
OptDebug: Fault-Inducing Operation Isolation for
Dataflow Applications

Muhammad Ali Gulzar
Virginia Tech

gulzar@cs.vt.edu

Miryung Kim
University of California , Los Angeles

miryung@cs.ucla.edu

ABSTRACT
Fault-isolation is extremely challenging in large scale data
processing in cloud environments. Data provenance is a dom-
inant existing approach to isolate data records responsible
for a given output. However, data provenance concerns fault
isolation only in the data-space, as opposed to fault isolation
in the code-space—how can we precisely localize operations

or APIs responsible for a given suspicious or incorrect result?

We present OptDebug that identifies fault-inducing oper-
ations in a dataflow application using three insights. First,
debugging is easier with a small-scale input than a large-scale
input. So it uses data provenance to simplify the original in-
put records to a smaller set leading to test failures and test
successes. Second, keeping track of operation provenance is
crucial for debugging. Thus, it leverages automated taint anal-
ysis to propagate the lineage of operations downstream with
individual records. Lastly, each operation may contribute
to test failures to a different degree. Thus OptDebug ranks
each operation’s spectra—the relative participation frequency
in failing vs. passing tests. In our experiments, OptDebug
achieves 100% recall and 86% precision in terms of detecting
faulty operations and reduces the debugging time by 17×
compared to a naïve approach. Overall, OptDebug shows
great promise in improving developer productivity in today’s
complex data processing pipelines by obviating the need to
re-execute the program repetitively with different inputs and
manually examine program traces to isolate buggy code.

CCS CONCEPTS
• Software and its engineering→ Software testing and
debugging; • Information systems → MapReduce-based

systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SoCC ’21, November 1–4, 2021, Seattle, WA, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8638-8/21/11. . . $15.00
https://doi.org/10.1145/3472883.3487016

KEYWORDS
data intensive scalable computing, debugging, bug isolation,
taint analysis
ACM Reference Format:
Muhammad Ali Gulzar and Miryung Kim. 2021. OptDebug: Fault-
Inducing Operation Isolation for Dataflow Applications. In ACM

Symposium on Cloud Computing (SoCC ’21), November 1–4, 2021,

Seattle, WA, USA. ACM, New York, NY, USA, 14 pages. https://doi.
org/10.1145/3472883.3487016

1 INTRODUCTION
Debugging is an inevitable part of software development.
Developers typically repeat program comprehension and
re-execution with different inputs numerous times over and
over as they develop and maintain large software systems.
The debugging process is incredibly challenging in the do-
main of Data-Intensive Scalable Computing (DISC) systems,
such as Google’s MapReduce [19], Hadoop [2], and Apache
Spark [1], due to their distributed nature and complexity.
DISC systems are used in almost every production software,
as the data processing needs often exceed petabyte-scale
now. When writing dataflow applications, developers first
express custom logic by declaring user-defined functions
and by stitching them with dataflow APIs, such as map and
reduce, in mainstream languages such as Scala or Python.
Debugging the root cause of a wrong output, a crash, or slow
performance is difficult due to the lack of transparency and
visibility into computation in DISC systems.

Prior work on Data Provenance (DP) can help with debug-
ging faulty data in the dataflow application [28, 32]. DP keeps
track of the lineage between an individual input record, its
intermediate record, and eventually the final output record.
Thus, DP can be used for explaining how a dataflow ap-
plication produces a given output by returning a minimal
subset of input records needed to generate that output. De-
spite low overhead and fast provenance query speed [27],
DP techniques are limited in identifying culprit records in
the data-space only, as opposed to identifying faulty logic or
operations in the code space. Therefore, when the input data
is considered clean and when a user must identify faulty code
or operations leading to an undesirable outcome, a developer
must spend significant time re-executing code with different
inputs and analyzing their execution paths.

https://doi.org/10.1145/3472883.3487016
https://doi.org/10.1145/3472883.3487016
https://doi.org/10.1145/3472883.3487016

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Muhammad Ali Gulzar and Miryung Kim

In the software engineering community, there exists
a broader category of code debugging techniques called,
spectra-based fault localization (SBFL) [29]. When a set of
passing tests and failing tests are available, SBFL collects
program traces and contrasts the differences in the coverage
profile (i.e., exercised statements or paths), and assigns a sus-
picious score to each exercised statement based on its degree
of contribution to passing vs. failing tests.

