
NaturalFuzz: Natural Input Generation for
Big Data Analytics

Ahmad Humayun
Virginia Tech

Blacksburg, USA

ahmad35@vt.edu

Yaoxuan Wu
UCLA

Los Angeles, USA

thaddywu@cs.ucla.edu

Miryung Kim
UCLA

Los Angeles, USA
miryung@cs.ucla.edu

Muhammad Ali Gulzar
Virginia Tech

Blacksburg, USA

gulzar@cs.vt.edu

Abstract—Fuzzing applies input mutations iteratively with the
only goal of finding more bugs, resulting in synthetic tests that
tend to lack realism. Big data analytics are expected to ingest
real-world data as input. Therefore, when synthetic test data
are not easily comprehensible, they are less likely to facilitate
the downstream task of fixing errors. Our position is that
fuzzing in this domain must achieve both high naturalness and
high code coverage. We propose a new natural synthetic test
generation tool for big data analytics, called NATURALFUZZ.
It generates both unstructured, semi-structured, and structured
data with corresponding semantics such as ‘zipcode’ and ‘age.’
The key insights behind NATURALFUZZ are two-fold. First,
though existing test data may be small and lack coverage, we
can grow this data to increase code coverage. Second, we can
strategically mix constituent parts across different rows and
columns to construct new realistic synthetic data by leveraging
fine-grained data provenance.

On commercial big data application benchmarks, NATU-
RALFUZZ achieves an additional 19.9% coverage and detects
1.9× more faults than a machine learning-based synthetic data
generator (SDV) when generating comparably sized inputs. This
is because an ML-based synthetic data generator does not
consider which code branches are exercised by which input
rows from which tables, while NATURALFUZZ is able to select
input rows that have a high potential to increase code coverage
and mutate the selected data towards unseen, new program
behavior. NATURALFUZZ’s test data is more realistic than the
test data generated by two baseline fuzzers (BigFuzz and Jazzer),
while increasing code coverage and fault detection potential.
NATURALFUZZ is the first fuzzing methodology with three
benefits: (1) exclusively generate natural inputs, (2) fuzz multiple
input sources simultaneously, and (3) find deeper semantics faults.

I. INTRODUCTION

Data-Intensive Scalable Computing (DISC) applications are

becoming increasingly popular for processing large amounts

of data. Frameworks like Hadoop MapReduce [1] and Apache

Spark [2] provide APIs to the developers that allow them

to manipulate the data at scale. These frameworks distribute

the data and application on thousands of machines in a

cluster so each machine can work on an independent chunk

of data in parallel. Despite the widespread usage of such

applications, automated testing remains a major challenge due

to unstructured natural inputs coupled with the scale of the

data and the application’s distributed nature.

Fuzzing is a prevalent automated testing technique. It repet-

itively tests a program with randomly mutated data to expose

software faults [3], [4], [5], [6], [7], [8], [9], [10], [11]. Nearly

all fuzzing techniques have one objective: achieve high code
coverage as fast as possible. Every fuzzing iteration meets

this objective by aggressively mutating the seed input. Due to

the emphasis on incremental input mutation, fuzzer-generated

inputs are often unrealistic. In DISC applications, developers

are naturally reluctant to adopt such tests, as they rarely

mimic real-world production data. Prior work on database

(DB) testing noted that unrealistic inputs often fail to satisfy

implicit integrity constraints [12]. Another drawback of fuzzer

generated inputs is that they implicitly prioritize syntactic

faults rather than semantic faults located in deep, hard-to-reach

regions. Albeit rarely, when fuzzing does manage to find a

semantic fault, the developer may find it difficult to fix its

root cause due to lack of readability.

ML-based synthetic data generators such as Synthetic Data

Vault (SDV) [13] could also produce synthetic test data given

a training dataset. However, these tools are not designed for

the purpose of exercising different program paths, suffering

from low coverage. They require an explicit schema or type

information, making it unsuitable for big data analytics that

ingest unstructured or semi-structured data, where each field

is identified on the fly without a predefined type. We quantify

the limitation of using a synthetic data generator for testing

purposes in our experiments (Section 4).

NATURALFUZZ aims to achieve high code coverage while

producing natural inputs. NATURALFUZZ is built on the

insight that existing datasets are themselves a rich resource for

producing natural synthetic inputs. NATURALFUZZ leverages

an interleaving mutation strategy that combines selection and

splicing to generate novel inputs. It first profiles individual

branches and identifies how different regions in existing input

dataset influence branching decisions within a target program.

It then splices out one constituent part from one input region

and injects it into another, creating a brand new input that is

sourced from different parts of the original input. For instance,

if an application analyzes sales in November of 2022, the input

dataset may contain over several years of sales data, making

most of it irrelevant for testing this particular application.

To this end, NATURALFUZZ dynamically profiles

individual rows. It collects the provenance of each

variable used in boolean expressions. For example, for

sales.filter(year == "2022" AND month ==
"Nov"), using fine-grained data provenance, it replaces year

1592

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)

2643-1572/23/$31.00 ©2023 IEEE
DOI 10.1109/ASE56229.2023.00034

with sales.col(10) and month with sales.col(11)
by tracing these variables to sales’s 10th column and 11th

column respectively. NATURALFUZZ uses this provenance to

identify whether each row in the dataset reflects a true or false

branch evaluation. This branch-level profile is encoded as a

bit vector. Finally, NATURALFUZZ leverages this information

to efficiently identify a subset of input rows that are likely

to explore new, unseen branch coverage. NATURALFUZZ

only needs to run the application with the full data once for

profiling, after which it performs fuzzing locally.
To evaluate NATURALFUZZ, we use a set of eight data-

intensive applications from the TPC-DS benchmark [14]. We

compare our technique against two available baseline tech-

niques: Jazzer [15], a coverage-guided greybox fuzzer for

Java bytecode based on LibFuzzer [16]; and BIGFUZZ [4],

a greybox fuzzer for DISC applications. Our evaluation aims

to answer three questions about our fuzzer. Does NATU-

RALFUZZ achieve more coverage than the baselines? Does

NATURALFUZZ detect more faults? Are the inputs generated

by NATURALFUZZ more natural? In order to evaluate the fault

detection capability of the techniques, we use mutation testing.

We inject faults into the benchmark programs by flipping

binary operators to create mutant programs and compare

outputs against the reference program.
NATURALFUZZ achieves an average of 77.6% coverage,

across programs adapted from commercial benchmarks in data

analytics, which is 19.9% more than BIGFUZZ and 46.5%
more than JAZZER. It also finds 11.3× more faults than

JAZZER and 1.7× more faults than BIGFUZZ. In addition to

outperforming baselines, NATURALFUZZ adheres to the strict

constraints of generating only inputs that are natural, which

we define to be inputs that are likely to be observed in the

original datasets. We use perplexity [17], a well-known metric

in the language modeling literature to quantify the naturalness

of inputs generated by all tools. We also compare our tool

against a state-of-the-art machine learning-based synthetic data

generator and compare the feasibility of such a tool for natural

test generation compared to NATURALFUZZ.
The contributions of our work are summarized below:

• We are the first to incorporate the notion of naturalness

and realism into fuzzer-generated data without sacrificing

coverage and fault detection potential.

• Borrowing insights from the machine learning commu-

nity, we use language modeling to quantify the natural-

ness of inputs generated by our technique and compare

it to SDV, a synthetic data generator.

• We develop novel interleaving mutations that can gener-

ate novel, yet natural inputs. We quantify the naturalness

of our inputs relative to baselines using a well-known

metric in the natural language processing literature.

