
Blocking JavaScript without Breaking the Web:
An Empirical Investigation

Abdul Haddi Amjad
Virginia Tech

Blacksburg, USA
hadiamjad@vt.edu

Zubair Shafiq
University of California, Davis

California, USA
zubair@ucdavis.edu

Muhammad Ali Gulzar
Virginia Tech

Blacksburg, USA
gulzar@cs.vt.edu

ABSTRACT
Modern websites heavily rely on JavaScript (JS) to implement le-
gitimate functionality as well as privacy-invasive advertising and
tracking. Browser extensions such as NoScript block any script
not loaded by a trusted list of endpoints, thus hoping to block
privacy-invasive scripts while avoiding breaking legitimate website
functionality. In this paper, we investigate whether blocking JS on
the web is feasible without breaking legitimate functionality. To this
end, we conduct a large-scale measurement study of JS blocking on
100K websites. We evaluate the effectiveness of different JS block-
ing strategies in tracking prevention and functionality breakage.
Our evaluation relies on quantitative analysis of network requests,
and resource loads as well as manual qualitative analysis of visual
breakage. First, we show that while blocking all scripts is quite effec-
tive at reducing tracking, it significantly degrades functionality on
approximately two-thirds of the tested websites. Second, we show
that selective blocking of a subset of scripts based on a curated list
achieves a better tradeoff. However, there remain approximately
15% “mixed” scripts, which essentially merge tracking and legit-
imate functionality and thus cannot be blocked without causing
website breakage. Finally, we show that fine-grained blocking of
a subset of JS methods, instead of scripts, reduces major breakage
by 3.7× while providing the same level of tracking prevention. Our
work highlights the promise and open challenges in fine-grained
JS blocking for tracking prevention without breaking the web.

1 INTRODUCTION
JavaScript is often used to provide rich user experiences on the web.
The volume of JavaScript on the web has steadily increased over
the years. The median web page load today ships 500+ kilobytes
of JavaScript [18]. While some of it is used to implement various
libraries and frameworks (e.g., jQuery, React), almost half of it is
third-party scripts that implement advertising and tracking services.
The research community is concerned about the negative impact
of JavaScript on performance [28, 51, 76], security [32, 35, 58, 79],
and privacy [33, 38, 46, 60, 61].

Due to these concerns, there is a small but active community
of web users who want to use the web without JavaScript. In fact,
all major browsers now provide a native way for users to block
all JavaScript [3]. Moreover, users can employ browser extensions
such as NoScript [12] that block all scripts – except those from a

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies YYYY(X), 1–14
© 2023 Copyright held by the owner/author(s).
https://doi.org/XXXXXXX.XXXXXXX

trusted source. HTML5 now also supports the noscript element
that allows web developers to gracefully support such browsers
that do not support scripting [13].

While blanket JavaScript blocking does alleviate these concerns,
it inevitably breaks the legitimate website functionality. The pri-
vacy community has developed content-blocking tools that selec-
tively block tracking resources (e.g., scripts) on a webpage. Privacy-
enhancing content blockers, such as uBlock Origin [1], block net-
work requests to known trackers by matching request URLs with
manually curated filter lists [6, 7].

Since these privacy-enhancing content blockers are now used by
more than one-third of web users [2, 57], there are strong financial
incentives for web developers to evade content blockers. The typi-
cal evasion strategy is to manipulate the URLs, e.g., change the URL
path or hostname, such that filter lists are no longer effective [25, 40].
This has led to an arms race where filter lists need to be promptly
updated in response to such evasion attempts [30, 53, 71]. Filter list
curators have also made a concerted effort to selectively block the
underlying scripts from downloading or execution that are respon-
sible for initiating tracking requests. In response, a new evasion
strategy has emerged where web developers attempt to mix track-
ing and functional code in the same script (e.g., JS bundling [30]).
Privacy-enhancing content blockers risk breaking a webpage if they
block such mixed scripts or compromise user privacy if they do
not.

Privacy-enhancing content blockers aim to eliminate tracking
while at the same time preserving website functionality. However,
if they are forced to choose — e.g., when tracking and functional
code is mixed —they always prioritize functionality preservation.
This is because most users tend to disable privacy-enhancing con-
tent blockers if they break legitimate website functionality. Recent
research [26, 71] has shown that many websites nowmix functional
and tracking code that renders privacy-enhancing content blocking
useless.

In this paper, we conduct a first-of-its-kind empirical investiga-
tion of JS blocking. To this end, we quantitatively and qualitatively
evaluate the impact of different granularities of JS blocking on 100K
websites. Our goal is to assess whether it is feasible to eliminate
tracking effectively while preserving website functionality at differ-
ent granularities of JS code i.e., script and method. Beyond blanket
JS blocking, we first investigate selective blocking of tracking scripts
as well as mixed scripts. We further expand our investigation to
the effectiveness of method-level blocking.

Our large-scale automated analysis of 100K websites reaffirms
that blanket JS blocking indeed eliminates tracking, but it also
breaks website functionality on approximately two-thirds of the
tested websites. We then show that selective blocking of tracking

1

ar
X

iv
:2

30
2.

01
18

2v
2

 [
cs

.C
R

]
 5

 F
eb

 2
02

3

https://orcid.org/1234-5678-9012
https://creativecommons.org/licenses/by/4.0/
https://doi.org/XXXXXXX.XXXXXXX

Proceedings on Privacy Enhancing Technologies YYYY(X) Abdul Haddi Amjad, Zubair Shafiq, and Muhammad Ali Gulzar

(a) Control (b) NoScript (c) uBlock Origin (d) Mixed (e) Method

Figure 1: The snapshot of livescore.com with (a) control-setting (no content blocker), (b) NoScript (default setting), (c) uBlock Origin (default
setting), (d) mixed script blocked (_app-*.js), and (e) JS method blocked (method in _app-*.js).

scripts mitigate tracking without degrading website functionality,
but there remains a significant fraction of scripts that mix tracking
and functional behavior. Specifically, we find that 14.6% of the
scripts exhibit both tracking and functional (i.e., mixed) behavior.
We then adapt Spectra-based fault localization (SBFL), a popular
faulty code localization technique, to further localize tracking to
the constituent methods of these mixed scripts. We find that fine-
grained method-level blocking of tracking methods significantly
reduces website breakage while providing the same level of tracking
prevention.

We also qualitatively analyze a sample of 383 websites under
different JS blocking configurations for functionality breakage. We
characterize functionality into four components e.g., navigation,
single sign-on, appearance, and additional functionality, and quan-
tify breakage on 3-levels (none, minor, and major). Our evaluation
shows that method-level JS blocking is far better at preserving
functionality while achieving a similar level of tracking prevention.
Specifically, we find that script-level JS blocking results in 3.7× ma-
jor breakage and 1.7×minor breakage as compared to method-level
JS blocking.

We summarize our key findings and contributions below:
• We find that method-level JS blocking is able to prevent
tracking on par with script-level JS blocking while improving
functionality preservation by 3.7× major breakage and 1.7×
minor breakage.

• By comparing two web crawls conducted one year apart, we
find a 14% increase in the number of websites that employ
mixed scripts on 100K websites.

• Even at the method-level granularity, we find that there
remain 6% mixed methods that combine tracking and func-
tionality. These mixed methods require even deeper program
analysis for effective blocking without breaking functional-
ity.

• The dataset crawled for this study offers a full-scale view
of JS code integration on today’s websites, presenting a de-
tailed lineage of tracking, functional, and mixed JS code units
across 100K websites.

Data Availability: Our crawl data and source code is available at
https://zenodo.org/record/7374344.

2 MOTIVATION
In this section, we present a case study to illustrate the tradeoff
between tracking prevention and functionality breakage.
No JS Blocking. Let’s take the example of livescore.com, a top-
10 ranked sports website [11].We first load the homepage of livescore.com
in a stock Chrome browser without any JavaScript intervention.
Loading this webpage results in 294 network requests in 11 seconds,

including 83 requests to fetch scripts and 175 requests initiated by
these scripts. For motivation, consider two of these scripts that ini-
tiate network requests to known1 tracking endpoints: gtm.js served
by googletagmanager.com and _app-*.js served by livescore.com.
gtm.js sends network requests to googleadse
rvices.com and google-analytics.com. _app-*.js send network
requests to doubleclick.net. Upon careful inspection, we found
that _app-*.js also sends a network request to livescore.com/ap
i/announcements/ that includes known tracking cookies such as
_gads [29, 64]. While both scripts are responsible for network re-
quests to tracking endpoints, _app-*.js is a mixed script that
seems to implement both legitimate website functionality (e.g., add
media, populate game statistics) and tracking. Figure [11] (a) shows
the homepage of livescore.com in the control configuration (with-
out any blocking).
Blanket JSBlocking. The naiveway is to block all JS on livescore
.com at the page load time. This capability is available in all major
browsers [3]. While this approach blocks all the aforementioned
tracking requests, it also completely breaks the website function-
ality. livescore.com becomes unusable and in fact notifies the
user2 that JS needs to be enabled for the website to display cor-
rectly. NoScript [12] also blocks all JS on livescore.com, including
gtm.js served by googletagmanager.com and _app-*.js served
by livescore.com. This again completely breaks the website func-
tionality. Figure [11] (b) shows the homepage of livescore.com
when NoScript [12] is used.
Selective JS Blocking. We next use a tracker blocking tool, called
uBlockOrigin [1], on livescore.com. Note that these tracker block-
ing tools do not specifically target JS. Instead, they use a curated
filter list to block network requests to known tracking endpoints
that may incidentally include network requests to fetch JS. Thus, as
compared to blanket JS blocking, uBlock Origin aims to block all net-
work requests to known tracking endpoints while allowing all other
network requests. After loading livescore.com with uBlock Ori-
gin installed, we observe that gtm.js is blocked, thus eliminating
all subsequent tracking network requests from gtm.js. However,
instead of blocking _app-*.js, uBlock Origin blocks the network
request to doubleclick.net while it allows the network request
livescore.com/api/announcements/ containing tracking cook-
ies. Figure [11] (c) shows the homepage of livescore.com when
uBlock Origin [1] is used. Although there is no website breakage,
uBlock Origin has essentially decided to not block _app-*.js to
avoid website breakage even though it results in tracking requests.
1See, for example, Disconnect tracking protection list [5]
2The notice on livescore.com states: “Your browser is out of date or some of its features
are disabled, it may not display this website or some of its parts correctly. To make
sure that all features of this website work, please update your browser to the latest
version and check that Javascript and Cookies are enabled.”

