicts in Java code using
static analysis. Our approach is based on two insights. First, build
conflicts often occur when cross-branch edit combinations violate the

def-use constraints between program entities.We use program enti-

ties to refer to Java program components like classes, methods, or
fields. Please refer to Table 3 (Section 3) for the complete list of pro-
gram entities. Figure 2 shows an exemplar build conflict. A conflict
exists because l adds a call to m() while r updates the method signa-
ture. The co-application of both edits can produce an unresolved
method reference. Second, due to the limited number of entity types

in Java code and limited edit types applicable to entities, it is possible

to enumerate all cross-branch edit combinations that violate def-use

constraints. By defining conflict patterns for such combinations,
we can compare the co-applied edits between branches to report a
conflict whenever a pattern is matched.

Bucond has three phases. As shown in Figure 3, given the three
program versions of a merging scenario: b, l , and r , Bucond creates
a program entity graph (PEG) for each version, to model entities
(e.g., Java methods) and inter-entity relations (e.g., method call).

Phase II compares the PEGs of l and b, and compares the PEGs of r
and b, to extract entity-related edits in both branches. It embeds all
edit information in respective PEGs, creating new PEGs G ′l and G

′
r .

Our systematic enumeration revealed 57 types of cross-branch edit
combinations that can cause build errors in the merged software.
Accordingly, we defined 57 patterns and implemented 57 matchers
in Bucond. Those matchers are used to locate conflicting edits
between branches. For each pattern, Phase III searches among edits
in G ′l and G

′
r , and reports conflicts when matches are found.

We evaluated Bucond with 3 datasets: (1) 57 merging scenarios
with in total 57 synthetic conflicts, (2) 55 scenarios with in total 81
real conflicts that trigger build errors in Am , and (3) 13 scenarios
with 17 real conflicts that coexist with textual conflicts and got
located by us manually. On Dataset 1, Bucond detected all con-
flicts accurately. On Dataset 2, it detected conflicts with 100% preci-
sion, 95% recall, and 97% F-score. On Dataset 3, Bucond achieved
100% precision, 88% recall, and 94% F-score. Bucond complements
compiler-based detectors for three reasons. First, it detects conflicts
with high precision and high recall. Second, it pinpoints the root
causes of build conflicts, while compiler-based tools only present
the symptoms (i.e., build errors). Third, Bucond detects conflicts via
static analysis instead of automatic build; therefore, it helps reveal
conflicts when compiler-based tools are inapplicable (i.e., textual
and build conflicts coexist). Our research will help developers merge
software more effectively and efficiently. We open-sourced our pro-
gram and data at https://figshare.com/s/459145063f38bdb244b9.

2 A PRELIMINARY STUDY

Before our approach design, we conducted a pilot study to under-
stand how build conflicts occur. To make our study representative,
we randomly picked eight popular Java repositories on GitHub:
fastjson [13], spring-cloud-alibaba [21], druid [11], redisson [20],
litemall [16], mybatis-plus [17], javapoet [14], and jedis [15]. We
chose these repositories because they are popular (i.e., with 9.5K–
25.4K stars and 1.2K–8.1K forks) and from different domains.

In each selected repository, we searched for merging scenarios,
i.e., any commit with two parent/predecessor commits. We use l
and r to refer to the two parent commits in sequence. We treat the
common child and ancestor commits between l and r asm and b.
For each scenario, we first applied git-merge to l and r to generate
a text-based merge version Am . If Am had no textual conflict, we
further built l , r , andAm . If l and r built successfully butAm did not,
there are build conflicts between l and r . To locate those conflicting
edits, we analyzed the reported build errors, manually related those
errors with program differences among all five relevant program
versions (l , r , b,m, Am ), and identified the integrated branch edits
responsible for those errors.

https://figshare.com/s/459145063f38bdb244b9
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Table 2: Classification of the 25 build conflicts in our preliminary study based on their root causes

Idx Conflict Type Description # of Conflicts

1 Import: remove def vs. add use One branch removes a class import from a Java file, while the other branch adds reference(s) to that class. 3
2 Class: remove def vs. add use One branch removes the definition of a Java class, while the other branch adds reference(s) to that class. 3
3 Class: add method def in super

vs. add sub class
One branch adds a methodM in a class A, while the other branch adds a class B to extend A. There is a method
in B , whose method name and parameter list are identical to that of M but the return type is different. Namely,
the return types between super and sub methods conflict.

1

4 Interface: change a class to imple-
ment the interface vs. change a
method’s return type in the class

One branch updates a class B to implement interface A. The other branch changes the return type of a method
M in class B . The return types between the super and sub versions of M conflict.

9

5 Method: change the parameter list
vs. add use

One branch changes the parameter list of a Java method, while the other branch adds reference(s) to the original
method signature.

5

6 Field: remove def vs. add use One branch removes the definition of a Java field, while the other branch adds reference(s) to that field. 3
7 Field: change a field’s type vs. add

write access
One branch updates the data type of a field, while the other branch adds reference(s) to that field based on the
old data type.

1

As shown in Table 2, our study revealed 25 build conflicts, which
were classified into 7 types based on the edited entities and edit
types. For instance, three conflicts are of Type-1; they occur when
one branch removes a class import and the other branch adds refer-
ence(s) to that originally imported class. Four conflicts are about
fields (i.e., Type-6 and Type-7). They happen because one branch
removes or updates a field F and the other branch adds reference(s)
to the original field. Ten conflicts were concerning methods in
super-sub types (i.e., Type-3 and Type-4). Namely, when a sub-class
is edited to inherit a super-class or implement an interface, the
methods defined in the super- and sub-types should not conflict. In
other words, if both super- and sub- classes define a method with
the same signature but different return types, automatic build fails.

Although the inspected conflicts are from distinct program con-
texts and have different root causes, they all convey the same mes-
sage: build conflicts can occur when cross-branch edit com-

binations violate the def-use constraints between program

entities. Frequently applied edits involve additions, deletions, and
updates of entities’ defs/uses; typical def-use constraints include:

(1) When an entity is referenced, there should always be a cor-
responding entity definition visible to the reference.

(2) No entity should be definedmultiple times, except formethod
overriding.

(3) When a sub-class implements an interface, the class should
implement all methods declared by the interface.

(4) When a sub-class implements or overrides a methodM de-
clared by a super-type, the sub-class should use the name,
parameter list, and return type ofM in its method definition.

Our study implies that if we can characterize the types of branch
edits whose combination violates any def-use constraint, we do not
need to wait for developers to produceAm or to use automatic build
for conflict detection. Instead, we can conduct static analysis to
eagerly relate edits simultaneously applied to distinct branches, rea-
son about the semantics of edits, and notify developers of potential
conflicts before they actually merge software.

3 APPROACH

Inspired by our preliminary study, we designed and implemented
Bucond (short for “build conflict detector”), a novel approach to
detect build conflicts via static analysis. In our research, we need
to tackle two technical challenges:

C1. How can we derive entity-related edits from l and r?
C2. How can we relate edits across branches to identify conflicts?