• We implement our technique in a tool called NATU-

RALFUZZ. NATURALFUZZ is developed in Scala for

Apache Spark and its key idea generalizes to other big

data analytics that ingest unstructured or semi-structured

data. We make our code and data available at https:

//github.com/SEED-VT/NaturalFuzz.git

Fig. 1: Dataflow graph of a program that computes the total

sales price of items from a particular manufacturer for each

year. The + operator in the reduceByKey should be a −
and is incorrect, leading to incorrect values in the output.

II. MOTIVATING EXAMPLE

To motivate realistic input generation, we discuss Query

3 from the TPC-DS suite, a commercial benchmark used to

measure the performance of decision support queries.

TPC-DS Query 3 finds the total revenue generated in

November by all item brands of a particular manufacturer

for a given store. Figure 1 illustrates the dataflow graph

of this query with relevant operators. The query first reads

data from three CSV (comma-separated) datasets. Dataset

dates contains information on sales-related characteristics

about each day, e.g., which quarter the date belongs to, or

whether a day immediately follows a holiday or not. This

table has 28 columns, although most columns are omitted for

clarity. Dataset store_sales contains each item purchased

at the store. The columns ss_item_sk, ext_price, and

discount represent the serial key of the item sold, the

extended price of the item (i.e., the price after including all

taxes and fees), and the amount of discount applied to the

item. Dataset item contains available items in the store. The

columns brand_id, brand, and manufact_id represent

the brand identifier, the brand name, and the manufacturer

identifier respectively.

The query first applies a filter operation on dates to

select dates in November. Then it performs an inner join

with store_sales using data_sk and sold_date_sk
as the joining columns from dates and store_sales
respectively. This computes all the sales that happened in

November of every year. Next, the program filters item to

obtain only the items belonging to the specified manufacturer

identifier such as apple. The resulting data is then combined

with the result of the previous join via another inner join to

obtain sales of products from apple. The resulting data is

then reduced using reduceByKey that adds ext_price
and discount. The operator uses brand and year as the key.

1593

%
,,,,,,,,,,,,,,,,,,,,,,,,?

store_sales.csv

ww(,,,,,,,,,,,,,,,TS,,,,A,,,,,,,,,,,,,,,,,,,,,,,,,

dates.csv

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,scoverageNeagesure
item.csv

56420790,1594439997,936899531,1896538575,null,1241952722,null,…
878734717,983972108,1282084834,453842303,null,1447655483,…

store_sales.csv

282073180,AAIAtAA_5x@NE42j,19N0-I1-
1$,134407708,1753342636,77104519,,1860796132,805171140,1619811146,752938603,30
181069,451320276,s,fVnd’w…

dates.csv

657109236,ASAMGAAABAAAAQSV,b9S7aA)=2A,|ull,v#rQcul""t#_ sBtos(w3MD not
ps$Vi:e+1p05ly.NQjaun,1.95679629E9,4.33749536E8,1674187758,Zxpor=ib>SUd
#2,171591989,k0Js,1621462001,Hame,753363423,prcouHhnouH`r,N6A,53b782g029965dra
b316,p5ff,ssl,[nVZ+wn,2064033299,m1<xt1641357980,}8AAAAAAB[ANiAD6,19B7E54sCw,n
b]l,Agrlp+1turaq s(_eDke]0a no^ p_ovkEy sWb# …

item.csv

45214,6929,15139,836333,374,45568,1,194,65147,18,59.52,74.40,8.92,4.00,160.56,1071.36,1339.20,11.23,0.00,160.56,171.79,-910.80,2451255
65577,17945,63745,12829,4313,22597,8,56,31837,76,21.73,40.63,26.40,4.00,2006.40,1651.48,3087.88,80.25,0.00,2006.40,2086.65,354.92,2452232

store_sales.csv

2451584,AAAAAAAAAIIGFCAA,2000-02-
09,1201,5224,401,2000,3,2,9,1,2000,401,5224,Wednesday,2000Q1,N,N,N,2451576,2451606,2451219,2451492,N,N,N,N,N
2452232,AAAAAAAAIALGFCAA,2001-11-18,1222,5316,408,2001,0,11,18,4,2001,408,5316,Sunday,2001Q4,N,N,N,2452215,2452518,2451867,2452140,N,N,N,N,N

dates.csv

17945,AAAAAAAAIBGEAAAA,1999-10-28,2001-10-26,Emotions match. Either sacred differences used to try especially safe publications; important
arts shall not need now. Australian<comma> similar regulations would offer here long politica,2.66,2.18,6002001,amalgimporto
#2,2,accessories,2,Men,apple,pricallycally,medium,30100272880spring722,burnished,Case,Unknown,13,antiesen stationought

item.csv

(a) Sample input generated by Jazzer (b) Sample input generated by BigFuzz

(c) Input generated by NaturalFuzz that exposes fault. Mutated columns are highlighted in yellow.

Fig. 2: Sample inputs generated by each tool.

The resulting data contains the total amount earned by the store

selling each item of manufacturer apple every November.

Program Fault. This application is developed with an as-

sumption that discount is a negative number i.e., if the

discount was $4, then the column has −4. That’s why the

column discount is added to the sales price instead of

being subtracted, as shown in Figure 1. When some input

rows have a discount column with a positive number, the

test predicate below would fail for some groups (year,
brand_id, brand), since the discounted price is greater

than the original price, as shown in the final output box and

the store_sales.csv box in Figure 1.

1 def test_oracle(output_row, original_price):
2 if (output_row.discounted_price > original_price)

false
3 else true

Limitations of Existing Fuzzers. We run a commercial

fuzzer, JAZZER, on Query 3. Even after 7000 iterations, it

fails to generate any input that reaches the faulty statement in

the user-defined function of reduceByKey. JAZZER gener-

ated tests achieve only 58.8% statement coverage because it

spends over 2000 iterations in failing to produce the required

number of columns across the three datasets. At iteration 2017,

it finally generates the correct number of comma-separated

values. Figure 2-(a) shows JAZZER generated tests. It struggles

to generate any sales data for November with the manufacturer

apple, thus not being able to go beyond the first filter

operation. Alternatively, we run BIGFUZZ, which is a domain-

specific fuzzer for Apache Spark applications. It uses schema-
aware mutations, yet it fails to generate data (shown in Figure

2-(b)) that satisfy the join and filtering constraints, generating

data.

Both JAZZER and BIGFUZZ generate unintelligible inputs.

JAZZER mostly produces empty columns. Although BIG-

FUZZ’s schema-aware mutations generate correctly formatted

data, they are not natural nor comprehensible to a human.

Column 3 in item.csv should have entries in a date format.

However, this column is treated as a string value, BIGFUZZ

produces "b9S7aA)=2A", which has no resemblance to any

date formatting. Similarly, every column in BIGFUZZ has

unintelligible values making the entire input very hard for a

human evaluator to analyze.

Benefits of NATURALFUZZ. NATURALFUZZ on Query 3

achieves 95.3% coverage in the first 13 iterations and ex-

ecutes the faulty statement in the reduceByKey operator.

It outperforms the state-of-the-art and generates real-looking,

meaningful data compared to meaningless inputs by baselines.

The inputs generated by NATURALFUZZ are shown in Figure

2-(c). NATURALFUZZ’s effectiveness as a testing tool is owing

to its ability to detect branches in the source code and associate

each row in the dataset with a set of exercised branches. In this

example, NATURALFUZZ locates explicit branch conditions

in two filter operations on dates and item datasets. It

also detects implicit branches in two join operators. Implicit

branches are dataflow branches that can affect the execution of

downstream code if certain dataflow conditions are not met.