2

https://zenodo.org/record/7374344

Blocking JavaScript without Breaking the Web: An Empirical Investigation Proceedings on Privacy Enhancing Technologies YYYY(X)

➊

➋

➌ ➍

Figure 2: Steps for localizing tracking and functional JS code using Spectra-based fault localization. ➊ shows the two network requests on
intuit.com. Filter lists are used to label requests in ➋. Spectra-based fault localization is used to classify resources based on participation, as
shown in ➌ and ➍.

➊ ➊
➋ ➋

Figure 3: Illustration of the breakage metrics for automated JS
blocking. Request count (➊) andHTML of website (➋) are compared
with control configuration.

As we elaborate later, trackers have been increasingly attempting
to put tracker blocking tools in such a bind.
Tracking and Mixed JS Blocking. To understand why uBlock
Origin made the choice of not blocking _app-*.js, we next use
uBlock Origin but also configure it to block _app-*.js. As shown
in Figure [11] (d), this leads to a major functionality breakage on
livescore.com; the navigation button, game statistics, and the
featured news section are not rendered correctly. Put simply, there
is a no-win situation when it comes to _app-*.js, blocking it
results in website breakage and not blocking it results in tracking.

1 - u = = function(e) {

2 + donotExecuteMe = function(e) {

3 ...

4 return fetch(e).then(c.cg).then((function(e)

5 {return e || {}}))

Listing 1: JS method u that initiates tracking requests in script
_app-*.js. We replace this method name with donotExecuteMe

Method-level JS Blocking. Recent work [26, 71] has applied dy-
namic analysis to identify tracking methods in mixed scripts man-
ually. Our analysis of network requests initiated by _app-*.js
shows that the tracking requests were initiated by the method
shown in Listing 1. As shown in Figure [11] (e), when this method
in _app-*.js is blocked (e.g., it is renamed such that all calls to this
method are invalidated), the entire webpage renders completely
while all tracking requests are also blocked. It is noteworthy that
manually refactoring mixed scripts is not feasible at scale. There-
fore, only a handful of mixed scripts have been refactored in prior
work [14].

3 METHODOLOGY
This section describes our methodology for automated analysis of
JS blocking on 100K webpages (Phase I) and manual inspection of
JS blocking on 383 websites (Phase II).

3.1 Phase I: Automated JS Blocking Analysis
Figure 2 shows our automated JS blocking analysis pipeline com-
prising a JS collection step and JS code localization step. Figure 3
shows our JS blocking impact analysis step.

3.1.1 JavaScript Corpus Collection. We crawl landing pages of 100K
randomly sampled websites from the Tranco top-million list [66]
using a custom-built Chrome extension. For each webpage, our
crawler outputs a JSON file that maps each network request to its
initiator script and method (step ➊). We then label each network
request and its initiator code (e.g., JS script andmethods) as tracking
or functional using filter lists [6, 7] (step ➋).3

3.1.2 Localizing Tracking and Functional JS Code. Next, we classify
each script and method using spectra-based “fault” localization
(SBFL) [21, 22, 44]. SBFL requires a set of failing and passing test
cases. For every test, it simply collects the list of code units that
participated in the test execution. Based on the test output, it labels
the participating code units as either passing or failing. Finally, it
compares the participation of a code units in passing and failing
tests and assigns a score to that statement.

We adapt SBFL to localize tracking code units (i.e., scripts, meth-
ods). Instead of test cases, we analyze each network request and
the methods and scripts in the call stack trace of the network re-
quest. For example, Figure 2-➊ shows two network requests on
intuit.com. We use filter lists (step ➋) to classify a request (and
its call stack) as tracking (i.e., failed test case) and functional (i.e.,
passed test case). We then calculate “tracking score” (Eq 1) for
each code unit (i.e., script or method) based on its participation in
the call stack trace of tracking and functional requests, as shown
in step ➌. The script utag.js initiates 132 tracking requests and
160 functional requests. In this script, method loader initiates 131
tracking requests and 1 functional request. Method fireCORS initi-
ated 159 functional and 1 tracking requests. Figure 2 demonstrates
the calculation of the tracking score on the webpage in step ➍.

3Note that we use EasyList [6] and EasyPrivacy [7] for precise network request classi-
fication, rather than a domain-level list such as Disconnect [5].

3

Proceedings on Privacy Enhancing Technologies YYYY(X) Abdul Haddi Amjad, Zubair Shafiq, and Muhammad Ali Gulzar

ID Level JS Blocked Annotated Entity
block Tracking Mixed Functional

CTRL None None ✗ ✗ ✗

ALL script Blanket ✔ ✔ ✔

TS script Selective ✔ ✗ ✗

MS script Selective ✗ ✔ ✗

TMS script Track & Mixed ✔ ✔ ✗

TM method Method ✔ ✗ ✗

Table 1: Six different JS blocking configurations. This ✗ represents
an entity not blocked, and ✔ represents an entity blocked.

𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 = log
(
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

)
(1)

We classify code units that participate 100× times more in track-
ing than functional (i.e., tracking score of > 2) as tracking. We
classify code units that participate 100× times more in functional
than tracking (i.e., tracking score of < −2) as functional. This
threshold is determined experimentally in prior work [26]. The
code units that fall in neither category are classified as mixed. The
localization step results in a list of tracking, functional, and mixed
JS methods and scripts. In this example, script utag.js is classified
mixed, method fireCORS() is functional, and method loader() is
tracking.

3.1.3 JS Blocking Impact Analysis. To measure the impact of block-
ing JS code units, our custom-built Chrome extension loads every
page from the 100K websites and blocks the associated tracking
JS script or method from the list of labeled methods and scripts. It
blocks the JS scripts from loading in the browser, similar to exist-
ing content blockers. To block a script method, it simply replaces
the method name with doNotExecuteMe to redirect its invocations,
as shown in Listing 1. Renaming the method name may cause a
MethodNotFound exception that terminates the tracking thread in
a webpage’s JS execution as intended.

We conduct this experiment on the same 100K webpages in
six parallel configurations shown in Table 1. These configurations
are illustrated in the livescore.com case study and inspired by
unique JS blocking strategies that are mostly in practice or proposed
by prior work. Control configuration (CTRL) is used to localize JS
code units (scripts and methods) using the aforementioned SBFL
technique and for breakage comparison in the later subsection.
In ALL, all scripts (tracking, mixed, and functional) are blocked
to evaluate blanket JS blocking. Note that in ALL, scripts that are
not seen at the time of localization may be loaded. In TS, tracking
scripts are blocked to evaluate selective JS blocking. In MS, mixed
scripts are blocked to see its adverse consequence on functionality.
In TMS, tracking and mixed scripts are blocked to evaluate tracking
and mixed JS blocking. TMS is the optimum choice for tracking
prevention, but it risks functionality breakage, as shown in Section
2. Finally, we compare the results of TMS with TM, where we block
tracking methods (all located in tracking and mixed scripts) to
evaluate method-level JS blocking.

Functionality breakage is a subjective metric that requires visual
inspection, which is not feasible on 100K webpages. We discuss
two metrics that can be automatically calculated and are correlated
with website breakage [53].

Script Script Method Websites
Domain (%)
google-analytics.com analytics.js wd 38%
google-analytics.com analytics.js ta 25%
facebook.net fbevents.js c 19%
googlesyndication.com sodar2.js Ma 11%
twitter.com widget.js i.e 7%

Table 2: Top JSmethods found on themaximumnumber ofwebsites
in control configuration.

Tracking and Functional request count:Network requests fetch
critical functional resources like scripts, images, and other media
as well as JS scripts and images that perform tracking activity. We
use the number of tracking and functional requests as a measure of
tracking and functional activity on a webpage. We compare these
numbers with the control configuration (CTRL) to get the missing
requests, as shown in Figure 3-➊. This metric helps in collecting
the non-visual breakage clues. For example, we do not see any
visual breakage on website poshmark.ca after blocking mixed script
sdk.js?hash=*. Instead, we observe two missing requests, one that
sets the cookie and the other functional request that redirects the
login button.
HTML of websites: We scan the HTML tags with src attributes
on a webpage, to estimate visible functional deterioration. These
HTML tags include , <video>, and <iframe>. Each tag has a
source, src, attribute that specifies the URL of the resource file. We
compare the missing tags in our experiments with the control con-
figuration (CTRL), as shown in Figure 3-➋. Note that if the attribute
of the missing URL belongs to the functional request in the control
configuration (CTRL), then it is classified as functional breakage.

3.2 Phase II: Manual Inspection of JS Blocking
3.2.1 Data Sampling. Manually inspecting 100k websites is time-
consuming and practically infeasible. We randomly sampled 500
websites from the top 100K websites used in Phase I. We exclude du-
plicate websites and websites with the same second-level domains
(SLD), but different top-level domains (TLD) e.g., google.com.uk
and google.com. We excluded a total of 117 websites and manually
inspected 383 websites, which is a statistically significant sample
size for the 100K websites with ± 5% margin of error [15].

3.2.2 Manual Inspection. Two testers independently inspected 383
websites. Inspecting six configurations for each website manually
and in parallel is prohibitively expensive. Therefore, we choose the
three most important configurations i.e., CTRL (no JS blocking),
TMS (tracking and mixed JS blocking), and TM (method-level JS
blocking). To assist inspection, our study platform launches three
independent instances of Chrome (CTRL, TMS, and TM from Ta-
ble 1) displayed adjacent to each other. Each tester spent at least
5 minutes inspecting the three windows, scrolling each page end
to end, and clicking on different webpage components. The two
testers spent a total of 85 hours, spread over one month, manually
inspecting the websites and documenting their findings according
to the following rubric. They report visual and functional differ-
ences in the following four categories and use a 3-level breakage
scale (i.e., no breakage, minor breakage, and major breakage). Any
disagreements were discussed and resolved by consensus.