However, it is not straightforward to apply SBFL to DISC
applications for two reasons. First, a DISC application by
nature takes extremely large data as input (i.e.,billions of
records). Without simplifying the original data to a smaller
scale, storing a program trace for each input record dur-
ing distributed, parallel execution would increase both the
memory footprint and runtime overhead. Second, to capture
statement coverage, SBFL must deploy an instrumented JVM
(or a code coverage tool) in all remote nodes.

To address this challenge of automated code debugging of
DISC applications, OptDebug employs a novel operation-
level taint-analysis to determine the root cause code fault
precisely without high-overhead, intrusive instrumentation.
OptDebug takes as inputs—a DISC application, a test predi-
cate, and an input dataset—and returns a ranked list of oper-
ations (i.e., a line number in code with a primitive operation).
For each attributed line, it also reports a suspicious score to
quantify how likely that code line contributes to test failures.
The key insights behind OptDebug is two folds. First, it

simplifies the data debugging problem through data prove-
nance. It turns a massive data set into a smaller, manageable
data set that is capable of reproducing test failures or suc-
cesses. Second, it solves the code debugging problem with
this reduced data set by redesigning taint analysis to work
at an operation level, so that it tracks the history of applied

operations as opposed to the history of affected data. Cur-
rently, OptDebug supports Apache Spark applications with
operation tainting at two granularities: line of code and APIs
for primitive types such as String’s split. The underlying
methodology can be adapted to different DISC platforms.

We evaluateOptDebug on three fronts: (1) debugging time
speed up, (2) accuracy of fault localization in terms of both
precision and recall, and (3) runtime overhead. We design ex-
periments on a diverse set of DISC application benchmarks
adopted from prior work [22, 23, 40], running on a 104 cores
13-node cluster. Across six subject applications, OptDebug
takes only 47% of the original job time to complete the au-
tomated debugging process. This is a significant 17× speed
up over the baseline debugging via taint analysis, showing
the impact of input reduction by data provenance on OptDe-
bug’s debugging process.OptDebug is capable of identifying
fault-inducing code operations with 86% precision and 100%
recall. The primary reason for such high accuracy and the
significant speedup is that operation-level taint analysis is

enabled for a much smaller set of curated inputs obtained
through data provenance. Compared to the traditional SBFL-
based approach, OptDebug takes 27% less time on simplified
input from data provenance. We further assess the effective-
ness of different suspicious scores: Ochiai [9], Tarantula [29],
Barniel [8], and OP2 [35]. Tarantula score shows the most
promising fault localization accuracy with 86% precision,
while Ochiai, OPT2, and Barniel report 44%, 25%, and 80%
precision respectively.

We summarize the contributions of this paper below:
• To our knowledge, OptDebug is the first fully auto-
mated code debugging tool for DISC applications. It
goes beyond prior work that enabled data debugging

only.
• OptDebug proposes a novel operation-level taint anal-
ysis to track the history of executed code lines and
APIs. This taint tracking analysis does not require mod-
ifications to runtimes and thus is easy to deploy.

• OptDebug is the first to embody spectra-based fault
localization for DISC application debugging and to
evaluate various suspicious scoring methods systemati-
cally.

• OptDebug identifies faulty operations very quickly.
By paying an upfront overhead of data provenance
ranging from 1.1× to 5×, a user can precisely identify
fault-inducing operations in under 47% of the job ex-
ecution time on vanilla Spark, leading to significant
time savings.

By realizing OptDebug in a real-world tool, we show
that input simplification of data provenance can be com-
bined with fine-grained taint analysis to perform code de-
bugging. OptDebug is open source and publicly available at
https://github.com/maligulzar/OptDebug. We organize the rest
of the paper as follows. Section 2 presents a motivating ex-
ample that highlights debugging challenges. Section 3 in-
troduces OptDebug and describes the key insights and its
approach. Section 4 presents the results from our extensive
set of experiments on OptDebug. Section 5 sheds light on
related work in this area and how OptDebug compares to it.
We conclude this paper in Section 6.

2 MOTIVATING EXAMPLE
This section presents a running example to emphasize the
motivation behind OptDebug and highlight its benefits. We
take inspiration from a benchmark in prior work on data
provenance [23]. OptDebug is built on top of Apache Spark
for Scala programming language but its approach is appli-
cable to other data processing frameworks or programming
languages with data provenance support.