1594

��������	
�������������
����� �

����
���������

���� �
����
	
�

��������	
�������������
����� �

����
	
�
�����

���� �
	
�

����

�� ����������� �� �����	�

�� �	��
� �����

�� ����������� �� �����	�

�� �	��
� �����

��������	
�������
��

Fig. 3: How interleaving unlocks new paths in the program

In the case of join, if neither dataset contains a matching

value in the key column, no data is produced as output, and

dataflow is thus terminated. NATURALFUZZ samples 10 rows

that satisfy each implicit and explicit branch individually.

It performs interleaving mutations using the sampled rows,

randomly slicing out columns from one row and inserting them

into different rows. By iteration 13, it generates the inputs

shown in Figure 1-(c), triggering the faulty code line. The

outcomes generated using these inputs indeed include rows

where test oracle is violated, i.e., , a discounted price is greater

than the original price.

III. APPROACH

There are several technical challenges in synthesizing natu-

ral inputs that also achieve high coverage and fault detection.

Multiple, large-scale inputs to big data analytics exponen-

tially increase the search space of potential targets to apply

mutations. Operators such as join also create co-dependence

constraints on the type and location of input mutations. Since

most mutations are low-level bit or byte-level mutations,

nearly all existing mutation strategies exclude natural inputs.

NATURALFUZZ is a white-box fuzzer that uses novel in-
terleaving input mutations instead of traditional bit/byte level

mutations to strategically create new test inputs that look

natural and achieve high code coverage. NATURALFUZZ first

performs a one-time dynamic path profiling to capture the

application’s implicit and explicit branch predicates using taint

analysis. It then uses these predicates to map every row in

input datasets to a path vector for each row. This information

is then used to minimize the data, keeping only a small

sample of rows against each program branch. In the final steps,

NATURALFUZZ uses its interleaving mutation to generate

inputs that look natural and directly influence some branching

decisions in the application.

A. Interleaving Input Mutation

NATURALFUZZ’s interleaving mutation mutates input

datasets by substituting a piece of input row (recipient) with

a corresponding piece from a different location in the input

(donor). Such substitution of constituent input parts is highly

effective in creating a natural input row that achieves better

code coverage than the two input rows alone. This is because

the recipient and donor input rows may not individually

trigger new program paths. Their constituent parts may not

be effective in changing branch predicate evaluations needed

to exercise new paths. However, substituting constituent parts

in the two rows may create a combination of constituent parts

needed to flip branch predicates and trigger a new path. Figure

3 shows a simple example where a branch not covered by the

original data can be explored if the data is interleaved.

Finding useful interleavings of existing data is technically

challenging. First, most interleavings of the data are redundant

and do not improve code coverage. Second, the complex

interaction of input datasets with the programs creates

implicit dependencies between inputs that add another layer

of constraints toward finding coverage-enhancing input

interleaving. These dependencies are often formed due to

dataflow operators like join or reduce. For instance, in

join, an entry in one column of a dataset must contain in

a column of another dataset, leading to an implicit branch:

if(data1.col[1].contains(data2.col[1])).

Lastly, an exhaustive search over all interleaving is not

computationally feasible. To apply interleaving mutations

effectively, we must locate the precise constituent parts

in each input and then measure the impact of each row’s

constituent part on every branch predicate, implicit or explicit,

in the program. This is the key information needed for the

substitution of constituent parts across input rows that will

explore new program paths.

B. Fine-grained Branch Profiling

To enable effective interleaving mutations, NATURALFUZZ

identifies which constituent parts (rows and columns) in input

datasets influence the branching decision of a given implicit or

explicit branch in the program. This is the minimal information

needed to model how certain input rows can satisfy a path’s

constraints and exercise the corresponding path. To capture this

information, NATURALFUZZ statically analyzes the program

and locates the boolean expressions inside branch predicates

in the program.

Our key idea is that since branches are primary hurdles in

achieving high coverage, we can use fine-grained knowledge

of branch predicates to select only as many rows as necessary

to satisfy constraints imposed by these branches. In addition

to capturing the predicate expressions in every branch, we

associate each variable in the expression with its source in the

dataset, finding the constituent parts in input rows that directly

influence the branch predicate. For example, in the expression

a > b, a may be sourced from column 22 of dataset-1 and

b may be column 3 of dataset-2. NATURALFUZZ is able to

identify this and translates this expression to ds1.col[22]
> ds2.col[3].

We use fine-grained taint analysis to associate variables

in the branch predicate with constituent parts in inputs. We

extend the taint analysis engine of FlowDebug [18] to support

column-level tainting and expression propagation. FlowDe-

bug overloads data types and their constituent operations to

propagate taints. We augment its taint object with a third

field, resulting in a 3-tuple of the form (Value, Taint,
Expression). The Expression is a binary tree structure

that tracks how the variable was constructed. For example,

the Expression of a variable x = a + b would be stored

1595

�������

����
�����������������������

����
	
����� ������	�	
�����

����	

����������

����	

���������	

��

	��	���	�

�����������	
�������

�������

�������

��������

����������������������	
����������������������������� �������	�������

����������	
�������	
��������������
��������������������������������������
!��		�		��
���������������!�����������

��������

����������	�
�������	�������	�����������
��������!���������������������������
�����������	����	&������������������

�����������	
��

���������������������������
���������&&&������������������
���������&�&�	����������������

�����	
��

���

��������	
				 �� ��

���

���������
		 � ��

��������
�����������������

�����������

�
��

����

�
�����

��������

�����������������
�
���������

�

��
��� �

�

����

	������

Fig. 4: Branch predicate expressions, bit vectors, and augmented datasets constructed by NATURALFUZZ.

1 case class TaintedInt(value: Int, t: Taints, expr:
Expression){

2 // overloaded + operator
3 def +(rhs: Int): TaintedInt =
4 return new TaintedInt(value + lhs,
5 t,
6 expr.add("+", rhs))
7 def +(rhs: TaintedInt): TaintedInt =
8 return new TaintedInt(
9 value + rhs.value,

10 union(t,rhs.t)
11 rhs.add("+", rhs.expr)
12) // more overloaded operators

Fig. 5: Taint analysis enabled Int type in Scala

as Tree(Node(a), Node("+"), Node(b)). Figure 5

shows an example of how the primitive Integer type is

modified to support taint propagation and construct branch

predicate expression. With each variable, we maintain a list

of offsets from where the variable value originates and the

branch predicate expression that the variable influences in the

form of an Abstract Syntax Tree (AST). This expression tree

is a binary tree of operators and values that are populated

as operations are applied to the variable. Each variable’s tree

provides information on how to compute its value from the

original dataset, owing to taint analysis. Figure 4 shows how

the tree is developed as operations are performed. Similar to

FlowDebug, NATURALFUZZ applies an automatic rewrite to

use taint-enabled data types in Apache Spark.

After enabling taint analysis, NATURALFUZZ captures

branch predicates by statically traversing the application’s

AST. It injects a monitor function around branch predicates

as shown in Figure 4. Monitor functions take the branch

predicates as inputs and return their evaluation at runtime.

In addition to that, since Apache Spark applications run in

a distributed environment on physically separate machines,

monitors make use of Apache Spark Accumulators [19],

which are Spark’s mechanism to send small amounts of

information from a worker node to the master node. We use

Accumulators to send the information captured by monitors

to NATURALFUZZ. After finishing the initial application run,

NATURALFUZZ successfully retrieves the predicates from all

implicit and explicit branches in the application and the

constituent parts in the original input that for each variable

involved in the predicates. Figure 4 shows the output of this

first step.