4

Blocking JavaScript without Breaking the Web: An Empirical Investigation Proceedings on Privacy Enhancing Technologies YYYY(X)

Total Network Requests Script-Initiated Network Requests Total Total
Blocking Configuration Tracking Functional Total Tracking Functional Total Scripts JS Methods
CTRL 1175033 4279844 5454877 953931 882111 1836042 256042 366025
ALL 265101 3248767 3513868 177352 315378 492730 91984 137006
TS 355169 4049340 4404509 248103 820428 1068531 164670 239960
MS 1012708 3916499 4929157 815553 684084 1499637 227658 323174
TMS 349888 3887372 4237260 245389 657361 902750 155810 224681
TM 348135 4115351 4463486 24002 749238 991240 164543 233927

Table 3: Characteristics of the crawled dataset across six blocking configurations.

go
og

le
-a
na
ly
tic

s.c
om

go
og

le
ta
gm

an
ag
er
.co

m
go

og
le
sy
nd

ic
at
io
n.
co
m

tw
itt
er
.co

m
fa
ce
bo

ok
.n
et

sh
op

ify
.co

m
do

ub
le
cl
ic
k.
ne
t

go
og

le
ap
is
.co

m

0
20
40
60
80
100

(a) Script do-
mains in CTRL

%
of

w
eb
si
te
s

sh
op

ify
.co

m
sq
ua
re
sp
ac
e.
co
m

go
og

le
ta
gm

an
ag
er
.co

m
pa
ra
st
or
ag
e.
co
m

co
ok

ie
bo

t.c
om

ez
od

n.
co
m

go
og

le
ap
is
.co

m
w
p.
co
m

(b) Script do-
mains in ALL

tw
itt
er
.co

m
sh
op

ify
.co

m
go

og
le
ap
is
.co

m
ta
w
k.
to

go
og

le
.co

m
fa
ce
bo

ok
.n
et

go
og

le
ta
gm

an
ag
er
.co

m
sq
ua
re
sp
ac
e.
co
m

(c) Script do-
mains in TS

go
og

le
-a
na
ly
tic

s.c
om

go
og

le
sy
nd

ic
at
io
n.
co
m

go
og

le
ta
gm

an
ag
er
.co

m
fa
ce
bo

ok
.n
et

do
ub

le
cl
ic
k.
ne
t

go
og

le
ap
is
.co

m
sh
op

ify
.co

m
ta
w
k.
to

(d) Script do-
mains in MS

sh
op

ify
.co

m
bi
ng

.co
m

sq
ua
re
sp
ac
e.
co
m

cr
ite

o.
ne
t

go
og

le
ta
gm

an
ag
er
.co

m
sh
ar
et
hi
s.c

om
on

es
ig
na
l.c
om

ez
od

n.
co
m

(e) Script do-
mains in TMS

sh
op

ify
.co

m
go

og
le
ap
is
.co

m
ta
w
k.
to

go
og

le
.co

m
go

og
le
ta
gm

an
ag
er
.co

m
sq
ua
re
sp
ac
e.
co
m

fa
ce
bo

ok
.n
et

gs
ta
tic

.co
m

(f) Script do-
mains in TM

Figure 4: The top domains of request-initiating scripts across six blocking configurations. X-axis shows the top domains of the request-
initiating scripts, and Y-axis shows the % of websites.

• Navigation: Website navigation contains lists of links to
internal webpages. Minor breakage includes non-functional
navigation link(s), abnormal styling layout, or missing icons.
Major breakage occurs when the navigation button is not
operational or the navigation bar does not appear.

• Single sign-on (SSO):Website SSO is a user sign-in using
credentials from services like Google and Facebook. Minor
breakage involves non-functional SSO service, unresponsive
log-in button, or missing log-in options. Major breakage
includes missing SSO service or failure of all SSO options.

• Appearance: This includes media appearances except for
advertisements, the scrolling behavior of the website, and
the HTML element. Minor breakage includes missing some
media resources or unstyled HTML. Major breakage involves
all of the media resources missing or unscrollable page.

• Additional functionality: Includes everything that does
not fall into the mentioned categories, such as dark mode and
website settings. Minor breakage entails abnormal behavior
or non-responsive feature. Major breakage includes page
crashes and missing components.

3.3 Dataset
This section summarizes the characteristics of our dataset crawled
across six blocking configurations. Table 3 lists the total network
requests and script-initiated requests in six configurations over
100K websites and the JS scripts and methods that initiate those

requests. In control configuration (CTRL), out of 5.45 million re-
quests, 22% of the requests are tracking, leaving the remaining 78%
as functional. 34% of the total requests are initiated by JS scripts. In
script-initiated requests, 52% are tracking, and the remaining 48%
are functional. These script-initiated requests are initiated by 366K
JS methods inside 256K scripts.

Figure 4 show the top domains of the scripts that initiate network
requests. In control configuration (CTRL), 39% of websites initiate
requests from the script served by google-analytics.com, 30% of
websites initiate requests from the script served by googletagma-
nager.com, and 29% of websites initiate requests from the script
served by googlesyndication.com.

Our baseline JS blocking configuration is ALL in which all track-
ing, mixed, and functional scripts are blocked. Note that a small
number of scripts may still load in All if such scripts were pre-
viously not observed during the localization step in Section 3.1.2.
When tracking JS scripts are blocked (TS configuration), the major-
ity of tracking script domains disappear, including google-analyt-
ics.com. We observe a relatively lower occurrence of script do-
mains in TMS than TM because TMS blocks all tracking and mixed
scripts that include all tracking methods and some functional meth-
ods.Whereas in TM, only trackingmethods are blocked. For example,
due to the mixed nature of scripts from facebook.net, scripts from
facebook.net appear in TM, but not in TMS.

Table 2 shows the top five request-initiating JS methods across
100k websites. Method wd in script analytics.js is served by

5

Proceedings on Privacy Enhancing Technologies YYYY(X) Abdul Haddi Amjad, Zubair Shafiq, and Muhammad Ali Gulzar

google-analytics.com. It appears in 38% of the 100K websites
where it sets up a request and its header using XMLHttpRequest
[20] API, shown in Listing 2. Method ta in script analytics.js is
served by google-analytics.com. It appears in 25% of the web-
sites where it adds the tag with the specific source given as a
parameter to the function, shown in Listing 2. Both of thesemethods
are classified as tracking at the localization step in Section 3.1.2.

1 wd = function(a, b, c, d) {

2 var e = O.XMLHttpRequest;

3 if (e) return 1;

4 var g = new e;

5 if (("withCredentials" in g)) return 1;

6 a = a.replace (/^ http:/, "https:");

7 g.open("POST", a, 0);

8 g.withCredentials = 0;

9 g.setRequestHeader("Content -Type", "text/plain");

10 g.onreadystatechange = function () {

11 if (4 == g.readyState) {

12 if (d && "text/plain" === g.getResponseHeader("

Content -Type")) try {

13 Ea(d, g.responseText , c)

14 }

15 catch (ca) {

16 ge("xhr",

17 "rsp"), c()

18 } else c();

19 g = null }};

20 g.send(b);

21 return 0}

22 ...

23 ta = function(a) {

24 var b = M.createElement("img");

25 b.width = 1;

26 b.height = 1;

27 b.src = a;

28 return b}

Listing 2: This shows the method wd and ta in analytics.js served
by google-analytics.com. It is present on 38% and 25% of 100K
websites, respectively.

4 RESULTS
This section presents the results of our empirical investigation of
different types of JS blocking listed in Table 1.

4.1 Phase I: Large-scale JS Blocking Analysis
We aim to address the following research questions in our analysis
of JS blocking.

(1) How resilient is website functionality against blanket JS
blocking (ALL)?

(2) How effective is selective script-level JS blocking in tracking
prevention and functionality preservation (TS and MS)?

(3) How common is it for website developers to mix tracking
and functionality in the same script?

(4) How effective is method-level JS blocking in tracking pre-
vention and functionality preservation (TMS and TM)?

4.1.1 RQ1: Blanket JS Blocking. We first study the naive approach
to JS blocking by blocking all JS scripts (ALL configuration in Table
1). Specifically, we block all 256K scripts on 100K webpages and
compare the breakage metrics (i.e., network request count and
HTML resource count) with the control (CTRL). Given blanket JS
blocking, we expect a sharp drop off in the number of tracking

CTRL ALL
0

2

4

·106

(a) Number of requests

Re
qu

es
ts

ALL
0
20
40
60
80
100

(b) % Reduction

Av
g
%
re
du

ct
io
n
in

re
qu

es
ts

pe
r
w
eb
si
te

Tracking
Functional

Figure 5: (a) compares the request count of control configuration
with blanket JS blocking (ALL). (b) shows average % reduction in re-
quest per website for blanket JS blocking (ALL).

0-
10

11
-2
0

21
-3
0

31
-4
0

41
-5
0

51
-6
0

61
-7
0

71
-8
0

81
-9
0

91
-1
00

0

2

4

·104

% of blocked requests (ALL)

W
eb
si
te
s

Tracking
Functional

Figure 6: The % of blocked request in blanket JS blocking config-
uration (ALL). Low % of blocked functional requests and high % of
blocked tracking requests are desirable.

Tag Blanket JS
Category Blocking (ALL)
<image> 70600
<video> 5
<iframe> 21052
<script> 100278
<source> 39

Table 4: Missing HTML tags whose URLs are classified as functional
in blanket JS blocking (ALL).

or functional requests. Figure 5 (a) shows that 22% of functional
requests and 76% of tracking requests remain after blocking all JS
scripts (ALL). Note that a few requests are initiated by the scripts
previously not captured in the localization step in Section 3.1.2 and
hence, were not blocked in blanket JS blocking (ALL) configuration.
Figure 5 (b) presents the average percentage of reduction in request
count per webpage. On average, per webpage, the tracking and
functional request count decrease by 70% and 65%, respectively.
This shows that webpages today can retain one-third of function-
ality even with extreme blocking strategies. Another observation
is that the tracking reduction per webpage is higher than func-
tional reduction, which means that many webpages often sacrifice
tracking but attempt to retain functionality.