OptDebug: Fault-Inducing Operation Isolation for Dataflow Applications SoCC ’21, November 1–4, 2021, Seattle, WA, USA

1 val log = "s3://IATA -data/logs -2020/ transit.log"

2 val input = new SparkContext(sc).textFile(log)

3 input.map { s =>

4 val tokens = s.split(",")

5 val dept_hr = tokens (2).split(":")(0)

6 val diff = getDiff(tokens (4), tokens (2))

7 (dept_hr , diff)

8 }

9 .filter(v => v._2 < 4)

10 .reduceByKey(_+_)

11

12 // Calculates the difference between time

13 def getDiff(arr: String , dep: String): Float = {

14 val arr_hr = arr.split(":")(0).toFloat + arr.

split(":")(1).toFloat /60

15 val dep_hr = dep.split(":")(0).toFloat + dep.

split(":")(1).toFloat /60

16 if(arr_hr - dep_hr < 0){ // across midnight

17 return arr_hr - dep_hr - 24

18 }

19 return arr_hr - dep_hr

20 }

Figure 1: A dataflow application in Apache Spark that
takes an airline transit dataset as input and calculates
the total flying hours for less-than-four hour flights
grouped by each departure hour.

Suppose Alice is a data scientist who is given the task
of measuring the total flying hours for all flights with less
than 4 hours grouped by their departure hour. The entire
dataset is several gigabytes in size and contains the telemetry
data from millions of flights flown by airlines over the past
20 years. Every row in the dataset follows a CSV (comma-
separated value) format. The first column represents the
9-letter alpha-numeric Flight ID. The second column repre-
sents the departure airport code. The third column represents
the departure time in UTC 24-hour format, and the fourth
column represents the arrival airport code. The last value
represents the arrival time in UTC 24-hour format. For in-
stance, the following record shows the flight departed from
Charlotte, NC (CLT) at 23:15 UTC and arrived in Atlanta,
GA at 0:15 UTC.

AAB141715 , CLT , 23:15 , ATL , 0:15

Alice writes a dataflow application in Apache spark shown
in Figure 1. Line 2 reads the dataset stored in Amazon S3
storage using the textfile API and applies a map operator
to extract the departure hour as key (line 5). Line 6 computes
the difference between the departure and arrival time. Line
9 filters out the flights with a flying time greater than 4
hours. Line 11 aggregates the total flight time per key group.
Alice submits this application on a public cloud platform
provisioned with 32 instances to run her analysis on the

entire dataset. After several minutes, the application returns
the following results.

(11 , 175080)

(20 , 173460)

(23 ,-222780)

Categorizing Suspicious Outputs. By skimming over a
few output records, Alice notices a negative flight duration,
a suspicious or incorrect output. For example, the total dura-
tion for the flights departed at 23:00 is -222780. Such incorrect
individual output can be seen as a test failure. In fact, Alice
can write the following test predicate (a boolean function)
to check whether each output record is correct:
def test(output: (String , Float)) : Boolean =

output._2 > 0

To determine the root cause of such bug, Alice may at-
tempt two different debugging directions: (1) data debug-
ging: which subset of input records contributes to the incorrect

output records? and (2) code debugging: which subset of op-

erations (i.e., code line or API) in her application is responsible

for the incorrect output records? Alice may use data prove-
nance tools for data debugging and use spectra-based fault
localization tools for code debugging, each of which has
limitations in the DISC application domain.
Limitations of Data Provenance. To find a subset of in-
put records leading to suspicious or incorrect outcomes, Al-
ice may use data provenance tools such as Titian [27] or
Smoke [38]. She enables Titian on her application and in-
vokes a backward tracing query on each negative flight du-
ration output. Titian returns a subset of 2 million records
(approximately 0.2% of the original input data), correspond-
ing to the key 23.