To address these challenges, we designed a three-phase approach.
As shown in Figure 3, Phases I and II create and compare graphs
to extract entity-related edits, addressing C1. For C2, we defined a
pattern set of conflicting edits in Phase III, based on our systematic
exploration of potential conflict scenarios. With those patterns
defined, Phase III detects conflicts via pattern matching in graphs.
Sections 3.1–3.3 explain all phases in detail.
3.1 Phase I: Graph Construction

Our research intends to detect conflicts by extracting and contrast-
ing the entity-related edits of each branch. However, the default
program diff information recorded in software repositories does not
serve that purpose for two reasons. First, the program diff of l or r
records the changes each branch applied to the baseb, instead of the
differences between l and r . More importantly, many of the recorded
changes are irrelevant to any entity’s def or use (e.g., adding an
if-statement), and should be omitted for efficient static analysis.
Second, to identify potential conflicts between branch edits, we
need to relate applied edits with their surrounding context (i.e.,
unchanged code). Program diff shows applied edits but provides
insufficient contextual information for conflict recognition.

To facilitate the extraction and comparison of edits, Bucond
creates a program entity graph (PEG) separately for b, l , and r .
Specifically, given two program commits to merge in a Git repos-
itory, cl and cr , Bucond applies the command “git merge-base” to
retrieve the common base commit cb . Next, Bucond locates all
edited Java files by cl or cr , and creates three folders to separately
hold the base, left, and right versions of those files. For instance, if a
file is updated by either branch, its three versions are put into sepa-
rate folders. If a file is added by a branch, its unique version is only
put into the branch’s corresponding folder. Notice that Bucond
only scans versions of edited files (i.e., added, deleted, updated,
renamed, or moved files) when modeling PEGs. This is because a
commit often edits a small portion of files [31, 41, 61]. If we include
all Java files into graph modeling, the resulting graphs can become
unnecessarily huge. Meanwhile, we noticed that when l and r build
successfully, the edited files always contain all edit-related details.
Thus, it is safe to only analyze edited files to detect build conflicts.

Bucond traverses each folder, and parses every source file with
JavaParser [5] to create abstract syntax trees (ASTs). Based on the
ASTs, Bucond extracts entities as well as inter-entity relations, and
uses JGraphT [49] to build PEGs. In each PEG, vertices represent
entities and edges show inter-entity relations. Figure 4 shows three
exemplar PEGs for the merging scenario of Figure 2. In Figure 4,
each node records both the type and fully qualified name of an
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Java class Java method Inter-entity relation

Figure 4: The PEGs for the merging scenario in Figure 2

Table 3: Types of vertices and edges in a PEG

Types of Source Ver-

tices/Entities

Types of Possible

Outgoing Edges

Types of Target

Vertices

Project (prj) contains pkg
Package (pkg) contains cu

Compilation Unit (cu) imports pkg, cls, itf, enm
declares cls, itf, enm

Class (cls)
extends cls
implements itf
declares fld, mtd, ctr, cls

Interface (itf) declares fld, mtd
Enum (enm) declares fld, ctr, ec

Field (fld)

reads fld, ec
calls mtd, ctr
initializes cls

Method (mtd)

reads fld, ec
writes fld
calls mtd, ctr
initializes cls

Constructor (ctr)

reads fld, ec
writes fld
calls mtd, ctr
initializes cls

Enum Constant (ec) - -
“-” means zero entry

entity (e.g., A.foo()). Each edge is labeled with the relation type (e.g.,
“declares”). There are 10 node types and 9 edge types in PEGs (see
Table 3). Specifically given entities E1 and E2,
• E1 contains E2 means the file folder of E1 includes the file
(or folder) of E2.
• E1 imports E2 means a compilation unit E1 imports E2,
where E2 is a package, a class, an interface, or an enum type.
• E1 declares E2 means E1 declares another entity E2 inside
its implementation. For instance, “cls declares cls” means “a
class declares an inner class”.
• E1 extends E2 means a type (i.e., class or interface) E1 inher-
its fields and methods from another type E2. We use “sub”
and “super” to refer to E1 and E2.
• E1 implements E2 means a class E1 implements an inter-
face E2. In such scenarios, we also use “sub” and “super” to
separately refer to E1 and E2.
• E1 reads E2 means E1 references E2 for its value. For exam-
ple, “mtd reads fld” means “a method reads a field’s value”.
• E1 writes E2 means that E1 references E2 to store a value to
E2. For instance, “cts writes fld” means “a constructor writes
a value to a field”.
• E1 calls E2 means the definition of E1 calls a function (i.e.,
a method or constructor) E2. For instance, “fld calls mtd”
means “the definition statement of a field calls a method”.
• E1 initializes E2 means the definition of E1 calls a construc-
tor of class E2.

Among the nine relations, “contains” and “declares” serve as ways
to define E2. “Imports” can be considered as both def and use of E2,
because an import declaration uses an entity defined by another
file and defines the imported entity E2 for the current file. The
other six relations show alternative ways to use entity E2. We
intentionally differentiated between the read and write accesses of
entities, as in certain scenarios (e.g., a final field) we handle these
accesses differently (see Section 3.3). Additionally, we modeled
two edges for each constructor invocation: “entity calls ctr” and
“entity initializes cls”. This is because constructors are different from
general Javamethods in three ways. First, they share nameswith the
declaring classes. Second, even if a class A defines no constructor,
the default implicit constructor with no argument A() is always
callable. Third, any explicitly defined constructor replaces such an
implicit constructor. By tracking the relations of any constructor
caller with (1) the constructor declaration and (2) the declaring
class, we can comprehensively relate edits with their context.
Algorithm 1: Graph construction
Input :F , /* list of edited files for a given branch */
Output :G , /* constructed PEG for a given branch */

1.1 G ← ∅; /* PEG to store a set of nodes and edges */
/* Step 1: Traverse each AST to extract all entities, and add nodes as well as
related contains/declares/imports edges to G. */

1.2 foreach f ∈ F do

1.3 ast ← parseAST (f ); /* parse each Java file */
1.4 traverse(ast, G);

/* Step 2: Enumerate all entity nodes, map imported entities, and add the
other six types of edges as needed. */

1.5 foreach n ∈ G do

1.6 if n.nodeType == cu then

1.7 mapImports(n, G);

1.8 else if n.nodeType == cls then

1.9 addExtendImpls(n, G);

1.10 else

1.11 // add reads/writes/calls/initializes edges as needed
addOtherEdges(n, G);

Algorithm 1 overviews our procedure of graph construction. This
algorithm consists of two steps. As shown by lines 1.2–1.4, Step 1
parses each edited Java file in a given branch to create ASTs. It also
traverses ASTs to extract entities as well as contains/declares/imports-
relations between entities, in order to add nodes and edges to G.
Specifically, contains-edges are created based on the package decla-
rations in individual Java files; declares-edges are created based on
the parent-child relations between entities in ASTs; imports-edges
are created based on the import declarations of each compilation
unit. Here, for each imported entity, Bucond creates a dummy node
to hold the entity name, because Step 2 will map some of the entities
to their actual nodes parsed from Java files.