6

Blocking JavaScript without Breaking the Web: An Empirical Investigation Proceedings on Privacy Enhancing Technologies YYYY(X)

CTRL TS MS
0

2

4

·106

(a) Number of requests

Re
qu

es
ts

TS MS
0
20
40
60
80
100

(b) % Reduction
Av

g
%
re
du

ct
io
n
in

re
qu

es
ts

pe
r
w
eb
si
te

Tracking
Functional

Figure 7: (a) compares the request count of control configuration
with selective JS blocking (TS and MS). (b) shows average % reduction
in request per website for selective JS blocking (TS and MS).

0-
10

11
-2
0

21
-3
0

31
-4
0

41
-5
0

51
-6
0

61
-7
0

71
-8
0

81
-9
0

91
-1
00

0

2

4

·104

% of Blocked requests (TS)

W
eb
si
te
s

Tracking
Functional

Figure 8: The % of blocked request in selective JS blocking config-
uration (TS). Low % of blocked functional requests and higher % of
blocked tracking requests are desirable.

Tag Tracking Mixed
Category JS Blocked (TS) JS Blocked (MS)
<image> 12607 20035
<video> 0 0
<iframe> 11774 14682
<script> 21650 37197
<source> 23 37

Table 5: Missing HTML tags whose URLs are classified as functional
in selective JS blocking (TS and MS) .

To map this behavior per webpage, we find the number of web-
pages with different levels of request reduction for both tracking
and function. Figure 6 illustrates the result.We find that themajority
of the webpages (57%) have either less than 10% request reduction
or more than 90% request reduction in both tracking and functional.
This result shows both (1) high resilience against tracking reduc-
tion and functional breakage due to anti-content blocking strategies
such as loading resources by changing network endpoints [25, 54],
and also (2) low resilience where blocked scripts are critical for a
functioning webpage [26, 71]. Further inspection of HTML DOM
elements reveal that 191K functional HTML tag sources are missing
from 100Kwebpages when ALL scripts are blocked, reflecting severe
functionality loss. Table 4 shows the breakdown of the category of
these missing sources. In ALL configuration, 71K functional

tags, 21K functional <iframe> tags, and 100K functional <script>
tags are missing.

Takeaway: Two-thirds (66%) of the webpages experience
a significant functionality breakage when blanket JS block-
ing is employed.

4.1.2 RQ2: Effectiveness of Selective JS Blocking. Since Blanket JS
blocking is ineffective, we study the effectiveness of selective JS
blocking by blocking tracking scripts (TS configuration in Table 1).
Later, we block mixed scripts (MS configuration in Table 1) to see
its adverse effects on functionality.

Blocking Tracking Scripts. In this experiment, we block 93K track-
ing scripts (TS) from 256K JS scripts across 100K live webpages and
investigate the impact on tracking mitigation and functional break-
age. Figure 7 (a) reports that 95% of functional requests persist,
whereas 30% of tracking requests manage to survive. Figure 7 (b)
shows an average reduction in requests per webpage. In the case
of TS, we observe a 57% reduction in tracking requests and an 11%
reduction in functional requests per webpage on average. Mea-
surement with HTML tag metric in Table 5 shows that blocking
tracking JS scripts (TS) results in 46K missing functional sources
across 100K webpages. In TS configuration, 13K functional
tags, 12K functional <iframe> tags, and 22K functional <script>
tags are missing.

Blocking Mixed Scripts. In this experiment, we block only mixed
JS scripts (MS). We expect a decrease in both functionality and track-
ing, as mixed scripts represent both. Figure 7 (a) visualizes these
results. Overall, we see 86% of tracking and 92% of functional re-
quests. This observation is consistent with other HTML tag metric
in Table 5. In MS configuration, 20K functional tags, 15K
functional <iframe> tags, and 37K functional <script> tags are
missing. Figure 9 show visual breakage on pressl.co due to block-
ing mixed JS scripts that eliminate tracking at the cost of critical
functional breakage.

We further ask Do all webpages react similarly when tracking
scripts are blocked? Our goal is to unfold the resilience of different
webpages with blocked tracking scripts (TS). Figure 8 measures
the distribution of webpages across different levels of functional
breakage and tracking mitigation from blocking tracking scripts.
39K webpages experience less than 10% functional deterioration,
and 35K webpages experience less than 10% tracking mitigation.
The left of the bar chart represents webpages that heavily employ
mixed scripts, making JS script blocking ineffective. 19K webpages
are only left with greater than 90% functionality deterioration and
tracking mitigation, representing the class of webpages relying less
on mixing scripts and thus are susceptible to JS script blocking.
Although JS script blocking is effective on a few webpages, it does
not apply to a significant proportion of webpages that employ
mixed scripts. Therefore, we must address the tracking behavior
concealed in mixed scripts.

7

Proceedings on Privacy Enhancing Technologies YYYY(X) Abdul Haddi Amjad, Zubair Shafiq, and Muhammad Ali Gulzar

Figure 9: Visual impact of blocking mixed JS script. The left side
shows a normal website, whereas the right side shows a breakage
due to blocking.

Takeaway. To maximize tracking prevention while mini-
mizing functional breakage, mixed scripts need to be in-
spected at a finer granularity.

4.1.3 RQ3: Prevalence of Mixed Scripts. A trivial way for web de-
velopers and trackers to bypass filter lists is by mixing functional
behavior with tracking in a single script. Privacy-enhancing con-
tent blockers, such as uBlock Origin, cannot afford to break the
webpage and have no choice but to allow such scripts to load in the
browser. To gather concrete evidence on the prevalence of this prac-
tice, we first conduct a longitudinal experiment on the frequency
of mixed JS scripts over the past two years (2021 and 2022) on 100K
webpages. In addition to the current prevalence of mixing JS scripts,
we also investigate its trend over the past year. In 2021, we crawled
100K webpages and classified the collected JS code using the SBFL-
inspired approach from Section 3. We repeat the same experiment
in 2022 on the same 100K webpages.

Figure 10 shows the result of the experiment. The x-axis repre-
sents the percentage of scripts that are mixed, ranging from 0 to
100 in 10 bins each of size 10. The y-axis represents the number
of webpages in each bin. In 2021, 15% of webpages out of 100K
have between 11% to 20% of scripts that were mixed. This number
increases to 18% in 2022. Overall, in 2021, out of 220K JS scripts,
28K are mixed JS scripts, making it 12.8%, whereas, in 2022, 37.5K
out of 256K JS scripts are mixed, making it 14.6%. There is 14%
increase in the number of websites employing mixed scripts over
100K websites, as compared to last year. For example, on the web-
site kixie.com, we observe a new mixed JS script 20564323.js in
2022, initiating HubSpot analytics code along with the functional
code that redirects the Try Kixie Free button. We also find that
the change in total script count corroborates the general belief that
JS scripts across the web have increased marginally since 2021 [36].

While investigating selective JS blocking, we also find deterio-
ration in the functionality when only tracking scripts are blocked
(TS). Naturally, we ask why does blocking tracking scripts (TS) result
in functional deterioration?We suspect that such an issue may arise
due to the narrow threshold on SBFL’s tracking score. JS code units
(i.e., scripts, methods) with > 2 score are annotated as purely track-
ing. Functional behavior in tracking scripts can also exist due to
the dynamic nature of webpages. Between the tracking score mea-
surement and blocking experiments, the script may have changed,
or the webpage deliberately refactors the script slightly for rea-
sons such as JS obfuscation [69] or minification [63]. For better

0-10 11-2
0
21-3

0
31-4

0
41-5

0
51-6

0
61-7

0
71-8

0
81-9

0
91-1

00
0

2

4

·104

% of Mixed JS

W
eb
si
te
s

2021
2022

Figure 10: Comparison of % mixed JS scripts when tracking score is
in [-2,2] for web corpus collected in 2021 and 2022.

0-10 11-2
0
21-3

0
31-4

0
41-5

0
51-6

0
61-7

0
71-8

0
81-9

0
91-1

00
0

1

2

3

4
·104

% of Mixed JS

W
eb
si
te
s

2021
2022

Figure 11: Comparison of % mixed JS scripts without any threshold
on tracking scores for web corpus in 2021 and 2022.

threshold selection, we must answer what are the consequences of
widening the tracking score threshold?We conduct a brief sensitivity
analysis on the tracking score’s threshold. Figure 11 shows the new
distribution when the threshold is set to maximum. We find that
46% of the webpages have more than 50% of their scripts mixed
with at least one tracking or functional request, further reducing
the applicability of JS script blocking and showing the extent of
this problem. Our investigation in RQ3 highlights the following
trade-off. We either sacrifice functionality when blocking mixed JS
scripts or let go of privacy. If functional preservation is critical, we
forego opportunities to block numerous tracking activities.

Takeaway. Websites are increasingly employing sophis-
ticated code refactoring techniques (e.g., inlining or
bundling) to mix tracking code with functional code, mak-
ing existing content-blocking techniques ineffective.

4.1.4 RQ4: Fine-Grained JS Blocking. In RQ4, we assess the benefits
of performing JS blocking at the method-level. Our hypothesis is
that blocking tracking JS method will provide higher precision
in tracking prevention, leading to significantly lower functional
breakage than JS script-level blocking. In our first experiment, we
compare the effectiveness of method-level JS blocking (TM) against
tracking and mixed JS blocking (TMS).