XAY993311 , CLT , 23:15 , ORD , 1:15

EWS121311 , LAX , 23:45 , ORD , 5:00

AAQ591783 , SJC , 23:33 , MNN , 4:20

The fault-inducing input records seemingly look clean,
valid, and error-free. At this point, Alice suspects that faults
are caused by code not corrupted data. If she re-executes the
program for almost two million input records and manually
inspects generated program traces, it would be a painfully
time-consuming process to detect code faults.
Limitations of Spectra-based Fault Localization. One
dominant approach for code debugging is to use spectra-
based fault localization techniques such as Tarantula [29]
and Ochiai [9]. They assume a high-quality test suite with in-
puts leading to both test successes and failures. For instance,
Tarantula measures a suspicious score based on the execu-
tion count of each code line in failing vs. passing tests. Such
a technique is not readily applicable to DISC applications.
Existing coverage tools perform virtual machine (e.g., JVM)
level native instrumentation, whichmust be deployed at each

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Muhammad Ali Gulzar and Miryung Kim

Phase I

Phase II

.scala

def test()
...
...

Dataflow
Application

Test Function

Input Dataset

Data
Provenance

.scala

Test

Output1 Pass

Output2 Fail

Output3 Pass
Backward Trace

Taint
Analysis

.scala

Output1 [31:Split, 34:substring,
33:+]

Output2 [31:Split, 34:substring,
33:-]

Operation 33:- 31:split 34:substring

Score 1 0.5 0.5

Suspicious Score

Figure 2: Phase I takes as inputs—a dataflow application, a test predicate, and an original input data. It then applies
data provenance to simplify inputs, leading to passing vs. failing outcomesw.r.t the test predicate. Phase II enables
taint analysis for the simplified input and ranks the contributing operations in terms of suspicious scores.

1 val log = "s3://IATA -data/logs -2020/ transit.log"

2 - val input = new SparkContext(sc).textFile(log)

3 + val input = new OptDebug(sc).textFile(log)

4 input.map {..}

5 .reduce {..}

6 - .collect ()

7 + .runWithOptDebug [(String , Float)](

test = r => r._2 >0)

Figure 3: A user can adapt their application code with
a two line modification (lines 2 and 6) to enable Opt-
Debug.

worker node in the cloud environment. Such an approach
poses an excessive overhead of executing instrumented code
and storing program traces from distributed, remote nodes.
Furthermore, to distinguish the code coverage of each test,
SBFL would need to execute the application for each input
in isolation repetitively.
In summary, even if a code coverage collection tool can

be enabled for distributed, parallel execution, it would pose
significant scalability and performance challenges due to
execution overhead, repetitive runs, and coverage collection
overhead from remote nodes. Therefore, SBFL is currently
not feasible for DISC applications.
OptDebug for Automated Code Debugging. To use Opt-
Debug, Alice needs to make a small edit to her code by
adding new OptDebug(), as shown in Figure 3. OptDebug
then automatically turns on data provenance for the first run
and executes the application with the entire input data. It
then uses the user-defined test predicate to classify which
output records are failing vs. passing and invokes a backward
tracing query for each failing output. With this returned in-
put subset,OptDebug turns on operation-level taint analysis
and re-runs the application for the second run. OptDebug
collects the history of applied operations and covered code
lines and uses spectra-based fault localization techniques to
rank faulty code.

As a result, OptDebug reports culprit buggy code lines
and operations, arranged in the descending order of suspi-
cious scores. OptDebug takes 8 seconds for tainting-enabled
execution for the second run on the substantially reduced
data set from the first run:

(Line: Operation, Score)

(17: Int.new(), 1.0)

(17: Int.minus, 1.0)

(15: String.split, 0.47)

(14: Int.times, 0.47)

OptDebug reports a suspicious score of 1.0 to line 17’s
new Int and minus operations. With this information, Alice
immediately realizes that, at line 17, the value of 24 hours
should be added instead of subtracted, which gives the very
hint needed for fixing her program.

3 APPROACH
To determine the root cause of coding errors, OptDebug
takes the user application, a test predicate, and the original
input data as inputs and reports a ranked list of operations
with a corresponding suspicious score. OptDebug employs
a two-phase approach, shown in Figure 2.

Phase I enables data provenance (provided by Titian [27]),
executes the program on the entire input dataset to capture
data lineages, classifies incorrect output records using the
test predicate, performs backward tracing on a select subset
of failing vs. passing outputs, and discards the rest. The
returned subset of input records is often substantially smaller
than the original input data, yet they can trigger both failing
and passing behavior.
Phase II re-executes the job with this reduced data. This

time, the application is automatically refactored to perform
operation-level taint analysis to track the history of applied
operations to each input record. OptDebug applies SBFL
models to calculate a suspicious score for each profiled op-
eration. Operations with the highest suspicious score are
returned to the user as the root causes.