C. Computing Path Vectors

After taint analysis, NATURALFUZZ executes the appli-

cation on the original input datasets to measure each input

row’s satisfiability against every branch predicate and encode

this information in a bit vector, called path vector. A path

vector is a binary number string that encodes the result of

each branch evaluation for a particular row in the dataset.

Figure 4 shows how these vectors are computed. The fine-

grained knowledge of how constituent input parts affect branch

predicate evaluation can help synthesize new inputs by mixing

constituent parts from different rows, resulting in an unseen

path vector.

In Figure 4, for each branch predicate, we obtain a cor-

responding Boolean expression. There are a total of four

branches in the program: two filters with explicit predicates;

and two joins with implicit predicates. We model the implicit

predicate of join as a contains function. This is because

when an inner join is performed between two datasets, in order

for the data to flow past the join, dates must contain at least

one row where the value of the key column matches the value

of the key column of at least one row in store_sales.

In order to compute the path vector for each row, we

scan the dataset linearly and evaluate each branch expression

on each row, encoding the true or false evaluation as a

binary value. This creates an augmented dataset as shown in

Figure 4. We use two bits to encode the results of a single

1596

Algorithm 1: Seed Input Selection Algorithm
Input: A set of datasets D
Output: A set of minimized datasets Dmin

Daug ← computePathVectors(D)
Dmin ← {}
V ← 0
for d ∈ Daug do

dmin ← {}
for row ∈ d do

v ← getPathVector(row)
if V �= (V | v) then

if dj ∈ Dmin such that dj .join({row}) �= ∅ then
dmin ← dmin ∪ {row }
V ← V | v

end
end

end
Dmin ← Dmin ∪ dmin

end
return Dmin

predicate. While it is possible to encode the result of each

branch as a single bit, we need two bits because certain rows

may not affect the outcome of a predicate. For example, in

ds1.join(ds2).filter(ds2.col[1] < 2022), the

expression ds2.col[1] < 2022 does not depend on any

rows from ds1. The role of rows from ds1 is undefined for

the predicate and thus, the expression cannot be judged to be

either true or false for any row of ds1. Therefore, we need

three possible values: true (10), false (01), and undefined (00).

The value of 11 is unused. 2n size bit vector is needed for a

program with n branches.

D. Fuzzing with Interleaving Mutation

After gathering the branch profile of each row in the input

dataset, NATURALFUZZ initiates its fuzzing campaign that

exclusively uses interleaving mutations. As with any fuzz

testing approach, a good quality seed input is required for

effective testing.

a) Seed Input selection: Using the branch profile of input

datasets, NATURALFUZZ filters the original dataset to obtain

selected rows that assist it in achieving high coverage. The goal

is to obtain a set of rows that can satisfy complex constraints

in the program while being small enough for local fuzzing

campaigns instead of fuzzing the entire input datasets on the

cloud, which is inefficient. Selecting a small seed input is also

crucial in reducing the potential locations to apply interleaving

mutations. Our key idea is that since branches are primary

hurdles in achieving high coverage, we can minimize such

locations by reducing the input data to a small set of rows

that satisfy constraints imposed by these branches.

Algorithm 1 shows how path vectors can be used for

obtaining a set of rows that achieve high coverage. It selects

only those input rows that increase the cumulative code

coverage. The computePathVectors function computes

the path vectors for all rows across all datasets to create the

augmented set of datasets, Daug . Once these path vectors have

been assigned for each row in Daug , we iterate over all rows

of all augmented datasets, selecting rows that exercise new

branch decisions, and adding those rows to the minimized

dataset, dmin. Algorithmically, we include input when the

bitwise OR of (1) the path vector of the input row and (2)

the cumulative bitwise OR of the path vectors for all the rows

in dmin (represented by V) is never seen before. Since the

path vector only tracks true or false decisions, conditions like

matching keys for a join operation must be explicitly checked.

In such cases, even if the path vector for the row contains true

against the implicit join condition, it may not have a matching

key in the dmin. Therefore, we check for join satisfaction with

relevant datasets in Dmin before adding it to the minimized

dataset. The algorithm returns the minimized set of datasets

Dmin, which will act as the seed input.

Despite reducing data to only a necessary subset, we must

ensure enough data for interleavings is available to produce

novel input rows triggering new paths. This entails amplifying

our donor input set by expanding on the seed input. We

perform stratified sampling of the input datasets, where each

stratum represents a set of rows that explore a specific branch

decision in the application. For each branch, we filter the rows

that are true for that branch by taking a bitwise OR with 10
at that position. We sample r rows per condition from each

dataset, where r is a configurable parameter. This means that if

we have b branches in the program, the donor set will contain

b ∗ r rows. Note that the donor set is different than the seed

input (although initiated from the seed). It is simply used as

a source for generating inputs.

b) Interleaving Mutation Application: At each fuzzing

iteration, NATURALFUZZ mutates the seed input by interleav-

ing random columns from the donor set. When applying inter-

leaving mutation, a random column from a random input row

from a donor set is selected and spliced into its corresponding

column position in the seed input. NATURALFUZZ performs

interleaving among input rows from the same stratum, which

is also selected randomly to add variability in new input. Since

the donor set and seed input is created with high sophistication,

random interleaving between the donor and seed input set is

enough to promote new coverage.

IV. EVALUATIONS

Our evaluation aims to answer the following research ques-

tions:

• RQ1: Does NATURALFUZZ perform better than baselines

in terms of coverage?

• RQ2: How successful is NATURALFUZZ in finding pro-

gram faults compared to state of the art?

• RQ3: How realistic are inputs generated by NATURAL-

FUZZ compared to baseline fuzzers?

• RQ4: How useful are state-of-the-art synthetic data gen-

erators for natural test input generation for DISC appli-

cations compared to NATURALFUZZ?

a) Benchmarks: We use a commercial benchmark suite

called the TPC-DS benchmark [14], which contains SQL

queries simulating real-world workloads for decision support

systems. TPC benchmarks are considered a gold standard for

database benchmarks and have been regularly used in prior

work on database testing and debugging [20]. We present

the results from eight out of the 99 TPC-DS queries. Prior

1597

100 101 102
0

20

40

60

80

100
S

ta
te

m
en

t
C

o
v
er

ag
e

(%
)

A

100 101 102
0

20

40

60

80

100

B

100 101 102
0

20

40

60

80

100

C

100 101 102
0

20

40

60

80

100

D

100 101 102
0

20

40

60

80

100

Time (s)

S
ta

te
m

en
t

C
o
v
er

ag
e

(%
)

E

100 101 102
0

20

40

60

80

100

Time (s)

F

100 101 102
0

20

40

60

80

100

Time (s)

G

100 101 102
0

20

40

60

80

100

Time (s)

H

NATURALFUZZ BIGFUZZ JAZZER

Fig. 6: Statement coverage progress of NATURALFUZZ and baselines on eight benchmark programs.