We combine results from blocking both tracking and mixed
scripts (TMS) as the baseline because all tracking methods are either

8

Blocking JavaScript without Breaking the Web: An Empirical Investigation Proceedings on Privacy Enhancing Technologies YYYY(X)

Figure 12: Image compares the functional breakage in tracking and
mixed JS blocking (right) as compared to method-level JS blocking
(left), which loads the website deeretnanews.com normally.

located in tracking scripts or mixed scripts. Blocking a tracking JS
method (TM) may eliminate the tracking behavior of a mixed script
or a tracking script.

Figure 13 summarizes these results. Both baseline tracking and
mixed JS blocking (TMS) and method-level JS blocking (TM) reduce
the tracking requests by 71% and block on average 62% of the
tracking requests per page. The two configurations cover most of
the tracking requests among themselves, and blocking them will
yield the same result. More surprisingly, we see an improvement
in total functionality retention when blocking method-level (TM)
i.e., a 6% total improvement, whereas the average functional re-
quest breakage per page decreases by 7%. On evaluating HTML,
JS method-level blocking(TM) retains approximately 2X more func-
tional HTML tag sources, such as images and scripts, than blocking
tracking and mixed JS scripts (TMS), as shown in Table 6. For ex-
ample, in Figure 12, we visually inspect deeretnanews.com to find
functional media breakage in TMS configuration but loads normally
in TM configuration.

We further investigate how much functional breakage does each
webpage face with method-level blocking (TM) compared to the base-
line TMS? Figure 14 sheds more light on the functional request count
between two blocking granularities. With method-level JS blocking
(TM), 40% webpages have less than 10% functional breakage (pre-
served more than 90% functional requests). In comparison, tracking
and mixed JS blocking (TMS) leads to around 25% of webpages in
this category.

We observe two classes of webpages: (1) webpages that decouple
functionality and tracking more prominently at the method-level
and hence, are less prone to functional breakage, and (2) webpages
that tightly integrate tracking code with functional, which is harder
to separate even at the method-level and thus results in high func-
tional breakage when such methods are blocked. Further investiga-
tion on the number of such mixed methods finds that 6% of 366k JS
methods integrate tracking with functional code.

Takeaway. Nearly 40% of the webpages implement func-
tional and tracking code in a modularized fashion. Block-
ing tracking methods in such webpages shows improved
tracking prevention and reduced functional breakage as
compared to script-level blocking. The rest of the webpages
demand increasing the granularity (i.e., statement-level)
or incorporating more sophisticated dynamic analysis.

CTRL TMS TM
0

2

4

·106

(a) Number of requests

Re
qu

es
ts

TMS TM
0
20
40
60
80
100

(b) % Reduction

Av
g
%
re
du

ct
io
n
in

re
qu

es
ts

pe
r
w
eb
si
te Tracking

Functional

Figure 13: (a) compares the request count of control configuration
with tracking andmixed (TMS) andmethod-level JS blocking (TM). (b)
shows average % reduction in request per website for tracking and
mixed (TMS) and method-level JS blocking (TM).

0-
10

11
-2
0

21
-3
0

31
-4
0

41
-5
0

51
-6
0

61
-7
0

71
-8
0

81
-9
0

91
-1
00

0

2

4

·104

% of Functional requests (TMS vs TM)

W
eb
si
te
s

TMS
TM

Figure 14: The % of functional requests in tracking and mixed (TMS)
JS blocking and method-level JS blocking(TM). A higher % of func-
tional requests is desirable.

Tag Tracking & Mixed Tracking JS Methods
Category JS Blocked (TMS) Blocked (TM)
<image> 30512 17524
<video> 0 2
<iframe> 18362 14035
<script> 56852 30011
<source> 37 35

Table 6: Missing HTML tags whose URLs are classified as functional
in tracking and mixed (TMS) and method-level (TM) JS blocking.

4.2 Phase II: Visual Inspection of JS Blocking
and Web Breakage

In Phase II, we perform a qualitative study to validate our quantita-
tive findings with an in-depth visual inspection of sampled websites,
as described in Section 3.2. We seek to answer the following re-
search questions:

(5) Does our manual inspection validate that method-level JS
blocking is more effective than JS blocking?

(6) Is method-level JS blocking the most effective in minimizing
breakage while preventing tracking?

(7) Can webpages withstand the removal of tracking methods?
9

Proceedings on Privacy Enhancing Technologies YYYY(X) Abdul Haddi Amjad, Zubair Shafiq, and Muhammad Ali Gulzar

CTRL TMS TM
0

10

20

30

Minor Breakage

W
eb
si
te
s

Navigation Appearence
SSO Adt. Functionality

Figure 15: Comparison of "minor" breakage in tracking and mixed
JS blocking (TMS) vs method-level JS blocking (TM) among 383 sam-
pled websites.

CTRL TMS TM
0

20

40

60

80

100

Major Breakage

W
eb
si
te
s

Navigation Appearance
SSO Adt. Functionality

Figure 16: Comparison of "major" breakage in tracking andmixed JS
blocking (TMS) vs method-level JS blocking (TM) among 383 sampled
websites.

4.2.1 RQ5: Validating the effectiveness of method-level JS blocking.
Figure 15 and Figure 16 summarizes the results of investigating true
functional breakage on 383 websites, measured according to four
established metrics (i.e., navigation, SSO, appearance, and others)
and three levels of breakage. The X-axis represents the percentage
of websites with functional breakage. Overall, there is an evident
decline in the number of broken websites, for both major and minor
breakage, when JS method-level blocking is used instead of tracking
and mixed JS blocking. These results validate the findings of quan-
titative analysis in RQ4. In tracking and mixed JS blocking (TMS), 57
websites have minor breakage and 101 websites have major break-
age, whereas, in method-level JS blocking, 36 websites have minor
breakage, and 25 websites have major breakage. Most of the break-
ages were observed in additional feature categories, comprising
broken widgets (e.g., chatbots and feedback) and malfunctioning
home buttons.

Washingtonpost.com (ranked 9𝑡ℎ in news and media publisher
category in USA [17]) is one of the 383 sampled websites. It suffers
a crash (a major breakage) in tracking and mixed scripts JS block-
ing (TMS). On the contrary, the website is completely functional
and tracking-free at method-level JS blocking (TM). Similarly, on
tenki.jp (ranked 4𝑡ℎ in the streaming and online TV category in

Japan [16]), manual inspection reveals a missing Twitter widget and
a Twitter button in tracking and mixed scripts JS blocking (TMS).
These breakages are documented as minor breakages. However,
in method-level JS blocking (TM), all tracking advertisements are
blocked and both the button and widget appear correctly and are
functional, similar to the control experiment (CTRL). The website
ndtv.com (rank 5𝑡ℎ in the news and media category in India [52])
renders multiple advertisements in the control experiment (CTRL).
Website completely crashes in tracking and mixed scripts JS block-
ing (TMS), whereas, in method-level JS blocking, it renders normally
without any advertisement.

We also argue that minor improvements can make a difference
in many websites. For example, website gamestop.com (rank 9𝑡ℎ
in the gaming category in USA [10]) shows 37.5% breakage in track-
ing and mixed scripts JS blocking (TMS) whereas shows only 12.5%
breakage at method-level JS blocking(TM). At TMS, we see unex-
pected white spaces on the top of the website, a minor breakage in
the appearance category. The webpage’s home button also causes
the website to crash, a major breakage recorded in additional func-
tionality. However, in TM, we only see an unexpected white space
on the website, a minor breakage in the appearance category. These
results also affirm that the breakage metrics (network request and
media resources) used in Phase I are effective measures of breakage.

4.2.2 RQ6: Is method-level blocking most effective in reducing break-
age and eliminating tracking? Although method-level JS blocking
(TM) performs significantly better than tracking and mixed JS block-
ing (TMS), there are cases where we observe little or no improvement.
This is mainly because of 6% methods still show mixed behavior i.e.,
include tracking and functional code. Elpais.com (currently ranks
2𝑛𝑑 in the news and media publisher category in Spain [8]) fails
to load a single resource in tracking and mixed scripts JS blocking
(TMS). However, in method-level JS blocking (TM), it causes the nav-
igation bar to be unresponsive, a minor breakage due to the mixed
method e.loadInternal in script provider.hlsjs.js.

4.2.3 RQ7: Can webpages sustain simply removing the tracking JS
method? On 100K webpages, we have found that webpages in their
vanilla form have 1.32 severe errors on average. Severe error refers
to three main compile-time errors in JavaScript: syntax errors, run-
time errors, and logical errors. Errors are common in JS and do
not always impact functionality. Compared to other software, web-
pages can withstand many runtime issues, such as network error,
JS script not found, and JS script syntax errors that can arise from
diverse host environments. In our experiments, we block JS track-
ing method by simply renaming the method, which may lead to
MethodNotFound error. Replacing a method name and redirecting
its invocation may generate additional errors. However, such errors
do not affect the website’s functionality, as they only terminate the
tracking-inducing thread in the JS process.

5 DISCUSSION
In this section, we present the key takeaway of our empirical in-
vestigation, highlight the key challenges of effective JS blocking,
and offer future ideas for dynamic analysis-based fine-grained JS
blocking.

10

Blocking JavaScript without Breaking the Web: An Empirical Investigation Proceedings on Privacy Enhancing Technologies YYYY(X)

JS blocking at finer granularity. While blocking JS tracking meth-
ods is beneficial, we still observe that 5.5% webpages with some
levels of tracking activity and functionality breakage. These mixed
methods either (1) implement both tracking and functionality or (2)
they are used by tracking and functional code for downstream activ-
ity (e.g., initiating a network request). We foresee better separation
at a finer granularity. In the future, we propose applying dynamic
program slicing [24, 49, 78] to separate tracking statements from
functional statements. For inseparable code, we propose dynamic in-
variant detection [34, 55] to construct program variable profiles for
tracking and functional behaviors. Program invariants for tracking
can be used as an automated guard to prohibit tracking execution.

Dynamic nature of JS.. We find that a number of scripts use dy-
namic features such as eval() and anonymous functions [63, 68]. A
number of scripts also employ JS minification and obfuscation tech-
niques that produce code that is uninterpretablemanually [70]. Such
practices further motivate the use of advanced dynamic program
analysis techniques for tracking code identification and removal.