OptDebug: Fault-Inducing Operation Isolation for Dataflow Applications SoCC ’21, November 1–4, 2021, Seattle, WA, USA

Map Filter ReduceByKey

AAQ591783 SJC 23:33 MNN 03:20

APA991311 CLT 23:15 ORD 00:55

PPA110983 IAD 02:00 DEN 04:10

HHA111945 SEA 14:55 EWR 21:49

23 -44.2

23 -46.3

02 2.17

14 5.90

23 -90.5

02 2.17

23 -44.2

23 -46.3

02 2.17

AAQ591783 SJC 23:33 MNN 03:20 -

APA991311 CLT 23:15 ORD 00:55 -

PPA110983 IAD 02:00 DEN 04:10 -

HHA111945 SEA 14:55 EWR 21:49 -

23 -44.2 14:split,
17:-,..

23 -46.3 14:split,
17:-,..

02 2.17 14:split,..

14 5.90 14:split,..

23 -44.2 14:split,
17:-,9:<,..

23 -46.3 14:split,
17:-,9:<,..

02 2.17 14:split,
9:<,..

23 -90.5 14:split,
17:-,9:<,..

02 2.17 14:split,
9:<,..

(a) Without Taint-Supported Data Types

(b) With Taint-Supported Data Types

sparkContext.textFile("data.csv")

optDebugContext.textFile("data.csv")

: Operation Provenance as Taint

Figure 4: Phase II illustration with the example from §2. (a) execution without taint analysis. (b) with taint anal-
ysis. Orange boxes represent operations tagged onto individual records through taint analysis. As opposed to
traditional taint analysis that propagates the origin data, OptDebug propagates code lines and operations onto
each record. At the end of the pipeline, red and greenmark success-inducing vs. failure-inducing operations with
a corresponding line number respectively.

3.1 Phase I: Simplifying Input via Data
Provenance

The goal of Phase I is first to solve the data debugging prob-
lem: simplifying the original input data to a substantially
reduced input data. This reduced data is related to a small
number of success and failure outcomes, defined via the
given test predicate.

Categorizing Output Records with User-Defined Test

Predicate. OptDebug uses the user-provided test predicate
to classify individual output records. OptDebug then ran-

domly selects the p and f number of passing and failing
outputs respectively. Default 𝑝 and 𝑓 are set to 2. The impli-
cation of random selection and how many 𝑝 passing and 𝑓

failing outputs to retain is discussed in Section 4.4.

Input Reduction via Data Provenance. OptDebug uses
data provenance by Titian [27], an interactive data prove-
nance tool built for Apache Spark. It enables backward and
forward data tracing query support with reportedly 30% run-
time overhead to capture the relationship between inputs,
intermediate outputs in each stage, and final outputs. Titian
creates such lineage tables at each shuffle boundary. Each
intermediate input (/output) is tagged with a provenance
ID, and the input and output mappings are stored in the in-
memory storage for fast, recursive, distributed join queries
required for tracing. Details on Titian are described else
where [27, 28].

OptDebug uses Titian’s backwards tracing query,
lineage.filter(P).goBackAll on the selected p+f num-
ber of passing and failing outputs. Behind the scenes, Titian
recursively joins the lineage tables one by one, starting from
each output and working its way towards the input. At the

end of tracing, Titian returns a significantly smaller set of
inputs (on average four orders of magnitude, 10−4, smaller
than the original entire data set). By removing a majority of
data records from the input subset that do not add additional
value to the SBFL process, this reduction directly impacts
Phase II’s performance, as evaluated in Section 4.

3.2 Phase II: Spectra Debugging via
Operation-Level Taint Analysis

Phase II extends taint analysis to capture the provenance of
operations for each output data record using the simplified
reduced input. It then measures a suspicious score for each
operation using spectra-based fault localization by contrast-
ing its likely contribution to passing vs. failed outcomes.

Traditional SBFL-based techniques require code coverage
tools to monitor statements executed by each test case. Each
test must be executed in isolation to create an independent
coverage profile. To achieve this in DISC systems, wemust de-
ploy a cluster-wide JVM instrumentation and run each input
record in isolation. Even if this is feasible with the simplified
input from Phase I, collecting coverage from repeated runs
and across multiple remote nodes would be prohibitively
expensive. Additionally, SBFL-based techniques collect cov-
erage to isolate all code lines, and thus cannot differentiate
Apache Spark implementation code from user-level applica-
tion code.