Note that this step does not attempt to extract the other six
types of relations (e.g., reads) or add edges for those relations. The
reason is that before adding all nodes to G, Bucond cannot al-
ways locate the target nodes of potential edges within the analysis
scope. To facilitate later addition of edges, this step also stores
necessary information into nodes, including the types and fully
qualified names of nodes, extends/implements-related info for classes,
read/write-accesses for fields, and function calls by the statements
of field/method/constructor declarations.

Step 2 enumerates all nodes in G , to map dummy imports-targets
to nodes extracted via AST traversal, and to add extra edges based
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on the information stored by Step 1 (lines 1.5–1.11). Specifically,
if a given node n is a compilation unit, Bucond scans the imports-
related dummy nodes created by Step 1, and maps those nodes to
nodes actually extracted from edited Java files. If an imported entity
e is not defined by any analyzed Java file, e.g., e is a class defined
by JDK or a third-party library, Bucond keeps the dummy node as
a placeholder for e’s declaration. Otherwise, if e is defined by an
analyzed Java file, Bucond connects the dummy node with e’s node
via an imports-edge. Such special handling is due to the dual role
played by an import declaration: it uses an entity defined elsewhere
and defines an imported entity locally.

Alternatively, if n is a class, Bucond scans the extends/implements-
related info to locate nodes corresponding to the extended class and
implemented interfaces, and adds edges accordingly. If n is a field,
method, or constructor, its declaration bodymay access fields or call
functions (i.e., methods or constructors). Bucond scans related AST
nodes to add reads/writes/calls/initializes edges. Bucond adopts
the built-in JavaSymbolSolver of JavaParser to resolve type bindings
for names of called methods, and uses string matching to tentatively
resolve type bindings for field accesses.

When JavaSymbolSolver fails to resolve bindings for somemethod
calls like m(...), Bucond implements a naïve approach to search
for any entity defined with that name, to recognize the inter-entity
relation. Namely, Bucond searches for all methods defined with m,
and tentatively compares the methods’ parameter types as well as
parameter counts with that of m-call. If only one method matches
the method call, Bucond considers this method’s node as the calls-
target. Otherwise, if multiple methods can match the call, Bucond
does not link the caller to any method’s node for conservativeness.

3.2 Phase II: Graph Comparison

We refer to the PEGs created for distinct program versions with the
following notations: Gb , Gl , andGr . This phase compares Gl and
Gr separately withGb , to derive entity-related edits for each branch.
The phase has three steps: content-basedmatching, similarity-based
matching, and edit generation.

3.2.1 Content-Based Matching. When comparing two graphs, Bu-
cond first matches entity nodes purely based on their content.
Namely, for each node, Bucond computes a unique ID—a hashcode
of the node type and fully qualified name (FQN). It then compares
hashcodes across graphs to match nodes. All node matches are then
recorded in a map M . For the PEGs in Figure 4, the comparison
between Gb and Gl results in a complete match between nodes,
as l did not modify any entity’s FQN. Meanwhile, the comparison
between Gb and Gr only reveals three pairs of node matches; it
cannot match the nodes ofC .m(...) across graphs because the right
branch r updated the method signature.

3.2.2 Similarity-BasedMatching. For all unmatched nodes between
two graphs, Bucond further sorts nodes based on their types, and
compares same-typed nodes by their surrounding context. Specif-
ically for a node n, we use context to refer to the nodes that are
directly connected with n via edges. Given two same-typed nodes
n1 and n2 and their contextual node sets N1 and N2, we compute
the similarity as below:

Context_Sim =
N1 ∩ N2
N1 ∪ N2

(1)

Here both the set intersection and union are computed based on
the node matches recorded inM . Context_Sim varies within [0, 1].
The higher this value is, the more similar n1 is to n2.

For most node types (except methods, constructors, fields, and
enum constants), Bucond uses contextual similarity to decide how
similar two given nodes are to each other. If the score is above a
threshold (i.e., the golden ratio 0.618 [3]), we consider the two nodes
similar enough to match. We chose 0.618, because it is used by prior
work [56] and led to reasonably good results. When a node from
a graph successfully matches multiple nodes in the other graph,
Bucond picks the one with the highest similarity score.

For the remaining four node types (i.e., methods, constructors,
fields, and enum constants), contextual similarity is insufficient to
match nodes accurately for two reasons. First, Context_Sim cannot
easily differentiate between entities within the same context. For
instance, when multiple fields are located in the same class and all
initialized with null, they have identical context. Second, in addition
to FQNs, these entities also have separate code implementation,
such as statements inside a method body or expressions inside an
enum constant (i.e., public enum Planet{Mercury(3.303e+23, 2.4397e6),

...}). Such code implementation can help further differentiate the
same-context entities. Therefore, we defined three additional for-
mulas to compute the similarity scores for the four entity types:

Function_Sim = (Name_Sim +Context_Sim + Body_Sim)/3 (2)

F ield_Sim = (Name_Sim +Type_Sim + Expression_Sim)/3 (3)

EC_Sim = (Name_Sim +Context_Sim + Expression_Sim)/3 (4)

Formula (2) computes the similarity between method (or con-
structor) nodes as the mean value of Name_Sim, Context_Sim, and
Body_Sim. Here, Name_Sim is the string similarity derived from
the n-grams of both method names, where n = 3. Here, we set
n = 3 because the setting is used by prior work [56] and shows
great effectiveness in experiments.

Body_Sim describes how similar two method (or constructor)
bodies are to each other. We reused GumTree [39] to compute the
AST similarity between methods. GumTree takes in two ASTs, and
uses a greedy top-down algorithm as well as a bottom-up algorithm
to map AST nodes. Once all mappings are established, Bucond
computes the similarity score by dividing the total number of node
matches with the node count of the larger AST.

Formula (3) computes the similarity between field nodes as the
mean value of Name_Sim, Type_Sim, and Expression_Sim. Different
from functions, each field declaration consists of only one state-
ment with the typical format “Type fieldName [ = Expression]”. We
cannot naïvely compare the ASTs of fields to measure similarity,
as any minor difference in these ASTs can significantly impact the
measured value. Instead, we compute the string similarities of (1)
type names, (2) field names, and (3) (optionally) expressions, and
average them for the final result.

Formula (4) computes the similarity between enum constants
as the mean value of Name_Sim, Context_Sim, and Body_Sim. An
enum constant declaration has the typical format “Name [(Expression

{, Expression})]”.We compute the string similarities of (1) names and
(2) (optionally) expression lists, averaging them with the context
similarity of enum constants.
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Figure 5: The types of edits that Bucond recognizes

At the end of this step, Bucond updatesM by adding all nodes
matched based on similarities, and removing those nodes from the
unmatched sets. For the PEGs of Figure 4, this step detects the
mapping of C.m(...) between r and b, because the two methods
have the same name m, same context, and similar bodies.