JS dataflow analysis. In this work, we captured the stack trace
of a tracking or functional network request and then selected the
topmost script method to annotate the request. By focusing on
request-initiator code units, we may miss opportunities to trace
back to the source of the tracking behavior inside the nested JS
codebase. Finding such a location may offer better opportunities
to preserve functionality as the request-initiator method or script
may simply be a “gateway” for all network requests. In addition
to the call stack, we can also leverage the dataflow graph of the JS
codebase to perform a richer analysis of a webpage’s execution. For
example, in Listing 3, the stack trace inside the method B does not
contain the parameter C. Since the method B depends on parame-
terC, the identification technique may not understand the entire
context when B() is called. We recommend capturing such rich
execution traces with calling contexts and a complete dataflow
graph to understand better the flow of information through the
nested code and how it influences the execution behavior, tracking
or functional. We anticipate that such traces can help identify better
locations (e.g., non request-initiator methods) to alleviate tracking
while preserving functionality.

1 function TrackingReq () {

2 C = getVal ();

3 B(C)}; };

Listing 3: Call stack does not show complete dataflow.

Performance impact of JS blocking. Although we do not consider
performance in our analysis, our focus is to minimize tracking
without comprising functionality. Recent works [27, 28] show that
the removal of non-critical components of JS code can significantly
reduce page load times. Similarly, removing the tracking JS code
may reduce the performance overhead along with functionality
preservation.

Other future research directions. We plan to conduct an investi-
gation into more meaningful and semantics-aware tracking code
identification. Our key observation is that finding a tracking code
unit in webpages has striking similarities with fault localization.
Even a simple faulty code localization method such as SBFL showed

promising results towards functionality-preserving JS blocking. On
the code refactoring front, our observation of 100K vanilla live
websites reveals that today’s webpages can withstand severe errors.
Therefore, we expect that slightly unsafe code refactoring tech-
niques to remove the tracking code may be promising in effectively
preserving functionality while preventing tracking.

Future tracking code identification techniques can greatly benefit
from recent advances in automated debugging and fault localiza-
tion [42, 59]. For example, given filter list as a test oracle, we can
adapt search-based debugging approaches to perform a systematic
search on JS code and precisely isolate the tracking and functional
code units [62]. Similarly, the completeness of static code depen-
dency analysis (e.g., reachability analysis) can complement the
soundness of dynamic analysis (e.g., call graph) to improve the
precision of tracking code localization.

Code clone detection is an active area of research, with many
advanced techniques available for traditional software [31]. Given
annotated JS code units, code clone detection techniques can iden-
tify similar code on webpages to find the presence of tracking code.
Once a JS code clone is correctly detected, we can leverage super-
vised learning [19, 39] to extract valuable features, both semantic
and syntactic, for accurate tracking code localization. If such an
accurate model is available, a JS blocker can detect tracking JS code
units in real-time and block them before loading the website.

Similar to training a classification model, one possible direction
is to create a taxonomy of tracking code’s signature, similar to the
ones in malware detection [37, 41, 80], and find a match with a
webpage’s JS entity at page load. However, page load times are
critical in the web domain, refraining from any computationally
expensive operation. Using fingerprints to locate tracking code at
page load is a lightweight process that can easily be performed at
page load time without a noticeable slowdown.

Can publishers also benefit from the results of our JS blocking
study? Our study is conducted from the perspective of privacy-
enhancing content-blocking tools. If suitable, we suggest publishers
adopt an approach such that either the website works reasonably
without JS or at least employs a highly decoupled JS architecture
that separates tracking and functionality, i.e., separate JS script-
s/methods. This architecture will retain functionality effectively
when JS code level blocking reduces tracking. On the contrary, pub-
lishers who want to retain maximum tracking may leverage the
current weakness of JS script-level content blocking by maximizing
the overlap between tracking and functional code units.

6 LIMITATIONS
Internal Validity. Our analysis in Section 4 relies on correlation

between a JS blocking strategy and the webpage’s behavior in terms
of network requests and resource loads. However, other confound-
ing factors may impact the webpage’s behavior. For instance, some
webpages fetch different number and type of resources for each
visit due to the inherent dynamism. For our experiments, requests
monitored in one experiment may not be triggered in another exper-
iment. Other factors include behavior change due to environment
(i.e., browser and host OS), visit time, and location. We minimize
internal validity threats by keeping the environments consistent

11

Proceedings on Privacy Enhancing Technologies YYYY(X) Abdul Haddi Amjad, Zubair Shafiq, and Muhammad Ali Gulzar

across different blocking configurations i.e., same location, browser,
and stateless crawls.

External Validity. We conducted our experiments using the Chrome
browserwith a Chrome-based extension. Extensions on other browsers
have different permissions and have access to a varying set of in-
formation about a webpage’s behavior. While our choice of using
the Chrome browser for our experimentation minimizes external
validity threats, it is possible that our results may not fully gen-
eralize to JS method-level blocking on other browsers. Similarly,
our annotation relies on on previously observed tracking behavior
captured in filter lists. It is possible that its effectiveness will be
limited for unseen JS. To minimize this issue, we use two most
actively maintained filter lists for annotation.

Construct Validity. We collect the website’s data at page load
time and do not capture other events triggered by the user interac-
tions such as scrolling and clicking. This is a general limitation of
dynamic analysis that can be mitigated by using a forced execution
framework [48].

7 RELATEDWORK
Smith et al. [71] and Amjad et al. [26] identify tracking code regions
in the JS scripts of websites. SugarCoat[71] dynamically captures
the call graphs of web APIs and uses it to determine the call site in JS
code that tries to access the user-sensitive information from the lo-
cal storage, which is unanimously considered as tracking behavior.
They replace these identified call sites with the surrogate JS code
that mitigates the information access but preserves functionality.
This process helps create the surrogate scripts for the exception
rules in the filter list. SugarCoat requires excessive manual effort
by a domain expert in identifying the tracking call sites in the JS
code. Due to this limitation, our empirical study could not validate
SugarCost’s effectiveness. Amjad et al. [26] introduce a hierarchical
approach to annotate web entities (domain, hostname, script, and
method) to precisely isolate the code responsible for tracking behav-
ior. They dynamically collect the call stack information for tracking
behavior and isolate the entities based on their participation in
invoking it. We adapt their approach for web corpus collection and
extend it to enable real-time code blocking and capture additional
information.

Modern websites extensively use third-party JS scripts that may
access confidential information [47, 56, 73, 74]. Tran et al. [74] de-
velop a principal-based tainting approach that dynamically analyzes
the JS libraries to identify the underlying privacy violations. They
tag each compiled JS library at run-time and observe its suspicious
behavior with the author-defined principles i.e., set of permissions
that should not be violated. Similarly, Staicu et al. [73] introduce an
automated approach that collects taint specifications of JS libraries
and identifies behaviors that lead to security vulnerabilities. These
approaches work at the granularity of JS libraries, which, as we
find, is not sufficient for preserving functionality. Moreover, these
works use taint analysis that incurs prohibitively high-performance
overhead and can not efficiently work in the browser in real-time.
Prior work’s findings on the challenges from JS dynamism resonate
with our findings. Jueckstock et al. [47] present a lightweight dy-
namic analysis tool using chrome V8 to identify untrustworthy JS

scripts. It logs function calls and storage access during JS execution
to identify suspicious code.

The limitations of identifying tracking code share similarities
with prior research on fault localization. For example, spectra-based
fault localization (SBFL) [43, 45, 65, 67, 72, 77] leverages the state-
ment coverage using the set of passing and failing test cases to
localize the statement that is most likely to induce a test failure.
Similarly, Bela et al. [75] and Laghari et al. [52] present an approach
that uses the frequency of method occurrence in the call stack of
failing test cases for localizing the faulty methods. A method that
appears more in the call stack of failing test cases is more likely
to be faulty. Abreu et al. [23] conducted an empirical study on
the accuracy of these SBFL techniques and highlighted that these
approaches are independent of the quality of the test oracle. Crowd-
sourced blocklists [4, 6, 7, 9] are the authoritative source of labels
for requests and are adequate to detect tracking behavior.

Websites heavily rely on JS libraries containing significant dead
code that is unused or unreachable, posing noticiable impact on
the website’s performance. Kupoluyi et al. [50] highlight that pop-
ular websites have 70% unused functions, and their elimination can
speed up the page load by 30%. Recent works [27, 28] have further
explored non-critical regions in JS libraries and the performance
overhead caused by them. Zaki et al. [28] propose on rule-based
classification techniques to identify and replace non-critical regions
in JS using pre-define code patterns, achieving a 50% reduction in
page load time. Towards the same goal, Chaqfeh et al. [27] develop
a tool that helps developers in eliminating JS elements by visually
inspecting them and shows 90% improvement in Google’s light-
house performance score. Similarly, Vazquez et al. [76] proposed
a technique to decompose bundles JS code in a website, reducing
code size by 26%. Our findings in this study are equally benefi-
cial to the research on improving website performance and energy
consumption that specifically adopt functionality-preserving code
debloating approaches.

8 CONCLUSION
In this paper, we conduct a large-scale empirical investigation on
the impact of different JS Code blocking methodologies on 100K
websites, followed by a careful visual inspection of 383 websites
to measure website breakage. Our results show that blanket JS
blocking prevents tracking but incurs major functionality breakage
on approximately two-thirds of thewebsites.We identify that 15% of
the scripts on the web combine tracking and functionality, leading
to website breakage if blocked. When we increase the granularity of
JS blocking to targeting tracking methods inside mixed scripts, the
functional breakage of websites reduces by 2X while providing the
same level of tracking prevention. Our in-depth manual inspection
of 383 websites validates that method-level JS blocking reduces
major breakage by 3.7× that are otherwise broken due to tracking
andmixed JS blocking. Through this study, we highlight the promise
of fine-grained JS blocking and the subsequent open challenges
towards adapting such a technique in practice.

REFERENCES
[1] 2020. gorhill/uBlock: uBlock Origin - An efficient blocker for Chromium and

Firefox. Fast and lean. https://github.com/gorhill/uBlock.