For the ease of adoption and lightweight coverage collec-
tion, OptDebug extends taint analysis to capture the history
of applied code operations, as opposed to the origin and trace

of affected data. Compared to traditional SBFL-based tech-
niques, OptDebug stays in application layer and requires no
complex system-level modification. It eliminates the need

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Muhammad Ali Gulzar and Miryung Kim

1 new SparkContext(sc)

2 .textFile(log) :RDD[String]

3 .map() :RDD[String ,Float]

4 .filter () :RDD[String ,Float]

5 .reduce () :RDD[String ,Float]

(a) RDD data types with SparkContext.textFile()

1 new OptDebug(sc)

2 .textFile(log):OptRDD[TaintString]

3 .map() :OptRDD[TaintString , TaintFloat]

4 .filter () :OptRDD[TaintString , TaintFloat]

5 .reduce () :OptRDD[TaintString , TaintFloat]

(b) RDD data types with OptDebug.textFile()

Figure 5: OptDebug takes advantage of Scala’s static
type inference to incorporate tainted data types with
a simple, single line code modification.

to make drastic framework or JVM changes across all nodes
and does not require a separate application to consolidate
coverage logs from all nodes. By keeping track of this op-
eration provenance through application-level taint analysis,
OptDebug is runtime-system agnostic and easily portable.
Taking inspiration from traditional taint analysis [36] and
flow tracking [40], OptDebug automatically re-writes a user
application by inserting a simple API invocation that wraps
SparkContext API with 2 lines code insertion, as shown in
Figure 3.

Operation-Level Taint Analysis. OptDebug’s operation
taint analysis takes advantage of static type inference and
operator overloading to automatically replace the used data
types with the corresponding taint-supported data types. A
taint-supported data type contains a reference to the original
value and a set of provenance tags at the code or operation
level. The provenance tags are then stored as a BitSet of
line numbers in code or a Set of API operations.

The taint-supported data types such as TypeInt have the
same exact signature, methods, and operations as their origi-
nal counterpart such as Int. For example, in Figure 1, lines
3-8 represent a UDF that takes a String and outputs a tu-
ple of String and Float. While the UDF is meant to take
String as input, OptDebug can reuse the same UDF at
compile time, and assume the input type as TaintString
which mirrors all String operations. Therefore, the UDF
type-checks with TaintString as input and (TaintString,
TaintFloat) as output. Similarly,OptDebug can change the
entire dataflow application’s data type to a taint-supported
data type by simply making a single line code change in
the beginning of the application: re-writing the original in-
put loading procedure, rdd.textFile() to return OptRDD
instead of RDD—Resilient Distributed Datasets (RDD) is a fun-
damental data structure in Spark, an immutable distributed

1 case class TaintInt(value: Int){

2

3 // Callee line number and operation name

4 setProvenance(getCallSite ())

5

6 def +(x: Int): TaintInt =

7 TaintInt(value + x, newProvenance(getCallSite ())

)

8

9 def +(x: TaintInt): TaintInt =

10 TaintInt(value + x.value ,

11 mergeProvenance(this ,x.provenance ,

12 getCallSite ()))

13 ...

Figure 6: Each operator (or API) is instrumented to
support taint analysis inOptDebug. In Line 9, TaintInt
overloads the binary operator + with TaintInt for the
right and left parameters. getCallSite() returns a
provenance object containing the callee’s line number
and the current operation name.

collection of objects. This type change has the effect of us-
ing an OptRDD of type TaintString instead of an RDD of
type String, which initiates taint tracking. Figure 5 shows
how RDD types change when OptDebug is used instead of
SparkContext as an input loading procedure.

