BigDebug: Debugging Primitives for
Interactive Big Data Processing in Spark

Muhammad Ali Gulzar, Matteo Interlandi, Seunghyun Yoo, Sai Deep Tetali,
Tyson Condie, Todd Millstein, Miryung Kim

University of California, Los Angeles

UCLA

Developing Big Data Analytics

* Big Data Analyticsis becomingincreasingly important.

* Big Data Analytics are built using data intensive computing
platforms such as Map Reduce, Hadoop, and Apache Spark.

Spor‘lfg @

~HIVE

Apache Pig

GO gle Map Reduce

Apache Spark: Next Generation Map Reduce

* Apache Sparkis up to 100X faster than Hadoop MapReduce

* |tisopensource and over 800 developers have contributed in its
development

e 200+ companiesare currently using Spark

* Spark also provideslibraries such as SparkSQL and Mllib

Running a Map Reduce Job on Cluster

\ v

A job is distributed to
workers in cluster

= /

F

Map Reduce]
[— ,—
L L
A user submits a job
O N - — —
0 - —

Each worker performs pipelined transformationson a
partition with millions of records

Motivating Scenario: Election Record Analysis

VoterIlD Candidate State Time
* Alice writes a Spark program 9213 Sanders TX 1440023087

that runs correctly on local
machine (100MB data) but

crashes on cluster (1TB)

val log = "s3n://poll.log"
val text file = spark.textFile(logqg)
val count = text file
.filter(line => line.split() [3].toInt
> 1440012701)
.map (line = > (line.split()[1] , 1))

* Alice cannot see the crash- reduceByKey (+).collect()

~NOoO Ok WN -

inducing intermediate result.

* Alice cannot identify which input

from 1TB causing crash

* When crash occurs, all
intermediate results are thrown
away.

Motivating Scenario: Election Record Analysis

* Alice writes a Spark program
that runs correctly on local
machine (100MB data) but

crashes on cluster (1TB)

* Alice cannot see the crash-

inducing intermediate result.

* Alice cannot identify which input

from 1TB causing crash

* When crash occurs, all

intermediate results are thrown
away.

~NOoO Ok WN -

VoterID Candidate State Time
9213 Sanders TX 1440023087

val log = "s3n://poll.log"
val text file = spark.textFile(logqg)
val count = text file
.filter(line => line.split() [3].toInt
> 1440012701)
.map (line = > (line.split()[1] , 1))
.reduceByKey(_+) .collect()

Task 31 failed 3 times; aborting
job
ERROR Executor: Exception in

task 31 in stage 0 (TID 31)

java.lang.NumberFormatException

BigDebug: Interactive Debugger Features

o Simulated Breakpoint

object ElectionPoll {
def main(args: Array[String]) {
val conf = new SparkConf()
val log = "s3n://poll. loc
val text file = spark.textFile(log)
val count = text file

.filter(line => line.split()[3].toInt
> 1440012701)
.map(line = > (line.split()[1] , 1))

sc.stop()
}
}

9 Crash Culprit Identification

Stage 0 Stage 1

reduceByKey

Crashing at transformation 2
Crashing Record : “Sanders”

ArrayIndexOutofBoundException

0 Guarded Watchpoint

Captured Data Records
9213 Sanders TX 1440023087
9K23 Clinton TX 1440023645
9FG9 Cruz TX 1440023978
99LP Trump TX 1440023232
2FSD Cruz TX 1440026456

Q Backward and Forward
Tracing

Outline

* |nteractive Debugging Primitives
1. Simulated Breakpoint
2. On-Demand Watchpoint
3. Crash Culprit Identification
4. Backward and Forward Tracing

5. Fine Grained Latency Alert

 Performance Evaluation

Why Traditional Debug Primitives Do Not Work
for Apache Spark?

Enablinginteractive debugging requires us to re-think the features

of traditional debugger such as GDB

* Pausing the entire computationonthe cloud could reduce
throughput

* Itisclearlyinfeasible for a user to inspect billion of records
through a regular watchpoint

* Evenlaunchingremote JVM debuggers to individual worker

nodes cannot scale for big data computing

Spark Program with Transformations

—>[Flatmap]—>[Map]——>[ReduceByKey H Map]——>[ReduceByKey H Filter]—)

10

Spark Program Scheduled as Stages

Flatmap Map ReduceByKey Map ReduceByKey Filter
_> -

11

Materialization Points in Spark

Flatmap Map ReduceByKey Map
_>

Stored data
records

ReduceByKey

12

1. Simulated Breakpoint

Stored data
records

13

1. Simulated Breakpoint

Breakpoint

Stored data
records

14

1. Simulated Breakpoint

Breakpoint

Stored data
records

Simulated breakpoint replays computation from the latest

materialization point where data is stored in memory

1. Simulated Breakpoint — Realtime Code Fix

Breakpoint

ReduceByKey ReduceByKey

Allow a user to fix code after the breakpoint

2. On-Demand Guarded Watchpoint

ReduceByKey Map
—_—>

Watchpoint capturesindividual data records matching a user-
provided guard

2. On-Demand Guarded Watchpoint

ReduceByKey
—_—>

Watchpoint capturesindividual data records matching a user-
provided guard

2. On-Demand Guarded Watchpoint

ReduceByKey Map
—_—>

state.equals(“CA”)

Watchpoint capturesindividual data records matching a user-

provided guard

Crash in Apache Spark

A job failure in Spark throws away the intermediate results of correctly
computed stages

Task 31 failed 3 times; aborting job
ERROR Executor: Exception in task 31
in stage 0 (TID 31)
java.lang.NumberFormatException

To recoverto from crash, a user need to find input causing crash
and re-execute the whole job.