ID Description Datasets
A Find customers who have returned items more than 20%

more often than the average customer returns for a store in a
given state for a given year

4

B Report the total extended sales price per item brand of a
specific manufacturer for all sales in a specific month of the
year

3

C List all the states with at least 10 customers who during a
given month bought items with the price tag at least 20%
higher than the average price of items in the same category

5

D Compute the average quantity, list price, discount, and sales
price for promotional items sold in stores where the
promotion is not offered by mail or a special event. Restrict
the results to a specific gender, marital and educational status

5

E Compute the revenue ratios across item classes: For each
item in a list of given categories, during a 30-day time
period, sold through the web channel compute the ratio of
sales of that item to the sum of all of the sales in that item’s
class

3

F Report the total catalog sales for customers in selected
geographical regions or who made large purchases for a
given year and quarter

4

G Select the top revenue generating products bought by out of
zip code customers for a given year, month and manager

6

H Compute the total revenue and the ratio of total revenue to
revenue by item class for specified item categories and time
periods.

3

TABLE I: Benchmark programs and their descriptions as taken

from the TPC-DS Specification [14]

work DISC application testing has mostly used simple custom

applications, such as WordCount [4], for evaluations that

ingest single input datasets, which is not representative of real-

world analytics. Most production DISC workloads perform

analytics on data that typically spans several datasets [14].

We translate the eight TPC-DS queries to Scala-based Apache

Spark Applications, where every application ingests at least

three datasets. Table I shows the programs used in our bench-

mark, including the number of datasets they use and their

official description per the TPC-DS specification [14].

b) Baselines: We compare NATURALFUZZ against two

state-of-the-art fuzzers in their respective domains: (1)

JAZZER, a commercial fuzzer for Java Virtual Machine (JVM)

applications, and (2) BIGFUZZ, the current state-of-the-art

for DISC application fuzzing. We provide BIGFUZZ with

randomly sampled rows from the datasets to act as a seed

input as done in the original work. JAZZER requires the

user to manually write targets for each application, which

is interfacing code that converts a byte stream into a format

relevant to the program. We manually provide targets for all

programs. None of the two baseline fuzzers are operational on

multi-datasets. To give a fighting chance, we augment the two

baseline fuzzers by supporting mutations on multiple input

datasets. We use a Scala compiler plugin, scoverage, to

compute statement coverage metrics.

In addition to fuzzers, we compare NATURALFUZZ against

SDV [13], a commercial state-of-the-art machine learning-

based synthetic data generator. We seek to evaluate how useful

SDV is for generating natural-looking inputs that are also

useful for debugging DISC applications in practice. For a

debugging use case, the size of the generated test case matters

i.e., . the more minimal the test case the better. To this end, we

create three different settings of SDV: (1) SDV-N, where 25K

rows are generated by SDV and it is NOT given any schema

information for the datasets; (2) SDV-S, where 25K rows are

generated and SDV is given schema information; and finally

(3) A variant of SDV-S, where only 50 rows are generated and

SDV is given schema information instead of 25K. In contrast,

NATURALFUZZ only generates 1.7 rows per dataset per test

case.

1598

Program Application Execution Time (s) Faults Detected
Original Instrumented Overhead NATURALFUZZ BigFuzz Jazzer

A 15.1 58.4 3.9 4.6 0.0 0.0
B 13.2 76.6 5.8 2.6 2.0 1.0
C 45.7 603.9 13.2 4.2 0.0 0.0
D 20.9 317.3 15.2 3.4 5.0 0.0
E 16.2 97.9 6.1 2.3 3.0 0.8
F 26.6 364.6 13.7 1.0 0.0 0.0
G 93.3 1188.6 12.8 2.3 2.0 0.0
H 14.7 79.6 5.4 0.0 0.0 0.0

Total Faults Detected 20.4 12.0 1.8

TABLE II: Average overhead and average total errors detected

by each tool.

c) Fault Injection: We perform mutation testing [21] to

evaluate fault detection capability for semantic faults and re-

port the number of errors detected. In total, our fault injections

result in 64 mutant programs. We replace every binary operator

in the program with another randomly chosen binary operator.

We run each tool on each mutant for a total of five minutes,

which is more than the time spent on fuzzing by prior work [4].

We further eliminate any experimental variations by averaging

our results over five runs. In total, we run approximately 960
fuzzing jobs. We perform branch profiling steps on large-scale

data on a 13-node cluster computing environment with a total

of 112 cores and perform fuzzing locally on the master node,

which simulates how these tools would typically be used. We

run our experiments on Apache Spark 3.0 and HDFS 2.7.

A. Code Coverage

Figure 6 shows the progression of cumulative statement

coverage over the course of the fuzzing campaign using

NATURALFUZZ and two baselines. The Y-axis depicts the

percentage of statement coverage attained, while the X-axis

indicates the time that has elapsed in seconds. We observe

that NATURALFUZZ significantly outperforms the baselines

on average.

In benchmark A, NATURALFUZZ achieves 91.5% coverage

compared to 43.9% and 12.1% by JAZZER, respectively.

This is because A ingests four datasets that are all merged

together via a join operator. As described in Table I, the

program finds people who return items more often in a

particular state for a particular year. The constraints for the

year and state are imposed using filter operations such

as dates.filter(year == 2022). The program also

performs three inner joins to merge the four datasets, imposing

a complex constraint that spans across all four datasets requir-

ing matching keys in every column participating in the joins.

JAZZER struggles to meet the basic input requirement for the

four datasets, resulting in very low coverage due to failures

at the parsing stage. BIGFUZZ produces correctly formatted

inputs with the correct number of columns due to its schema

awareness. Still, it is unable to produce any input that satisfies

the filtering constraint on the dates dataset, let alone produce

any data that satisfies the constraints imposed by subsequent

joins. NATURALFUZZ detects these constraints and produces

a minimized set of datasets that contains all necessary rows

to satisfy the constraints, resulting in high coverage. The

best case performance for NATURALFUZZ out of five runs

1 import java.time.LocalDate
2 dates.filter {
3 row : Array[TaintedString] =>
4 val start = LocalDate("1999-01-01","YYYY-mm-dd")
5 val end = LocalDate("1999-02-01","YYYY-mm-dd")
6 try {
7 val date = row.col(2) : TaintedString
8 val conv = LocalDate(date, "YYYY-mm-dd")
9 conv.isBetween(start, end)

10 } catch { /* skip row */ }

Fig. 7: Tainted String on line 7 is casted to String on line 8,

resulting in a loss of taint. This can cause NATURALFUZZ’s

expression capture to be incomplete.

is 99.1% statement coverage, whereas the best case observed

for BIGFUZZ and JAZZER is 43.9% and 12.1%, respectively.

NATURALFUZZ outperforms the baselines on B, C, F and G

for similar reasons.

There are cases where baselines perform equally well as

NATURALFUZZ. For example, in E, NATURALFUZZ achieves

approximately 1.0% less coverage than BIGFUZZ. This pro-

gram checks if a particular sale falls within a given 30-

day time period. Figure 7 shows a code snippet of this

program that performs the date-time comparison. It uses Java’s

time.LocalDate library to parse the date string from

column 2 of the dataset and applies a range check for the

date using the library’s isBetween function.

The use of the library function is problematic for the

underlying taint analysis engine [18] that NATURALFUZZ

relies on. It loses the taint whenever a library function is

called. Even though the value row.col(2) is tainted, the

variable date is not. The function LocalDate expects an

argument of type String as its first parameter, and thus, type

TaintedString is implicitly cast to String, resulting in

loss of taint. Consequently, NATURALFUZZ’s coverage stays

1% below BIGFUZZ’s. The reason BIGFUZZ achieves 1%
more coverage is because it generates an incorrectly formatted

date resulting in an exception being caught at line 11. Since the

NATURALFUZZ does not perform random mutations, it does

not generate an ill-formatted date, avoiding a trivial parsing

exception. The results in D and H can be attributed to similar

reasons.