3.2.3 Edit Generation. Based on the mapping results, this step (1)
recognizes five major categories of entity-related edits: node addi-
tion, node deletion, node update, edge addition, and edge deletion
(see Figure 5), and (2) links branches.

Edit Identification. For each unmatched node between graphs,
Bucond infers the entity addition or deletion by either branch. For
instance, between Gl and Gb , Bucond considers an unmatched
node inGl to imply an entity addition, and derives an entity deletion
from any unmatched node inGb . It records add/delete operations in
the edited nodes to facilitate later data queries. For matched nodes,
Bucond compares the code details to generate entity updates as
needed. For instance, if two matched nodes have distinct names,
Bucond generates a rename operation and stores that edit inside the
branch node (i.e., the edited node in either Gl or Gr ). Similarly, if
two matched nodes have distinct modifiers (e.g., public vs. private),
Bucond creates a modifier update. If two matched nodes have
distinct incoming edges, Bucond compares edges and their types,
to record edge additions and edge deletions inside the branch node.
We denote all identified edits by l and r with ∆l and ∆r .

Branch Linking. Both ∆l and ∆r are described with respect to
the common base b. However, if we simply use these edits to infer
potential build conflicts, we have to frequently map edited nodes
in one branch (e.g., l ) to b, and map those edits to the other branch
(e.g., r ) for conflict reasoning. To avoid redirecting the mapping via
b, Bucond links nodes betweenGl andGr based on their separate
mappings with Gb . Specifically, if an updated or unchanged node
nl ∈ Gl is mapped to nb ∈ Gb which is further mapped to nr ∈ Gr ,
then Bucond adds a direct link between nl and nr . For any node n
deleted by either branch, Bucond copies n from the base version
to that branch’s graph and marks the copy as “deleted”. In this
way, Bucond ensures that every node inGb can find a counterpart
in the other two graphs and adds direct links betweenGl and Gr .
Once all links are established, Bucond can freely switch between
the branch graphs without revisitingGb anymore. We denote the
linked revised graphs with G ′l and G

′
r .

3.3 Phase III: Pattern Matching

Our research novelty mainly lies in this phase. We defined a pat-
tern set to comprehensively enumerate the possible cases where

Edits by one branch: Edits by the other branch:

Node addition

Node deletion

Node update

Edge addition

Edge deletion

Node addition

Node deletion

Node update

Edge addition

Edge deletion

Yes, E.g., the same field 
is added twice.

Do they conflict?

Yes, E.g., one branch 
removes a method M in 
interface I, and the other 
branch adds a class to 
implement I (including M).

…

…

…
No

node add vs. node addnode delete vs. node add

edge delete vs. edge delete
…

Figure 6: Our exploration procedure of conflict patterns

the combination of branch edits can trigger build conflicts (Sec-
tion 3.3.1). Accordingly, Bucond performs pattern matching on the
edits embedded in G ′l and G

′
r to detect conflicts (Section 3.3.2).

3.3.1 Pattern Definition. Our preliminary study in Section 2 shows
that when cross-branch edit combinations violate the def-use con-
straints between entities, build conflicts occur. Thus, we systemati-
cally explored all possible cross-branch combinations between the
five major edit types shown in Figure 5, assessed whether a build
error can occur for each combination, and defined conflict patterns
for all recognized combinations that can trigger build errors.

Figure 6 visualizes our exploration process. We enumerated edit
combinations between branches to decide whether any combination
can trigger build errors. To recognize the conflicting scenarios
for every combination, we considered (1) all possible node/entity
types, (2) all possible ways to use an entity, (3) all possible update
operations applicable to any entity type (e.g., method renaming
or parameter-list changes), and (4) whether the co-applied edits
involve def/use of the same entity or distinct entities in the same
class hierarchy. For each enumerated scenario, we assessed whether
a build conflict can occur based on the four def-use constraints
mentioned in Section 2. Namely, if a scenario violates any def-use
constraint, the edit combination triggers a build error, and thus
the combined edits conflict with each other. Notice that we do not
explore the scenarios where combined edits trigger both textual and
build conflicts (e.g., both branches insert defs of the same method
at the same location). As current tools can detect textual conflicts,
our research focuses on the scenarios overlooked by prior work.

Since there is no prior knowledge of all possible conflicting
scenarios, we spent lots of time to enumerate edit combinations
and to identify conflicting scenarios. In particular, the first author
did the systematic exploration mentioned above to develop an
initial pattern set. Afterwards, all authors held multiple meetings
to discuss and iteratively improve the pattern set. We regularly
searched for real build conflicts in open-source projects to check
whether our pattern set covers them; if not, we added those missing
patterns to ensure comprehensiveness. In total, we spent six months
defining and refining conflict patterns.

Table 4 summarizes the 57 conflict patterns. As shown in the
table, the patterns are derived from six cross-branch edit combi-
nations. Most of these patterns (i.e., 30) describe the conflicting
scenarios where one branch updates the def of an entity (e.g., a
class or a method), and the other branch adds relevant entity uses.
The 30 patterns are different in terms of the node types, finer-
grained update categories (e.g., modifier changes vs. rename), and
edge types. Another 11 patterns are about the scenarios where
one branch updates an entity, and the other branch adds an entity
related to the old version of updated entity. Nine patterns are about
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Table 4: The 57 conflict patterns we identified

Edit Combination # of Patterns Exemplar Pattern Description of The Exemplar Conflict Pattern

Node update vs. Edge addition 30 Field: change modifier to final vs. add
write access

One branch makes a field final, while the other branch adds code to write a value
to the field.

Node update vs. Node addition 11 Class: change a class to an abstract one
vs. add sub class

One branch revises a concrete class to be an abstract one, and adds abstract method
declarations; the other branch creates a new class to extend the original class,
without overriding the abstract methods or declaring itself to be abstract.

Node deletion vs. Edge addition 9 Method: remove def vs. add use One branch removes the definition of a Java method, while the other branch adds
invocation(s) of that method.

Node addition vs. Node addi-
tion

4 Field: add def vs. add def One branch adds a field in class A, while the other branch inserts the same field at
a different program location in A.

Node addition vs. Edge addition 2 Class: add method def in super vs.
change a class to extend the super class

One branch adds a method foo() in a class A; the other branch updates class B to
extend A. B has an existing definition of foo(), whose return type or modifiers are
inconsistent with the super method.

Node deletion vs. Node addition 1 Interface: remove method def vs. add
class to implement the super

One branch removes method foo() from an interface I; the other branch creates a
class to implement I and annotates its implementation for foo() with @Override.