12

https://github.com/gorhill/uBlock

Blocking JavaScript without Breaking the Web: An Empirical Investigation Proceedings on Privacy Enhancing Technologies YYYY(X)

[2] 2021. AD blockers usage and demographic statistics in 2022. https://backlinko.
com/ad-blockers-users

[3] 2022. browserdisablejs. https://www.computerhope.com/issues/ch000891.htm.
[4] 2022. cookies. https://secure.fanboy.co.nz/fanboy-cookiemonster.txt.
[5] 2022. disconnectme. https://disconnect.me/trackerprotection.
[6] 2022. EasyList. https://easylist.to/easylist/easylist.txt.
[7] 2022. EasyPrivacy. https://easylist.to/easylist/easyprivacy.txt.
[8] 2022. eplais. https://www.similarweb.com/website/elpais.com/.
[9] 2022. fanboy. https://easylist.to/easylist/fanboy-social.txt.
[10] 2022. gamestop. https://www.similarweb.com/website/gamestop.com/.
[11] 2022. livescore. https://www.similarweb.com/top-websites/category/sports/

soccer/.
[12] 2022. NoScript. https://noscript.net/.
[13] 2022. noscriptelement. https://www.w3.org/TR/2011/WD-html5-author-

20110809/the-noscript-element.html.
[14] 2022. surrogate. https://github.com/gorhill/uBlock/tree/master/src/web_

accessible_resources.
[15] 2022. surveymonkey. https://www.surveymonkey.com/mp/sample-size-

calculator/.
[16] 2022. tenki. https://www.similarweb.com/website/tenki.jp/.
[17] 2022. washingtonpost. https://www.similarweb.com/website/washingtonpost.

com/.
[18] 2022. webalamnacjavascript. https://almanac.httparchive.org/en/2022/javascript.
[19] 2022. WebGraph: Capturing Advertising and Tracking Information Flows for Ro-

bust Blocking. In 31st USENIX Security Symposium (USENIX Security 22). USENIX
Association, Boston, MA. https://www.usenix.org/conference/usenixsecurity22/
presentation/siby

[20] 2022. xmlthhtpreq. https://developer.mozilla.org/enUS/docs/Web/API/
XMLHttpRequest.

[21] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan JC Van Gemund. 2009. A
practical evaluation of spectrum-based fault localization. Journal of Systems and
Software 82, 11 (2009), 1780–1792.

[22] Rui Abreu, Peter Zoeteweij, and Arjan J.C. van Gemund. 2007. On the Accuracy of
Spectrum-based Fault Localization. In Testing: Academic and Industrial Conference
Practice and Research Techniques - MUTATION (TAICPART-MUTATION 2007). 89–
98. https://doi.org/10.1109/TAIC.PART.2007.13

[23] Rui Abreu, Peter Zoeteweij, and Arjan J.C. van Gemund. 2007. On the Accuracy of
Spectrum-based Fault Localization. In Testing: Academic and Industrial Conference
Practice and Research Techniques - MUTATION (TAICPART-MUTATION 2007).

[24] Hiralal Agrawal and Joseph R Horgan. 1990. Dynamic program slicing. ACM
SIGPlan Notices 25, 6 (1990), 246–256.

[25] Mshabab Alrizah, Sencun Zhu, Xinyu Xing, and Gang Wang. 2019. Errors,
Misunderstandings, and Attacks: Analyzing the Crowdsourcing Process of Ad-
blocking Systems. In ACM Internet Measurement Conference (IMC).

[26] Abdul Haddi Amjad, Danial Saleem, Muhammad Ali Gulzar, Zubair Shafiq, and
Fareed Zaffar. 2021. Trackersift: Untangling mixed tracking and functional web
resources. In Proceedings of the 21st ACM Internet Measurement Conference. 569–
576.

[27] Moumena Chaqfeh, Russell Coke, Jacinta Hu, Waleed Hashmi, Lakshmi Subra-
manian, Talal Rahwan, and Yasir Zaki. 2022. JSAnalyzer: A Web Developer Tool
for Simplifying Mobile Web Pages Through Non-Critical JavaScript Elimination.
ACM Transactions on the Web (TWEB) (2022).

[28] Moumena Chaqfeh, Yasir Zaki, Jacinta Hu, and Lakshmi Subramanian. 2020.
JSCleaner: De-Cluttering Mobile Webpages Through JavaScript Cleanup. In Pro-
ceedings of The Web Conference 2020. 763–773.

[29] Quan Chen, Panagiotis Ilia, Michalis Polychronakis, and Alexandros Kaprave-
los. 2021. Cookie swap party: Abusing first-party cookies for web tracking. In
Proceedings of the Web Conference 2021. 2117–2129.

[30] Quan Chen, Peter Snyder, Ben Livshits, and Alexandros Kapravelos. 2021. Detect-
ing Filter List Evasion With Event-Loop-Turn Granularity JavaScript Signatures.
In IEEE Symposium on Security and Privacy.

[31] Wai Ting Cheung, Sukyoung Ryu, and Sunghun Kim. 2016. Development nature
matters: An empirical study of code clones in JavaScript applications. Empirical
Software Engineering 21, 2 (2016), 517–564.

[32] Charlie Curtsinger, Benjamin Livshits, Benjamin Zorn, and Christian Seifert.
2011. ZOZZLE: Fast and Precise In-Browser JavaScript Malware Detection. In
20th USENIX Security Symposium (USENIX Security 11).

[33] Steven Englehardt and Arvind Narayanan. 2016. Online tracking: A 1-million-site
measurement and analysis. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security. 1388–1401.

[34] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos Pacheco,
Matthew S Tschantz, and Chen Xiao. 2007. The Daikon system for dynamic
detection of likely invariants. Science of computer programming 69, 1-3 (2007),
35–45.

[35] Aurore Fass, Michael Backes, and Ben Stock. 2019. Jstap: A static pre-filter
for malicious javascript detection. In Proceedings of the 35th Annual Computer
Security Applications Conference. 257–269.

[36] Nishu Goel. 2022. JavaScript: 2021: The web almanac by HTTP archive. https:
//almanac.httparchive.org/en/2021/javascript

[37] Xin Hu, Kang G Shin, Sandeep Bhatkar, and Kent Griffin. 2013. {MutantX-S}:
Scalable Malware Clustering Based on Static Features. In 2013 USENIX Annual
Technical Conference (USENIX ATC 13). 187–198.

[38] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. 2021. Fingerprinting the
Fingerprinters: Learning toDetect Browser Fingerprinting Behaviors. In To appear
in the Proceedings of the IEEE Symposium on Security & Privacy.

[39] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. 2021. Fingerprinting the
Fingerprinters: Learning to Detect Browser Fingerprinting Behaviors. 2021 IEEE
Symposium on Security and Privacy (SP) (2021), 1143–1161.

[40] Umar Iqbal, Zubair Shafiq, and Zhiyun Qian. 2017. The Ad Wars: Retrospec-
tive Measurement and Analysis of Anti-Adblock Filter Lists. In ACM Internet
Measurement Conference (IMC).

[41] Jiyong Jang, David Brumley, and Shobha Venkataraman. 2011. Bitshred: feature
hashing malware for scalable triage and semantic analysis. In Proceedings of the
18th ACM conference on Computer and communications security. 309–320.

[42] Tom Janssen, Rui Abreu, and Arjan JC Van Gemund. 2009. Zoltar: A toolset
for automatic fault localization. In 2009 IEEE/ACM International Conference on
Automated Software Engineering. IEEE, 662–664.

[43] James A. Jones and Mary Jean Harrold. 2005. Empirical Evaluation of the Taran-
tula Automatic Fault-Localization Technique. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering (Long Beach, CA,
USA) (ASE ’05). Association for Computing Machinery, New York, NY, USA,
273–282. https://doi.org/10.1145/1101908.1101949

[44] James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of Test
Information to Assist Fault Localization. In Proceedings of the 24th International
Conference on Software Engineering (Orlando, Florida) (ICSE ’02). Association for
Computing Machinery, New York, NY, USA, 467–477. https://doi.org/10.1145/
581339.581397

[45] James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of Test
Information to Assist Fault Localization. In Proceedings of the 24th International
Conference on Software Engineering (Orlando, Florida) (ICSE ’02). Association for
Computing Machinery, New York, NY, USA, 467–477. https://doi.org/10.1145/
581339.581397

[46] Jordan Jueckstock and Alexandros Kapravelos. 2019. Visiblev8: In-browser moni-
toring of javascript in the wild. In Proceedings of the Internet Measurement Con-
ference. 393–405.

[47] Jordan Jueckstock and Alexandros Kapravelos. 2019. VisibleV8: In-Browser Mon-
itoring of JavaScript in the Wild. In Proceedings of the Internet Measurement
Conference (Amsterdam, Netherlands) (IMC ’19). Association for Computing Ma-
chinery, New York, NY, USA, 393–405. https://doi.org/10.1145/3355369.3355599

[48] Kyungtae Kim, I Luk Kim, Chung Hwan Kim, Yonghwi Kwon, Yunhui Zheng,
Xiangyu Zhang, and Dongyan Xu. 2017. J-force: Forced execution on javascript.
In Proceedings of the 26th international conference on World Wide Web. 897–906.

[49] Bogdan Korel and Janusz Laski. 1988. Dynamic program slicing. Information
processing letters 29, 3 (1988), 155–163.

[50] Jesutofunmi Kupoluyi, Moumena Chaqfeh, Matteo Varvello, Russell Coke,Waleed
Hashmi, Lakshmi Subramanian, and Yasir Zaki. 2022. Muzeel: Assessing the
Impact of JavaScript Dead Code Elimination on Mobile Web Performance. In
Proceedings of the 22nd ACM Internet Measurement Conference (Nice, France)
(IMC ’22). Association for Computing Machinery, New York, NY, USA, 335–348.
https://doi.org/10.1145/3517745.3561427

[51] Tofunmi Kupoluyi, Moumena Chaqfeh, Matteo Varvello, Waleed Hashmi, Lak-
shmi Subramanian, and Yasir Zaki. 2021. Muzeel: A Dynamic JavaScript Analyzer
for Dead Code Elimination in Today’s Web. arXiv preprint arXiv:2106.08948
(2021).