B. Error Detection

We also evaluate NATURALFUZZ and baselines in terms

of fault detection. Our goal is to evaluate the efficacy of the

tools in detecting semantic faults rather than trivial parsing

errors. To this end, we perform mutation testing and report

the number of mutants killed as detected errors. We create

program mutants by traversing the AST of each program and

replacing binary operators with randomly selected operators.

For example a == b is transformed to a > b. We replace

any boolean operators in the set {==, >, >=, <, <=,
!=} and any arithmetic operator in the set {+, -, *, /}
with some other operator in the same set. To avoid any planting

biases, we do this for every binary operator in all programs. In

total, across all programs, we create 64 mutants. Table II shows

the average number of faults detected by NATURALFUZZ and

1599

Program SDV-N (25K rows/dataset) SDV-S (50 rows/dataset) SDV-S (25K rows/dataset) NATURALFUZZ (1.7 rows/dataset)
Coverage Faults Time

(min)
Coverage Faults Time

(min)
Coverage Faults Time

(min)
Coverage Faults Time

(min)
A 77.2 0.0 5.8 50.1 0.0 179.5 60.0 1.8 181.1 90.7 4.6 6.2
B 65.9 2.0 5.6 62.4 2.0 196.6 95.5 5.6 198.2 83.8 2.6 6.6
C 18.6 0.0 9.4 17.5 0.0 248.4 57.7 1.2 250.6 74.8 4.2 15.7
D 73.4 3.4 7.7 67.0 2.0 200.2 70.1 4.0 201.9 68.2 3.4 11.6
E 71.9 3.0 5.6 68.8 3.0 303.4 71.9 3.0 305.9 71.5 2.3 6.8
F 66.1 1.0 7.4 62.5 1.0 335.6 89.6 2.0 338.3 77.7 1.0 11.3
G 71.3 4.0 9.6 67.5 3.0 248.9 80.4 4.4 251.0 84.1 2.3 25.8
H 66.4 0.0 5.4 66.4 0.0 316.6 73.8 0.0 319.1 70.5 0.0 6.5
Total Faults 13.4 11.0 22.0 20.4
Avg Coverage 63.8 57.7 74.9 77.6

TABLE III: Comparison of coverage, fault detection, generation time, and generation size between SDV and NATURALFUZZ

baselines. NATURALFUZZ significantly outperforms baselines,

detecting an average of 20.4 faults compared to 12.0 and 1.8
by BIGFUZZ and JAZZER, respectively.

For example, in A, NATURALFUZZ is able to detect an

average of 4.6 injected faults, whereas BIGFUZZ and JAZZER

are not able to detect any fault. A computes the average

number of customer returns for a particular state for a partic-

ular year. It then multiplies this value by 1.2 and filters cus-

tomers based on the criteria that customer_returns >
avg_returns*1.2. During fault injection, this is changed

to customer_returns > avg_returns-1.2. Since

this bug appears in the code after all the data has been filtered

by year and all four datasets have been joined, only NATU-

RALFUZZ is able to produce data that satisfy the filters
and joins, leading to the code region. In contrast, BIGFUZZ

and JAZZER fail to produce data that can satisfy the filter
and joins. Therefore, the filter predicate is never invoked,

and the fault is never exposed.

C. Synthetic Data Generators for Testing

Although our primary baselines are fuzzers, we seek to

understand the utility of state-of-the-art synthetic data gen-

erators towards the goal of generating realistic test inputs.

For this purpose, we use the SDV [13], a machine learning-

based synthetic data generator tool. We configure SDV to

use Conditional Tabular Generative Adversarial Network (CT-

GAN) [22] as the tabular data synthesizer. SDV allows users

to specify the data type of each column, such as numerical,

datetime, or categorical. However, it has limited support for

natural language text columns. Due to these strict column-type

constraints, SDV is unable to train (and eventually crashes)

on input rows that do not adhere to column type (e.g., null
values). Therefore, we label each column in input datasets as

categorical to prevent any potential crashes. Because CTGAN

encodes all categorical columns as one-hot vectors by default,

it can result in significant training overhead. To overcome this,

we sample 1000 rows from the real table as the training data

and train the model for the default 300 epochs.

DISC applications are often written for semi-structured and

unstructured datasets, where inferring correct input schema is

non-trivial, if even possible. Therefore, in order to perform a

comprehensive assessment, we evaluate SDV in three settings

(1) When the input schema is available (SDV-S) and (2) when

the input schema is unavailable (SDV-N). We run both SDV-S

and SDV-N in a one-shot setting by training it on the original

data and using it to generate 25K synthetic rows. This number

is roughly equivalent to the total number of rows in all test

inputs generated by NATURALFUZZ in the given time budget.

We then measure the statement coverage and fault detection

capability of these 25K rows. (3) Finally, in order to show how

SDV performs when tasked with generating small test cases

that are useful for debugging, we also use SDV to generate

50 rows per dataset instead of 25K.

Table III reports the results of these experiments. The

coverage and fault columns show the average final coverage

and faults detected by each tool respectively. The time column

shows the total test generation time in minutes. For NATURAL-

FUZZ, the test generation time is the sum of the time it takes to

profile the program and fuzz it. For SDV, the test generation

time is the sum of the total time needed to train the SDV

machine learning model and the time taken to generate 25K

rows for each table. All the experiments of SDV were run on

a Dell PowerEdge R630 Server with 224GB RAM and 2 Intel

Xeon E5-2640 v3 2.60GHz 8-core processor CPUs running

Ubuntu 22.04.

a) Coverage: In terms of coverage, NATURALFUZZ out-

performs all three baselines on average, achieving an average

final cumulative coverage of 77.6% compared to 74.9% and

63.8% by SDV-S and SDV-N, respectively. The high coverage

achieved by SDV-S is expected since it generates 25K rows

per dataset. We notice a significant drop in coverage (≈ 17%)

when only 50 rows are generated. Note that NATURALFUZZ

achieves high cumulative coverage while generating signif-

icantly less than 50 rows per dataset (typically two rows).

We observe a noticeable difference in coverage between SDV-

S and SDV-N. Without the schema, SDV-N is equivalent to

random sampling as it considers each unique input row as

a new category. During data generation, its generative model

uses the knowledge of categories to select one category, which

happens to be an input in the training data. SDV-S does not

generate completely novel input rows compared to the training

dataset. However, due to its training on columnar data, where

each unique entry in a column is considered a category, it

produces new rows by selecting random categories from each

column.

b) Fault Detection: We observe that SDV-S, manages to

detect 22.0 faults on average compared to 20.4 by NATU-

RALFUZZ. Without the schema, it detects only 13.4 faults in

1600

Original
Data

BIGFUZZ JAZZER SDV-S SDV-N NATURAL
FUZZ

DistilGPT2 1.6 164.0 3327.0 2.4 2.1 2.0
DistilBERT 12.5 388.2 NaN 18.8 11.9 12.1

TABLE IV: Average naturalness scores of inputs generated by

NATURALFUZZ and baselines.

total on average. However, it is important to note that SDV

is generating a single input containing 25K rows per dataset.