Table 5: Utility functions defined to query graphsG ′l andG ′r

Category Functions

Common getName(), getNewRefs(...), getParent(),
hasModifierChanged(...), isAbstract(),
isAdded(), isRenamed(), isRemoved(),
otherBranch().

Function-specific getNewExceptions(), getOverridingMethods(),
hasExceptionChanged(), hasParamChanged(),
hasReturnChanged(), isOverridden()

Type-specific getFields(), getImports(), getMethods(),
hasPackageChanged(), isNewlyExtended(),
isNewlyImplemented()

Field-specific hasTypeChanged()

the scenarios where one branch deletes an entity, and the other
branch adds reference(s) to the original entity. The remaining seven
patterns correspond to another three edit combinations. Due to the
space limit, Table 4 only shows a subset of all patterns in Bucond.
These exemplar patterns do not overlap with the ones shown in
Table 2, although both sets are covered by Bucond. Please refer to
our open-sourced dataset for more details of the patterns.

3.3.2 Matcher Implementation. We first defined reusable utility
functions to query graphs for various edits on nodes or edges.
Based on those utility functions, we created a set of matchers to
match the edits embedded inG ′l and G

′
r with known patterns. As

shown in Table 5, there are four kinds of utility functions: common,
function-specific, type-specific, and field-specific. Common func-
tions can be invoked on almost all entity types. Function-specific
ones can be invoked on two specialized entity types: methods and
constructors. Type-specific functions are callable on two entity
types: classes and interfaces. Field-specific means that the func-
tion hasTypeChanged() is only invokable on field entities.

The utility functions either (1) query attributes of any given
entity, (2) check for any entity’s editing status, or (3) retrieve edit
details. For instance, if getFields() is called on a class, the return
value is a list of fields defined by that class. If hasParamChanged() is
called on a method, a boolean value is returned to imply whether
the method’s parameter list is updated. If getNewRefs(...) is called
on an entity e , the return value is a list of entities that have newly
add edges pointing to e . When otherBranch() is called on an entity
in one graph (e.g., G ′l ), the entity’s counterpart in the other graph
(e.g., G ′r ) is returned for further comparison.

We successfully implemented 57 matchers for the identified pat-
terns using the above utility functions. Algorithm 2 presents the
pseudocode of one exemplar matcher in Bucond. For instance, to

identify all conflicts of type “Method: remove def vs. add use”, the
matcher enumerates all method nodes in both graphs. For each
enumerated nodem, the matcher checks whether the node is la-
beled “deleted” while its counterpart in the other graph remains
unchanged. If so, the matcher further checks whether the coun-
terpart has any use-typed edge (e.g., “calls”) added. A conflict is
reported wheneverm satisfies all the above conditions.

Algorithm 2: The matcher that identifies conflicts of type
“Method: remove def vs. add use”

2.1 conf l icts ← ∅;
2.2 foreach m in allMethods do

2.3 if m.isRemoved() && m.otherBranch().noChange then

2.4 if m.otherBranch().getNewRefs() != ∅ then

2.5 // report conflict details

4 EVALUATION

To assess the effectiveness of Bucond, we explored the following
three research questions (RQs):
• RQ1: Can Bucond identify various conflicts correctly?
• RQ2: How effective Bucond is in identifying real-world
build conflicts?
• RQ3: How effectively does Bucond work when the auto-
matic build is inapplicable to detect conflicts?

The following subsections will describe the datasets, evaluation
metrics, and experiment results. Our evaluation was conducted on
a computer with Intel (R) Core (TM) i5-4210U CPU @2.40GHz, 8
GB memory, and Windows 8 OS.

4.1 Datasets

There is no publicly available dataset of build conflicts in Java
programs, so we created three datasets for tool evaluation.

4.1.1 Dataset 1. This dataset contains 57 merging scenarios we
manually crafted, to assess the implementation status of Bucond’s
pattern-matching logic (RQ1). Each scenario has exactly one con-
flict, corresponding to one of the patterns Bucond handles. We
prepared three program versions for each scenario: b, l , and r , and
recorded the conflict detail as ground truth.

4.1.2 Dataset 2. This dataset contains 55 real merging scenar-
ios, among which 81 conflicts triggered build errors. We used this
dataset to assess how well Bucond performs when identifying real
build conflicts (RQ2). We found these conflicts and labeled them in
the following way. First, we ranked Java projects on GitHub based
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Table 6: Distribution of the 81 conflicts in Dataset 2

Conflict Type
# of Con-

flicts

Class: add method def in super vs. add sub class 2
Class: change a method’s parameter list in super vs. add sub class 2
Class: change a method’s return type in super vs. add sub class 1
Class: remove def vs. add use 9
Class: rename def vs. add use 7
Constructor: change the parameter list vs. add use 5
Field: add def vs. add def 3
Field: change a field’s type vs. add use 1
Field: remove def vs. add use 4
Import: remove def vs. add use 7
Interface: add method def in super vs. add class to implement the
super 6

Interface: change a class to implement the super vs change a
method’s return type in the class 9

Interface: change a method’s parameter list in super vs. add class to
implement the super 2

Interface: remove method def in super vs. add class to implement
the super 1

Interface: rename a method in super vs. add class to implement the
super 1

Local Variable: move def into an if-block vs. split that if-block
into two 2

Method: change the parameter list vs. add use 3
Method: change the return type vs. add use 1
Method: remove def vs. add use 8
Method: rename def vs. add use 5
Package: rename def vs. add use 2

on their popularity (i.e., star counts), and then cloned repositories
for the top 1,000 projects. Next, we only kept the projects that can be
built with Maven [7], Ant [26], or Gradle [4], as we relied on these
build tools to compile each naïvely merged versionAm . Afterwards,
we removed tutorial projects as they are not real Java applications
and may not show real-world merging scenarios. Starting with the
refined 209 repositories, we identified 117,218 merging scenarios by
searching for any commit with two parent/predecessor commits.

We processed each merging scenario in three steps to create the
ground truth of real build conflicts. Step 1 applies git-merge to l and
r to generate a text-based merged version Am . If Am contains any
textual conflict, we discard the scenario. Otherwise, if Am has zero
textual conflict, in Step 2, we try to build l , r , and Am . If both l and
r build successfully butAm does not, we conclude that the scenario
has at least one build conflict. In Step 3, for each revealed build error
in Am , we use the error as guidance, analyze program differences
among versions (b, l , r ,Am ,m), look for edited code responsible for
that error, and label the scenario if we find conflicting branch edits
in Java code as the root cause. In this procedure, we found 15,886
scenarios to have textual conflicts and 55 scenarios to have 81 build
conflicts. Table 6 shows the distribution of 81 build conflicts based
on their types. As shown in the table, the build conflicts are diverse,
belonging to 21 types, 20 of which are in our 57-pattern set.