[52] Gulsher Laghari, Alessandro Murgia, and Serge Demeyer. 2015. Localising Faults
in Test Execution Traces. In Proceedings of the 14th International Workshop on
Principles of Software Evolution (Bergamo, Italy) (IWPSE 2015). Association for
ComputingMachinery, New York, NY, USA, 1–8. https://doi.org/10.1145/2804360.
2804361

[53] Hieu Le, Salma Elmalaki, Athina Markopoulou, and Zubair Shafiq. 2022. AutoFR:
Automated Filter Rule Generation for Adblocking. arXiv preprint arXiv:2202.12872
(2022).

[54] Hieu Le, Athina Markopoulou, and Zubair Shafiq. 2021. CV-Inspector: Towards
Automating Detection of Adblock Circumvention. In Network and Distributed
System Security Symposium (NDSS).

[55] K Rustan M Leino and Peter Müller. 2004. Object invariants in dynamic contexts.
In European Conference on Object-Oriented Programming. Springer, 491–515.

[56] Song Li et al. 2022. Towards Making JavaScript Applications Secure and Private.
Ph. D. Dissertation. Johns Hopkins University.

[57] Matthew Malloy, Mark McNamara, Aaron Cahn, and Paul Barford. 2016. Ad
Blockers: Global Prevalence and Impact. In Proceedings of the 2016 Internet Mea-
surement Conference (Santa Monica, California, USA) (IMC ’16). Association for
Computing Machinery, New York, NY, USA, 119–125. https://doi.org/10.1145/
2987443.2987460

13

https://backlinko.com/ad-blockers-users
https://backlinko.com/ad-blockers-users
https://www.computerhope.com/issues/ch000891.htm
https://secure.fanboy.co.nz/fanboy-cookiemonster.txt
https://disconnect.me/trackerprotection
https://easylist.to/easylist/easylist.txt
https://easylist.to/easylist/easyprivacy.txt
https://www.similarweb.com/website/elpais.com/
https://easylist.to/easylist/fanboy-social.txt
https://www.similarweb.com/website/gamestop.com/
https://www.similarweb.com/top-websites/category/sports/soccer/
https://www.similarweb.com/top-websites/category/sports/soccer/
https://noscript.net/
https://www.w3.org/TR/2011/WD-html5-author-20110809/the-noscript-element.html
https://www.w3.org/TR/2011/WD-html5-author-20110809/the-noscript-element.html
https://github.com/gorhill/uBlock/tree/master/src/web_accessible_resources
https://github.com/gorhill/uBlock/tree/master/src/web_accessible_resources
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.similarweb.com/website/tenki.jp/
https://www.similarweb.com/website/washingtonpost.com/
https://www.similarweb.com/website/washingtonpost.com/
https://almanac.httparchive.org/en/2022/javascript
https://www.usenix.org/conference/usenixsecurity22/presentation/siby
https://www.usenix.org/conference/usenixsecurity22/presentation/siby
https://developer.mozilla.org/enUS/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/enUS/docs/Web/API/XMLHttpRequest
https://doi.org/10.1109/TAIC.PART.2007.13
https://almanac.httparchive.org/en/2021/javascript
https://almanac.httparchive.org/en/2021/javascript
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1145/581339.581397
https://doi.org/10.1145/581339.581397
https://doi.org/10.1145/581339.581397
https://doi.org/10.1145/581339.581397
https://doi.org/10.1145/3355369.3355599
https://doi.org/10.1145/3517745.3561427
https://doi.org/10.1145/2804360.2804361
https://doi.org/10.1145/2804360.2804361
https://doi.org/10.1145/2987443.2987460
https://doi.org/10.1145/2987443.2987460

Proceedings on Privacy Enhancing Technologies YYYY(X) Abdul Haddi Amjad, Zubair Shafiq, and Muhammad Ali Gulzar

[58] Jian Mao, Jingdong Bian, Guangdong Bai, Ruilong Wang, Yue Chen, Yinhao Xiao,
and Zhenkai Liang. 2018. Detecting malicious behaviors in javascript applications.
IEEE Access 6 (2018), 12284–12294.

[59] Wes Masri. 2015. Automated Fault Localization: Advances and Challenges. Ad-
vances in Computers 99 (2015), 103–156.

[60] Jonathan R Mayer and John C Mitchell. 2012. Third-party web tracking: Policy
and technology. In 2012 IEEE symposium on security and privacy. IEEE, 413–427.

[61] Georg Merzdovnik, Markus Huber, Damjan Buhov, Nick Nikiforakis, Sebastian
Neuner, Martin Schmiedecker, and Edgar R. Weippl. 2017. Block Me If You Can:
A Large-Scale Study of Tracker-Blocking Tools. In IEEE European Symposium on
Security and Privacy.

[62] Ghassan Misherghi and Zhendong Su. 2006. HDD: hierarchical delta debugging.
In Proceedings of the 28th international conference on Software engineering. 142–
151.

[63] Marvin Moog, Markus Demmel, Michael Backes, and Aurore Fass. 2021. Statically
Detecting JavaScript Obfuscation and Minification Techniques in the Wild. In
2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 569–580.

[64] Shaoor Munir, Sandra Siby, Umar Iqbal, Steven Englehardt, Zubair Shafiq, and
Carmela Troncoso. 2022. COOKIEGRAPH: Measuring and Countering First-Party
Tracking Cookies. arXiv preprint arXiv:2208.12370 (2022).

[65] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D.
Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating and Improving Fault
Localization. In 2017 IEEE/ACM 39th International Conference on Software Engi-
neering (ICSE). 609–620. https://doi.org/10.1109/ICSE.2017.62

[66] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Kor-
czyński, and Wouter Joosen. 2018. Tranco: A research-oriented top sites ranking
hardened against manipulation. arXiv preprint arXiv:1806.01156 (2018).

[67] Qusay Idrees Sarhan and Árpád Beszédes. 2022. A survey of challenges in
spectrum-based software fault localization. IEEE Access 10 (2022), 10618–10639.

[68] Shaown Sarker, Jordan Jueckstock, and Alexandros Kapravelos. 2020. Hiding in
plain site: Detecting javascript obfuscation through concealed browser api usage.
In Proceedings of the ACM Internet Measurement Conference. 648–661.

[69] Philippe Skolka, Cristian-Alexandru Staicu, and Michael Pradel. 2019. Anything
to Hide? Studying Minified and Obfuscated Code in the Web. InWorld Wide Web
(WWW) Conference.

[70] Philippe Skolka, Cristian-Alexandru Staicu, and Michael Pradel. 2019. Anything
to hide? studying minified and obfuscated code in the web. In The world wide
web conference. 1735–1746.

[71] Michael Smith, Pete Snyder, Benjamin Livshits, andDeian Stefan. 2021. SugarCoat:
Programmatically Generating Privacy-Preserving, Web-Compatible Resource
Replacements for Content Blocking. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security. 2844–2857.

[72] H. A. D. Souza, M. L. Chaim, and Fabio Kon. 2016. Spectrum-based Software
Fault Localization: A Survey of Techniques, Advances, and Challenges. ArXiv
abs/1607.04347 (2016).

[73] Cristian-Alexandru Staicu, Martin Toldam Torp, Max Schäfer, Anders Møller, and
Michael Pradel. 2020. Extracting Taint Specifications for JavaScript Libraries. In
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineer-
ing (Seoul, South Korea) (ICSE ’20). Association for Computing Machinery, New
York, NY, USA, 198–209. https://doi.org/10.1145/3377811.3380390

[74] Minh Tran, Xinshu Dong, Zhenkai Liang, and Xuxian Jiang. 2012. Tracking
the Trackers: Fast and Scalable Dynamic Analysis of Web Content for Privacy
Violations. In Applied Cryptography and Network Security, Feng Bao, Pierangela
Samarati, and Jianying Zhou (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 418–435.

[75] Béla Vancsics, Ferenc Horváth, Attila Szatmári, and Árpád Beszédes. 2021. Call
frequency-based fault localization. In 2021 IEEE International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER). IEEE, 365–376.

[76] Hernán Ceferino Vázquez, Alexandre Bergel, Santiago Vidal, JA Díaz Pace, and
Claudia Marcos. 2019. Slimming javascript applications: An approach for re-
moving unused functions from javascript libraries. Information and software
technology 107 (2019), 18–29.

[77] Ratnadira Widyasari, Gede Artha Azriadi Prana, Stefanus A Haryono, Yuan Tian,
Hafil Noer Zachiary, and David Lo. 2022. XAI4FL: Enhancing Spectrum-Based
Fault Localization with Explainable Artificial Intelligence. In 2022 IEEE/ACM 30th
International Conference on Program Comprehension (ICPC). IEEE, 499–510.

[78] Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin Chen. 2005. A
brief survey of program slicing. ACM SIGSOFT Software Engineering Notes 30, 2
(2005), 1–36.

[79] Wei Xu, Fangfang Zhang, and Sencun Zhu. 2013. Jstill: mostly static detection of
obfuscated malicious javascript code. In Proceedings of the third ACM conference
on Data and application security and privacy. 117–128.

[80] Zhaoqi Zhang, Panpan Qi, and Wei Wang. 2020. Dynamic malware analysis with
feature engineering and feature learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 34. 1210–1217.

14

https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1145/3377811.3380390

	Abstract
	1 Introduction
	2 Motivation
	3 Methodology
	3.1 Phase I: Automated JS Blocking Analysis
	3.2 Phase II: Manual Inspection of JS Blocking
	3.3 Dataset

	4 Results
	4.1 Phase I: Large-scale JS Blocking Analysis
	4.2 Phase II: Visual Inspection of JS Blocking and Web Breakage

	5 Discussion
	6 Limitations
	7 Related Work
	8 Conclusion
	References