Table I shows that benchmark programs ingest three or more

datasets. Thus, SDV must generate at least 25K rows for each

dataset. For example, for A, the total data generated will be

100K rows. Although it is expected for an input of this size

to trigger all these errors and achieve high coverage, this is

not ideal for testing. In order to test if SDV can detect these

errors when generating smaller test cases, we generate only 50

rows using SDV-S, the best-performing variant. We see that the

average number of total faults detected drops to 11.0, which

is significantly lower than NATURALFUZZ, which generates

even smaller test cases.

c) Limitations of SDV: Our experiments show that SDV-

S provides almost similar fault detection and code coverage

as NATURALFUZZ. However, there are some key factors

that make NATURALFUZZ a more desirable test generation

tool than SDV: (1) SDV-S takes significantly longer (22.6 ×
more time than NATURALFUZZ) to train a model on 1000

input rows, which is prohibitive at the scale of big data; (2)

NATURALFUZZ generates several minimal test cases over the

course of the fuzzing campaign, each spanning only a handful

of rows, typically 2 rows per dataset. In contrast, SDV must

generate 25K rows at once to achieve comparable coverage and

fault detection. This is infeasible for debugging since the 25K

rows are too large of an input to pinpoint the error-inducing

rows. (3) SDV requires a schema and configuration effort for

each new program, whereas NATURALFUZZ’s performance is

out-of-the-box, with no special configuration required for each

program.

D. Test Input Naturalness

Although it is evident from visual inspection that the inputs

generated by NATURALFUZZ are more natural than those

generated by baselines, we still quantify the naturalness of

the generated inputs w.r.t the original data. We borrow tools

that are well-established in the machine-learning community

to achieve this. In particular, we make use of the perplexity

score [17], which is used to measure the naturalness of text

generated by language models. Intuitively, a perplexity score

encapsulates the probability of observing a given piece of text

in a corpus. However, since perplexity is the inverse of proba-

bility, it can be thought of as how surprised or “perplexed” a

language model is when observing a row w.r.t the distribution

it has modeled. Therefore, in terms of identifying more natural

inputs, lower perplexity score reflects more natural input. This

metric is useful for us since a natural test input is one that is

likely to be observed in the original dataset and least surprising
for the language model that has modeled a given distribution

(i.e., , the original dataset). Perplexity is a relative metric,

so we formally define naturalness for generated inputs in the

following manner: given a dataset and two generated test

inputs a and b, a is more natural than b if P (a) < P (b),
where P is the perplexity function.

We sample 30 test input rows generated by each tool for

each dataset and report the average perplexity. We employ two

language models to evaluate the naturalness of the generated

data: DistilGPT2, a lightweight version of OpenAI’s well-

known GPT2 model [23] and DistilBERT, a lightweight ver-

sion of Google’s BERT model [24]. Although architecturally

similar, BERT is an encoder designed to learn the language

and create general-purpose representations that can be used

for any downstream task, such as text summarization. GPT2

is a decoder whose primary purpose is to generate new text.

We compute the BERT score for a row by exponentiating the

loss of the trained model on the row. Since BERT randomly

masks tokens from the row, the score is not stable. Therefore

we average the score over 10 repetitions for each dataset.

Table IV shows the average naturalness scores for each

tool along with the baseline score of the original dataset.

NATURALFUZZ achieves a low perplexity score of 2.0, which

is only slightly higher than the perplexity for the original

dataset, i.e., ., 1.6. In comparison, test inputs generated by

BIGFUZZ and JAZZER achieve an average perplexity of 164.0
and 3327, showing that they are unlikely to be found in the

original dataset. SDV-N achieves the second-lowest perplexity

owing to random sampling from the dataset. The BERT score

for JAZZER resulted in NaNs, presumably because the loss

value was very high, resulting in a NaN when exponentiated.

Note that the BERT score for NATURALFUZZ and SDV-N is

even lower than the original data, which is possible since we

are working with samples, which may introduce variability.

E. Threats to Validity

We evaluate NATURALFUZZ on eight benchmark programs.

While prior work in big data application fuzzing uses a similar

number of benchmarks, it is possible that our results may

not fully generalize to all possible big data analytics. We

mitigate this issue by adapting programs solely from the TPC-

DS benchmark, which is the most widely-used benchmark

of real-world DISC workload. Furthermore, we perform a

quantitative assessment of data generated by NATURALFUZZ

and the baselines by finding the naturalness score on only a

sample of 30 rows, which may not represent the naturalness of

all generated data rows. We mitigate this issue by utilizing two

different classes of language models to validate the correctness

of our naturalness results.

V. RELATED WORK

Data Generation for DB Testing: The closest line of

work to ours is database testing [12], [25], [26]. Houkjær et
al. [26] propose a graph-based method to guide data gener-

ation. Bruno and Chaudhuri [25] propose a language-based

technique for general-purpose data generation. Other DB test

generation targets schema coverage [12]. These tools generate

synthetic data with the goal of testing database performance

1601

and workloads, and none of these target DISC applications. In

contrast, NATURALFUZZ utilizes real-world data to generate

minimal and realistic test inputs with the goal of discovering

program faults.

We compared our work against ML-based fake data gen-

erator, SDV [13], similar albeit more primitive synthetic data

generators exist such as Faker [27] that have been used to

generate fake data in the literature before [28]. However, these

synthetic data generators require manual configuration and do

not take into account the complex constraints introduced by

dataflow operators in the program.

DISC Application Testing: Prior work has also explored

challenges in testing DISC applications. BIGFUZZ [4] is a

black box fuzzing technique that uses schema-aware mutations

to mitigate the problem of trivial parsing errors and increase

coverage. It also uses framework abstraction to allow local

fuzzing of the DISC application. BigTest [29] was the first to

explore framework abstraction for testing DISC applications

using symbolic execution. DepFuzz [30] aims to find co-

dependent regions within the input and apply mutations that

respect these co-dependent relationships. NATURALFUZZ’s

branch profiling technique is inspired by DepFuzz. All these

techniques aim to maximize code coverage and fail to generate

natural and intelligible inputs.

Semantic and Grammar-based Testing: Another related line

of work is automated testing to find semantic faults. Zest [31]

relies on program feedback to find semantic faults in the

program and avoid syntax errors. Other works rely on context-

free grammars of the input domain to generate inputs that

avoid syntax errors and better explore the semantic stages of

the program under test [32], [33], [34], [35], [36]. However,

these techniques require the presence of grammar rules that are

complex to write or infer. In contrast, NATURALFUZZ does not

rely on any grammar rules.

Taint-Based Fuzzing: Several works have attempted to use

taint analysis to identify regions of interest where mutations

can be applied with priority. For example, Bekrar et al.[5]

developed a fuzzing technique that uses taint analysis on

program binaries to focus mutations on specific regions of the

input. Similarly, PATA [8] performs path-aware taint analysis

to mitigate problems of over-tainting and under-tainting. Other

security-related works like BuzzFuzz [7] and TaintScope [6]

attempt to isolate regions of the input that are used inside sen-

sitive library calls to increase the chances of finding security

bugs. These fuzzers do not target realistic input generation and

employ tainting techniques that are not directly applicable to

DISC applications since there is no single binary of a DISC

application. Instead, the packaged binary is sent to thousands

of machines where each runs separately.

Profile-Based Fuzzing: Profiling datasets and workloads is

widely practiced across different streams of computer sci-

ence [37], [38], [6], [39]. TaintScope [6] uses branch profiling

to identify checksum fields and identify checksum integrity

checks to bypass them. MoWF [39] uses branch profiling to

determine if crucial branches have been explored. In contrast,

NATURALFUZZ uses branch profiling to identify boolean

expressions that guard code regions to facilitate realistic input

generation.