4.1.3 Dataset 3. This dataset has 13 real merging scenarios, with
17 conflicts found via manual inspection. We used this dataset to
assess how effectively Bucondworks whenmerging scenarios have
both textual and build conflicts (RQ3). Notice that in such scenarios,
the Am produced by git-merge has textual conflicts, so automatic
build is inapplicable. Developers must manually resolve all textual
conflicts before using automatic build to find build conflicts. We
envision Bucond to make up for the limitations of git-merge and
automatic build. In other words, the application of both Bucond

Table 7: Distribution of the 17 conflicts in Dataset 3
Conflict Type # of Conflicts

Class: rename def vs. add use 2
Constructor: change the parameter list vs. add use 2
Field: remove def vs. add use 1
Import: remove def vs. add use 4
Interface: change a method’s return type in super vs. add class
to implement the super 2

Interface: rename def vs. add use 1
Local Variable: add def vs. add def 1
Method: remove def vs. add use 1
Method: rename vs. add use 3

and git-merge can give developers a global overview of the co-
existence between textual and build conflicts, before developers
attempt to resolve any conflict. The global view can give developers
more comprehensive information, faciltating them to make better
decisions on how to resolve individual conflicts.

To find conflicts manually, we randomly picked nine popular
open-source Java repositories: Activiti [10], pebble [19], fastjson [13],
vectorz [23], nuxeo [18], wildfly [25], webmagic [24], truth [22], and
elasticsearch [12]. We filtered out the scenarios where no textual
conflict is reported by git-merge. Among the remaining scenarios,
we manually compared all versions involved: l , r , b, m, and Am .
Based on our understanding of program context and the semantics
of branch edits, we speculated the semantics of naïve edit combina-
tion across branches, analyzed the potential build errors that can be
triggered, and identified conflicting edits. For instance, in a merging
scenario of fastjson [1], we observed that l adds a reference to an
imported class GenericArrayType, and r removes that class import
from the same file. Thus, we speculated the naïve integration of
branch edits to cause a broken def-use link for GenericArrayType. Our
further examination ofm confirmed the speculation, as developers
added back the removed class import inm. In this way, we found a
build conflict. Table 7 shows all conflicts we manually identified.

Among the 3 datasets, Dataset 1 covers the most conflict types
(i.e., 57), as we crafted the synthetic conflicts to expose Bucond to
diverse merging scenarios. Dataset 2 contains the most conflicts
(i.e., 81). Dataset 3 has the fewest conflicts (i.e., 17) and covers only 9
types, because manually detecting conflicts is very time-consuming.
To ensure that we collected conflicts without bias towards our tool,
we had one author independently mine software repositories for
Datasets 2&3, and had another author separately create our tool.
Once the datasets were created, three authors inspected all included
conflicts to ensure the correctness of ground truth.

4.2 Metrics

The following metrics are used to evaluate conflict detectors.
Precision (P) measures among all reports generated by a detec-

tor, how many of them are true positives:

P =
# of correct reports

Total # of reported conflicts

For Dataset 1, we used the labeled data to calculate precision auto-
matically. Suppose that we have a set of labeled conflicts S1, and the
set of reported conflicts is S2. We use |S1∩S2 |/|S2 | to compute preci-
sion. The labeled ground truth in Datasets 2 & 3 can be incomplete,
due to the limitation of compiler-based detection and manual detec-
tion. Thus, in addition to |S1 ∩ S2 |, we also manually checked the
reported conflicts not covered by ground truth, to reveal additional
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Table 8: The merging scenario where Bucond missed two

build conflicts [8]

Changes in l Changes in r
- if((api != null)...) { if ((api != null)...){
+ final boolean readable =

(api != null) ... ;
+ if(readable) {

... ...
String produces = ... ; String produces = ... ;
String consumes = ... ; String consumes = ... ;
... // code_block_1 ... // code_block_1

+ }
+ if (api == null ||

readable) {
... // code_block_2 ... // code_block_2

+ String[] apiConsumes = consumes;
+ String[] apiProduces = produces;

correct reports and compute precision accordingly. For each report
not matching the ground truth, our manual checking compares b,
l , r , andm. We consider a reported conflict to be correct if (1) the
branch edits are not naïvely integrated intom, (2)m modifies part
of the branch edits, and (3) the modification can fix any build error
triggered by a naïve integration of branch edits.

Recall (R) measures among all known true positives, how many
of them are reported by a detector:

R =
# of retrieved conflicts

Total # of known conflicts

We relied on the labeled data in all datasets to compute recall.
Suppose that the labeled conflict set is S1, and the reported conflict
set is S2. We use |S1 ∩ S2 |/|S1 | to compute recall.

F score (F) is the harmonic mean between precision and recall.
It reflects the trade-off between those two metrics.

F =
2 × P × R
P + R

.

All metrics have values within [0, 1]: the higher value, the better.

4.3 Experiment Results on Dataset 1

WeappliedBucond to all the syntheticmerging scenarios inDataset
1, and checked if it detects all labeled conflicts correctly. The mea-
sured precision, recall, and F-score rates are all 100%. By covering
all 57 patterns, this dataset enabled us to assess Bucond’s capability
of handling distinct build conflicts.
Finding 1: Bucond identified 57 types of conflicts correctly, show-

ing great capability of handling diverse conflicting scenarios.

4.4 Experiment Results on Dataset 2

When applied to Dataset 2, Bucond reported 79 conflicts, 77 of
which exist in ground truth. Our manual inspection shows that the
remaining two conflicts are also real (i.e., true positives). Bucond
missed four known conflicts in the labeled dataset. Therefore, Bu-
cond achieved 100% precision (79/79), 95% recall (77/81), and 97%
F-score. In one scenario, Bucond was able to identify two more
conflicts than compiler-based conflict detection. Thanks to its usage
of static analysis, Bucond did not get stuck with the compilation
errors resulting from initially found conflicts.

We manually inspected the four false negatives—the conflicts
missed by Bucond, and found two reasons. First, conflicts were
concerning the def and use of local variables. A program usually
has a lot more local variables (LVs) than entities. Thus, Bucond

Table 9: Themerging scenario where Bucondmissed a build

conflict related to an import-declaration [9]

Changes in l Changes in r
- import java.net.*; import java.net.*;
... ...

+ } catch (SocketTimeoutException ste) {
+ throw ste;

does not model LVs in graphs for efficiency, nor does it detect LV-
related conflicts. As shown in Table 8, a merging scenario has two
conflicts separately related to variables produces and consumes. The
conflicts happened because l split an if-statement into two: the
first if-statement defines both variables; the second one contains
code_block_2, which does not use any of the variables. Meanwhile,
r inserted usage of both variables at the end of code_block_2. The
naïve integration of branch edits caused the newly added variable
usage to be out of the scope of variable definitions.

The other two false negatives were related to import-declarations.
As shown in Table 9, while l removes the import-declaration for
classes java.net.*, r adds a ref to the class java.net.SocketTimeoutException.
Because there is no explicit mapping between the removed classes
represented by wildcard “*” and the added class usage, Bucond
could not identify the build conflict. In the future, we plan to im-
prove Bucond to analyze software libraries, better interpret the
meaning of wildcards, and recognize such conflicts.
Finding 2: On Dataset 2, Bucond detected conflicts with 100%

precision, 95% recall, and 97% F-score. It means that Bucond can

identify build conflicts with high precision and high recall.