3. Crash Culprit Identification

ReduceByKey

Crash occurred at transformation 3
Crashing Record : “Sanders”

ArrayIndexOutofBoundException
Skipping the record.
Continuing processing.

A user can see the crash-causing intermediate record and trace the

original inputs leading to the crash.

3. Crash Culprit Remediation

ReduceByKey - ReduceByKey

A user can either correct the crashed record, skip the crash culprit,
or supply a code fix to repair the crash culprit.

4. Backward and Forward Tracing

ReduceByKey

A user can also issue tracing queries on intermediate records at

realtime

4. Backward and Forward Tracing

ReduceByKey

-
—— -
- -

A user can also issue tracing queries on intermediate records at

realtime

Titian: Data Provenance for Spark [PVLDB2016]

Titian instruments Spark jobs with tracing agents to generate fine
grained tracing tables

Tracing Table 2 Tracing Table 3
Tracing Table 1 Input Output Input Output
Input Output t X
0 a a Yy
25 b ¢ Z
Step 2 Input Output
a Yy
b w

Input Output
0 a
25 b

Titian logically reconstructs mapping from outputto input records

by recursively joining the provenance tables

5. Fine Grained Latency Alert

Latency alert is enabled

ReduceByKey m ReduceByKey

A latency alert is issued if the processing time is greater than k
standard deviations above the moving average

5. Fine Grained Latency Alert

Latency alert is enabled

A latency alert is issued if the processing time is greater than k
standard deviations above the moving average

Evaluation

* Q1 : How does BigDebug scale to massive data?

* Q2 : Whatis the performance overhead of instrumentation and
communication for debugging primitives?

* Q3 : How much time saving does BigDebug provide through its
runtime crash remediation, in comparison to an existing replay

debugger?

28

Q1 : How does BigDebug scale to massive data?

BigDebug Scale Up
10000

1000 /

o ’/
v

£100

|

s

0.5 0.9 4 8 30 70 200 1000
Dataset Size (GB)

—Spark

29

Q1 : How does BigDebug scale to massive data?

BigDebug Scale Up

/’\vf—’”"ﬂ_’—__’t;,,/”’—’y

10000

[N
o
o
o

Time (s)

0.5 0.9 4 8 30 70 200 1000
Dataset Size (GB)

—BigDebug —Spark

BigDebug retains scale up property of Spark. This property is

critical for Big Data processing frameworks

Q1 : How does BigDebug scale to massive data?

BigDebug Scale Out

300
__ 200
=z .
v ~ \\\
E e Mo
"~ 100 S TTTmmmeen
0 I I I 1
2 4 6 8

Number of Workers

--=-Spark 10GB =----Spark 30GB ----Spark 50GB

31

Q1 : How does BigDebug scale to massive data?

BigDebug Scale Out

400
300
D s
o Sso
£ 200 \\
= ~— RN
100 TSN B
w --------------
0
2 4 6 8
Number of Workers
——BigDebug 10GB ——BigDebug 30GB ——BigDebug 50GB
----Spark 10GB ----Spark 30GB ----Spark 50GB

BigDebug retains scale out property of Spark. This property is

critical for Big Data processing frameworks

Q2 : What is the performance overhead of
debugging primitives?

Program Dataset Max w/o Watchpoint Crash Tracing

size (GB) Latency Culprit
Alert

1.34X

WordCount 0.5-1000 1.18X

Grep 20-90 1.07X 1.04X

1.29X 1.19X

PigMix-L1 1-200

A

Max : All the features of BigDebug are enabled

BigDebug poses at most 2.5X overhead with the maximum

instrumentation setting.

Q3 : How much time saving does BigDebug
provide when resolving crash?

Suppose that a user wants to skip or correct the crash causinginputs.

Arthur

The first run crashes

34

Q3 : How much time saving does BigDebug
provide when resolving crash?

Suppose that a user wants to skip or correct the crash causinginputs.

Arthur

The first run crashes

The second run instruments all records leading to a crash

-

The third run removes the crash inducing records from the inputs.

— >

35

Q3 : How much time saving does BigDebug
provide when resolving crash?

Suppose that a user wants to skip or correct the crash causing inputs.

Arthur

The first run crashes

The second run instruments all records leading to a crash

—_————>>

The third run removes the crash inducing records from the inputs.

R
BigDebug

A single run can detect and remove the crash culprit and resumes the job

—_— —>

36

Q3 : How much time saving does BigDebug

provide?
Time saving
250
200
@ 150
(]
ig 100 - M BigDebug
® Arthur

S1 S2 S3 S4
Location of crash (Stage)

BigDebug finds a crash inducing record with 100% accuracy and

saves upto 100% time saving through runtime crash remediation

Conclusion

* Debugging big data applicationsis painstaking and expensive

* BigDebug providesinteractive debugging primitives for high
performance in-memory processingin Spark

* BigDebug offers simulated breakpoints and guarded
watchpoints with little performance overhead

* |t scales to massive datain the order of terabytes, its record
level tracing poses 25% overhead and provides up to 100%
time saving

* BigDebugis publically available at
https://sites.google.com/site/sparkbigdebug/

38