VI. CONCLUSION

In this paper, we presented NATURALFUZZ, a fuzzer that

achieves high code coverage as fast as possible using natu-

ral, synthetic inputs only. NATURALFUZZ achieves this goal

through its novel interleaving mutations that mix constituent

parts of different rows in the input dataset. When tested on

popular database benchmark queries, NATURALFUZZ reaches

77.6% statement coverage compared to 46.5% and 19.9% by

baseline fuzzers, JAZZER and BIGFUZZ, respectively. More

importantly, NATURALFUZZ generates only natural test inputs

when fuzzing, facilitating the downstream fault localization

and debugging process. NATURALFUZZ is the first work that

demonstrates that existing fuzzer do not need to sacrifice the

naturalness and readability of their test inputs to reach high

code coverage.

ACKNOWLEDGEMENTS

This work is supported by the National Science Foundation

under grant numbers 2106420, 1764077, 1956322, 1460325,

2106383 and 2106404. It is also supported in part by funding

from Amazon and Samsung. We want to thank the anonymous

reviewers for their constructive feedback that helped improve

the work.

REFERENCES

[1] Apache hadoop. https://hadoop.apache.org/, 2022. Accessed: 2021-12-
14.

[2] Apache spark. https://spark.apache.org/, 2022. Accessed: 2021-12-14.
[3] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-fuzz: fuzzing by

program transformation. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 697–710. IEEE, 2018.

[4] Qian Zhang, Jiyuan Wang, Muhammad Ali Gulzar, Rohan Padhye,
and Miryung Kim. Bigfuzz: Efficient fuzz testing for data analytics
using framework abstraction. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering, ASE ’20,
page 722–733, New York, NY, USA, 2021. Association for Computing
Machinery.

[5] Sofia Bekrar, Chaouki Bekrar, Roland Groz, and Laurent Mounier. A
taint based approach for smart fuzzing. In 2012 IEEE Fifth International
Conference on Software Testing, Verification and Validation, pages 818–
825, 2012.

[6] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. Taintscope: A
checksum-aware directed fuzzing tool for automatic software vulner-
ability detection. In 2010 IEEE Symposium on Security and Privacy,
pages 497–512, 2010.

[7] Vijay Ganesh, Tim Leek, and Martin Rinard. Taint-based directed
whitebox fuzzing. In 2009 IEEE 31st International Conference on
Software Engineering, pages 474–484. IEEE, 2009.

[8] J. Liang, M. Wang, C. Zhou, Z. Wu, Y. Jiang, J. Liu, Z. Liu, and
J. Sun. Pata: Fuzzing with path aware taint analysis. In 2022 2022
IEEE Symposium on Security and Privacy (SP) (SP), pages 154–170,
Los Alamitos, CA, USA, may 2022. IEEE Computer Society.

[9] American fuzzy lop. https://lcamtuf.coredump.cx/afl/, 2021. Accessed:
2021-12-14.

[10] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-
based greybox fuzzing as markov chain. IEEE Transactions on Software
Engineering, 45(5):489–506, 2019.

[11] Caroline Lemieux and Koushik Sen. Fairfuzz: A targeted mutation
strategy for increasing greybox fuzz testing coverage. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering, pages 475–485, 2018.

1602

[12] Abdullah Alsharif, Gregory M. Kapfhammer, and Phil McMinn.
Domino: Fast and effective test data generation for relational database
schemas. In 2018 IEEE 11th International Conference on Software
Testing, Verification and Validation (ICST), pages 12–22, 2018.

[13] Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The synthetic
data vault. In 2016 IEEE International Conference on Data Science
and Advanced Analytics (DSAA), pages 399–410, 2016.

[14] Tpc-ds version 2 and version 3, Accessed: 2022-09-01.
[15] Code Intelligence. Jazzer. https://github.com/CodeIntelligenceTesting/

jazzer, 2022.
[16] Kostya Serebryany. Libfuzzer – a library for coverage-guided fuzz

testing., Accessed: 2023-01-29.
[17] Nihar Ranjan, Kaushal Mundada, Kunal Phaltane, and Saim Ahmad.

A survey on techniques in nlp. International Journal of Computer
Applications, 134(8):6–9, 2016.

[18] Jason Teoh, Muhammad Ali Gulzar, and Miryung Kim. Influence-
based provenance for dataflow applications with taint propagation. In
Proceedings of the 11th ACM Symposium on Cloud Computing, pages
372–386, 2020.

[19] Spark programming guide, Accessed: 2023-05-04.
[20] Raghunath Othayoth Nambiar and Meikel Poess. The making of tpc-ds.

In VLDB, volume 6, pages 1049–1058, 2006.
[21] Yue Jia and Mark Harman. An analysis and survey of the development of

mutation testing. IEEE transactions on software engineering, 37(5):649–
678, 2010.

[22] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veera-
machaneni. Modeling tabular data using conditional gan. Advances in
Neural Information Processing Systems, 32, 2019.

[23] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
Ilya Sutskever, et al. Language models are unsupervised multitask
learners. OpenAI blog, 1(8):9, 2019.

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805, 2018.

[25] Nicolas Bruno and Surajit Chaudhuri. Flexible database generators. In
Proceedings of the 31st International Conference on Very Large Data
Bases, VLDB ’05, page 1097–1107. VLDB Endowment, 2005.

[26] Kenneth Houkjær, Kristian Torp, and Rico Wind. Simple and realistic
data generation. In Proceedings of the 32nd International Conference
on Very Large Data Bases, VLDB ’06, page 1243–1246. VLDB En-
dowment, 2006.

[27] Welcome to faker’s documentation!, Accessed: 2023.
[28] Chengxu Yang, Yuanchun Li, Mengwei Xu, Zhenpeng Chen, Yunxin

Liu, Gang Huang, and Xuanzhe Liu. TaintStream: Fine-Grained Taint
Tracking for Big Data Platforms through Dynamic Code Translation,

page 806–817. Association for Computing Machinery, New York, NY,
USA, 2021.

[29] Muhammad Ali Gulzar, Shaghayegh Mardani, Madanlal Musuvathi, and
Miryung Kim. White-box testing of big data analytics with complex
user-defined functions. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2019, page
290–301, New York, NY, USA, 2019. Association for Computing
Machinery.

[30] Ahmad Humayun, Miryung Kim, and Muhammad Ali Gulzar. Co-
dependence aware fuzzing for dataflow-based big data analytics. In
Proceedings of the 31st ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2023.

[31] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and
Yves Le Traon. Semantic fuzzing with zest. In Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and
Analysis, pages 329–340, 2019.

[32] Michael Beyene and James H. Andrews. Generating string test data
for code coverage. In 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation, pages 270–279, 2012.

[33] David Coppit and Jiexin Lian. Yagg: An easy-to-use generator for
structured test inputs. In Proceedings of the 20th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE ’05,
page 356–359, New York, NY, USA, 2005. Association for Computing
Machinery.

[34] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. Grammar-based
whitebox fuzzing. SIGPLAN Not., 43(6):206–215, jun 2008.

[35] P.M. Maurer. Generating test data with enhanced context-free grammars.
IEEE Software, 7(4):50–55, 1990.

[36] Emin Gün Sirer and Brian N. Bershad. Using production grammars in
software testing. SIGPLAN Not., 35(1):1–13, dec 2000.

[37] Mohammad Laghari and Didem Unat. Object placement for high
bandwidth memory augmented with high capacity memory. In 2017
29th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), pages 129–136, 2017.

[38] Mohammad Laghari, Najeeb Ahmad, and Didem Unat. Phase-based
data placement scheme for heterogeneous memory systems. In 2018
30th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), pages 189–196, 2018.

[39] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. Model-
based whitebox fuzzing for program binaries. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE ’16, page 543–553, New York, NY, USA, 2016.
Association for Computing Machinery.

1603