As a software merge tool, IntelliMerge [56] creates program ele-
ment graphs for b, l , and r . It compares graphs to detect refactoring
operations, which help improve the results of element matching
and software merge. IntelliMerge seems to be able to handle build
conflicts when the conflicting edits are relevant to refactorings
(e.g., entity renaming or removal). Because Bucond has a similar
approach design to IntelliMerge in terms of graph construction
and graph comparison, we were curious how Bucond compares
with IntelliMerge when detecting build conflicts. Therefore, we
also applied IntelliMerge to Dataset 2. Our experiment shows that
IntelliMerge only detected and resolved four build conflicts, all of
which were of the type Import: remove def vs. add use. Our observa-
tion means that IntelliMerge rarely detects build conflicts. Bucond
outperforms IntelliMerge by identifying a lot more build conflicts.

Discussion. Bucond is different from IntelliMerge in terms of
the research objective, approach design, and implementation. In-
telliMerge aims at detecting textual conflicts more accurately than
text-based merge, while Bucond intends to detect build conflicts via
static analysis, without using automatic build. In terms of approach
design, IntelliMerge textually compares the edits that are simulta-
neously applied by distinct branches to the same or aligned entities.
However, Bucond compares the edits simultaneously applied by
distinct branches to different but related entities. Such an edit com-
parison is far more complicated than text-based comparison, as it
requires for extensive semantic reasoning. Thus, Bucond novelly
defines a set of 57 patterns to represent the scenarios where co-
applied edits can introduce build conflicts. It also defines 57 novel
pattern-matchers to reason about the semantics of edits.
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In terms of implementation, as IntelliMerge focuses on entity
alignment, it does not carefully model or align edges as what
Bucond does. For instance, IntelliMerge provides insufficient or
no support for modeling (1) calls/initializes-edges introduced by
this-expressions (e.g., this(...)) and field declarations (e.g., A a =

B.foo(...)), (2) imports-edges pointing to the entities defined by JDK
or third-party libraries (e.g., import java.util.List), (3) reads-edges
pointing to enum constants. Bucond models all these edges.

As mentioned in Section 1, compiler-based tools (i.e., Crystal
and WeCode) detect build conflicts via compilation instead of static
analysis, so they report only build errors instead of the responsible
conflicting edits. Additionally, both tools are unavailable, so we
were unable to run either tool for the empirical comparison with
Bucond. However, our experiment with Dataset 2 can still simulate
an indirect comparison between compiler-based tools and Bucond.
Specifically, because all 81 conflicts were manually located based
on the build errors in Am , theoretically speaking, compiler-based
tools can report those build errors as hints of the 81 conflicts. As
shown by our experiment results, Bucond independently reported
79 conflicts, with 2 of the conflicts not implied by any build error.
Our observations indicate that Bucond complements compiler-
based tools in two ways: (1) it pinpoints build conflicts; (2) it can
reveal conflicts not implied by any observed build errors.
Finding 3: On Dataset 2, Bucond detected a lot more build con-

flicts than IntelliMerge (79 vs. 4). Bucond complements Intel-

liMerge by offering a better support for build-conflict detection.

4.5 Experiment Results on Dataset 3

For Dataset 3, Bucond reported 19 conflicts, 15 of which match
the ground truth. Our manual inspection shows that the remaining
four conflicts are also true positives. Bucond missed two known
conflicts. The first conflict was originally introduced by duplicated
additions of the same local variable; the second one was similar to
the conflict shown in Table 9. Because Bucond does not track local
variables or interpret wildcards used in import-declarations, it could
not recognize the conflicts. In summary, Bucond achieved 100%
precision (19/19), 88% recall (15/17), and 94% F-score.

Table 10 shows the time cost of Bucond when it was applied to
Dataset 3. The three columns under # of Analyzed Files separately
count the edit-relevant Java files in b, l , and r . The columns under #
of Analyzed Entities count the total number of entities included
in those files. Bucond’s time cost often increases with the number
of analyzed files or entities because given a scenario, Bucond spent
over 99% of execution time on PEG construction and comparison. As
there are more entities and more inter-entity relations, the graphs
can become more complex, PEG comparison can become more
time-consuming and thus Bucond’s runtime overhead grows.

This experiment simulates another indirect comparison between
Bucond and compiler-based tools. Specifically in Dataset 3, because
textual conflicts coexist with build conflicts in each merging sce-
nario, none of the automatically merged versions Am is compilable.
Automatic build is inapplicable and compiler-based tools cannot
report build errors for any of the known 17 conflicts. Our results
show thatBucond independently detected 15 of the 17 conflicts, and
found 4 extra conflicts not covered by the ground truth. These ob-
servations imply that Bucond complements compiler-based tools.

Table 10: The time cost of Bucond when it was applied to

the 13 merging scenarios in Dataset 3

Idx
# of Analyzed Files # of Analyzed Entities Time Cost

b l r b l r (minute)

1 196 198 207 4,817 4,840 4,933 11.8
2 43 55 49 2,462 2,694 2,503 2.8
3 158 167 158 5,804 5,952 5,797 21.6
4 137 141 137 2,391 2,520 2,396 3.2
5 10 11 12 1,281 1,323 1,302 1.5
6 21 20 22 631 624 639 0.3
7 83 91 86 1,596 1,770 1,640 1.4
8 9 13 27 214 315 524 0.1
9 49 58 51 1,683 1,790 1,713 0.9
10 9 10 9 951 971 959 0.4
11 11 12 13 150 161 164 0.1
12 137 145 132 4,345 4,516 4,220 4.6
13 125 137 125 4,410 4,746 4,423 7.5

Finding 4: On Dataset 3, Bucond detected conflicts with 100%

precision, 88% recall, and 94% F-score. It complements compiler-

based tools (e.g., Crystal) in two ways: reporting build conflicts

instead of build errors and bypassing automatic build.

5 THREATS TO VALIDITY

Threats to External Validity. The evaluation is based on 155 la-
beled conflicts, so our observations may not generalize well to
conflicts outside the evaluation datasets. We have spent one year
collecting data of build conflicts, so the current datasets are the
best options we have for tool evaluation now. The major difficulty
of creating large-scale datasets is that compiler-based conflict de-
tection has great limitations when being applied to open-source
repositories: they do not work when branches-to-merge have tex-
tual conflicts and most conflicting merging scenarios have textual
conflicts (see Section 4.1.2). In the future, we plan to expand the
evaluation datasets to make our findings more representative.

Threats to Construct Validity. We defined 57 conflict types based
on (1) the observations of real conflicts and (2) the generalization
of observations. Bucond shares the same limitation with existing
static analysis-based tools, for being sound but incomplete. How-
ever, as a complementary tool to compiler-based tools, Bucond
can help developers better understand the merging scenarios when
both build and textual conflicts exist. Its high detection precision
implies that the tool can always report conflicts reliably. According
to our experience, the 57 types cover all observed conflicts except
for those related to (1) local variables or (2) wildcard usage.

Threats to Internal Validity. Bucond uses JavaSymbolSolver to
resolve identifier bindings. When JavaSymbolSolver fails, Bucond
implements a naïve approach that applies string matching to func-
tion names and parameter lists, in order to infer the caller-callee
relations with best effort. Similarly, Bucond also applies string
matching to resolve type bindings for field accesses. Although this
approach does not guarantee to always successfully resolve bind-
ings, it has worked well so far.

When matching nodes between graphs, Bucond reuses the pa-
rameter settings of existing work [56] to decide whether two nodes
are similar enough to match. These settings include the similarity
threshold 0.618 and the 3-grams used for string partition. We did
not explore different value settings to find the best configuration.
Intuitively, as the values increase, it becomes harder for Bucond to
find matches between nodes, while the matched nodes are often
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very similar to each other. Meanwhile, as the parameter values
decrease, it becomes easier for Bucond to match nodes, although
the quality of matches may suffer. As prior work shows that both
parameter settings lead to reasonably good results, we reused the
settings and also observed them to work well in Bucond.

6 RELATEDWORK

Our research is related to automated software merge, awareness-
raising tools, and empirical studies on merge conflicts.

6.1 Automated Software Merge

Tools were built to detect or resolve merge conflicts [6, 28, 29, 33–
35, 37, 40, 44, 48, 56, 57, 62]. For instance, FSTMerge [6, 29, 35] parses
code for ASTs, and matches nodes between l and r purely based on
the class or method signatures; it then integrates the edits inside
each pair of matched methods via textual merge. JDime [28] also
matches Java methods and classes based on syntax trees. However,
unlike FSTMerge, JDime merges edits inside methods based on
ASTs. It can report conflicts more precisely than FSTMerge [36].
AutoMerge [62] also detects conflicts based on AST comparison.
However, going beyond conflict detection, AutoMerge attempts
to resolve conflicts by proposing alternative strategies to merge
l and r , with each strategy integrating branch edits in a distinct
way. DeepMerge [37] uses deep learning to resolve textual conflicts.
None of the tools mentioned above detect higher-order conflicts.

SafeMerge [57] takes in b, l , r , andm, for a given merging scean-
rio. It statically infers the relational postconditions of distinct ver-
sions to model program semantics. By comparing postconditions,
SafeMerge decides whetherm is free of conflicts, i.e., without in-
troducing new semantics nonexistent in l or r . SafeMerge cannot
effectively detect build conflicts, as it does not relate edits applied to
distinct entities for semantic reasoning. MrgBldBrkFixer [58] com-
pares the ASTs of C++ files. It detects and resolves the build conflicts
related to (1) renamed entities (e.g., class renaming), and (2) changes
to the parameter/return types of functions. Wuensche et al. also cre-
ated a build-conflict detector for C++ code [59]. The tool statically
analyzes call graphs to reveal three causes for conflicts: (1) changes
to method signatures (i.e., modified names/arguments/return val-
ues) and complete entity removals, (2) missing #include-statements,
and (3) duplicate definitions of functions or variables.

Our pattern set is more comprehensive than the conflict types
considered by prior build-conflict detectors. As with prior work,
Bucondmodels the calls, imports, declares, and contains relations be-
tween entities to capture conflicts related to (1) renamed or removed
entities, (2) duplicated entities, (3) signature changes of functions,
and (4) import declarations. However, different from prior work,
Bucond also models five other types of inter-entity relations (see
Section 3) to capture conflicts related to edited class inheritance,
interface implementation, class initialization, and field access.

6.2 Awareness-Raising Tools

Several tools [30, 33, 34, 40, 42, 43, 46, 54] were created to monitor
and compare programmers’ development activities, and to improve
team activity awareness. For instance, Palantír [54] informs a de-
veloper of the artifacts changed by other developers, calculates
the severity of those changes, and visualizes the information. Cas-
sandra [42] is a conflict minimization technique. It observes the

super-sub and caller-callee dependencies between program entities.
By treating those dependencies as constraints on file-editing tasks,
Cassandra identifies tasks that will conflict when performed in
parallel. It then schedules tasks to recommend conflict-free devel-
opment paths. None of these tools localize merge conflicts.

6.3 Empirical Studies on Merge Conflicts

Some studies were conducted to characterize the relationship be-
tween merge conflicts and developers’ coding activities [27, 38, 45,
47, 50, 52]. For instance, Leßenich et al. surveyed 41 developers
and identified 7 potential indicators (e.g., # of changed files in both
branches) for merge conflicts [45]. Mahmoudi et al. observed that
certain refactoring types (e.g., Extract Method) are more related to
conflicts [47]. Other studies characterize the root causes or resolu-
tions of conflicts [2, 32, 51, 53, 55, 60]. Specifically, Shen et al. [55]
manually inspected three types of conflicts: textual, build, and test
conflicts. They reported that higher-order conflicts are hard to de-
tect and resolve, although existing tools mainly focus on textual
conflicts. Inspired by the study by Shen et al., we developed Bucond
to reduce the technical barrier of detecting build conflicts.

7 CONCLUSION

Software merge is complex and time-consuming. Although several
tools can detect textual conflicts, we found few tools to detect build
conflicts. Our preliminary study with build conflicts reveals the
typical constraints that conflict-free software merge should satisfy.
Such observations motivated us to create Bucond. Our evaluation
with three datasets shows exciting results. Bucond detected con-
flicts with high precision and high recall. Although it missed some
conflicts detected by automatic build or manual inspection, it man-
aged to reveal more conflicts when (1) textual and build conflicts
coexist, or (2) compiler-based conflict detection is stuck with the
build errors triggered by initially revealed conflicts. Bucond com-
plements existing tools due to its usage of static analysis and the
comprehensive pattern set of conflicts.

We made three major contributions. First, we defined a novel
pattern set to enumerate 57 types of conflict-triggering edit combi-
nation. This set is based on our preliminary study, the systematic
exploration of edit combinations, and frequent crawling for real
build conflicts. The process is very challenging, demanding signif-
icant creativity and brainstorming among authors. We spent six
months defining and refining those patterns. Second, Bucond is
the first static analysis-based tool that detects Java build conflicts
effectively. Third, we evaluated Bucond using three datasets. All
conflicts in Datasets 2&3 are from open-source repositories. We
spent one year creating the datasets. No prior work provides such
comprehensive datasets of real build conflicts.

The approach design (including the 57 patterns) of Bucond
can be reimplemented for different object-oriented programming
languages (e.g., C#) to detect conflicts in non-Java projects. In the
future, we will extend Bucond to also resolve build conflicts.
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