Figure 4 illustrates the operation-level taint analysis on the
example from Section 2. Each operation in a taint-supported
data type internally adds the name of the operation and the
callee’s line number to the existing provenance set. This step
of retaining both the operation and the corresponding line
number is critical for fine-grained debugging, because the
same operation may be called from multiple lines, and a
single code line may involve multiple operations. In Figure 4
(b), the use of a binary comparison operator ‘<’ at line 9
v => v._2 <4 in Figure 4 would invoke a corresponding
taint-supported operation ’<’ in TaintInt, in turn adding
the provenance tag of 9:< (i.e., line 9 uses a binary operator
’<’) after the Filter transformation. Similar to the typical
taint analysis, the interaction between two provenance tags
leads to the union of both provenances. For example, at line
19 in Figure 1, arr_hr - dep_hr involves two TaintFloat
variables hence the minus operator merges the provenance
tags of dep_hr with the provenance of arr_hr.
Currently, OptDebug supports operation-tainting for all

primitive types such String, Float, Int, Array, and Int and
frequently used Java libraries such Math. Figure 6 shows the
implementation of TaintInt. Similar to typical taint analy-
sis, developers do not need to define taint-supported types
themselves, as they can be defined once for all commonly
used types.

OptDebug: Fault-Inducing Operation Isolation for Dataflow Applications SoCC ’21, November 1–4, 2021, Seattle, WA, USA

Spectra-based Code Debugging. Spectrum-based fault local-
ization (SBFL) records the execution coverage profile, most
commonly at the line level, of a program for each test input.
It then contrasts each line’s contribution to multiple failing
vs. passing tests to determine and rank suspicious code re-
gions, more likely to be associated with failing tests but not
passing tests. The key assumption is that a code line is more
suspicious if it participates in failing traces but not in any
passing traces. Suppose we have a test suite that consists of
three test cases: [𝑡1𝑝𝑎𝑠𝑠 , 𝑡2𝑓 𝑎𝑖𝑙 , 𝑡3𝑝𝑎𝑠𝑠], where 𝑝𝑎𝑠𝑠 and 𝑓 𝑎𝑖𝑙

represents the test outcome and that the corresponding cov-
erage profile is [(2, 4, 5), (2, 3, 4), (2, 4, 5)] respectively, where
(2, 4, 5) means 𝑡1 exercises lines 2, 4, and 5. Line 3 is invoked
by a failing test and not any of the passing tests, indicating
a high likelihood of being the root cause. Recent work on
SBFL proposes various methods to calculate the suspicious
score of each code line [37].
After the second run with taint analysis, OptDebug col-

lects output records, each carrying their respective prove-
nance tags. It re-applies the user-provided test predicate to
distinguish which provenance tags contribute to passing
vs. failing outcomes. To calculate a suspicious score, OptDe-
bug measures the following metrics:

• totalfail: the total number of failing outputs
• totalpass: the total number of passing outputs
• fail(op): the number of failing outputs whose prove-
nance tag contains the given operation, op.

• pass(op): the number of passing outputs whose prove-
nance tag contains the given operation, op.

Ranking based on Suspicious Score. OptDebug adopts
various suspicious score computationmethods from the SBFL
literature, including Tarantula [29], Ochiai [9], Barniel [8],
and OP2 [35]. By default, OptDebug uses Tarantula to rank
operations, defined as follows:

𝑇𝑎𝑟𝑎𝑛𝑡𝑢𝑙𝑎(𝑜𝑝) =
𝑓 𝑎𝑖𝑙 (𝑜𝑝)
𝑡𝑜𝑡𝑎𝑙 𝑓 𝑎𝑖𝑙

𝑓 𝑎𝑖𝑙 (𝑜𝑝)
𝑡𝑜𝑡𝑎𝑙 𝑓 𝑎𝑖𝑙

+ 𝑝𝑎𝑠𝑠 (𝑜𝑝)
𝑡𝑜𝑡𝑎𝑙𝑝𝑎𝑠𝑠

(1)

Other suspicious score computation methods are defined as:

𝑂𝑐ℎ𝑖𝑎𝑖 (𝑜𝑝) = 𝑓 𝑎𝑖𝑙 (𝑜𝑝)√
𝑡𝑜𝑡𝑎𝑙 𝑓 𝑎𝑖𝑙 · (𝑓 𝑎𝑖𝑙 (𝑜𝑝) + 𝑝𝑎𝑠𝑠 (𝑜𝑝))

(2)

𝑂𝑃2(𝑜𝑝) = 𝑓 𝑎𝑖𝑙 (𝑜𝑝) − 𝑝𝑎𝑠𝑠 (𝑜𝑝)
𝑡𝑜𝑡𝑎𝑙𝑝𝑎𝑠𝑠 + 1

(3)

𝐵𝑎𝑟𝑛𝑖𝑒𝑙 (𝑜𝑝) = 1 − 𝑝𝑎𝑠𝑠 (𝑜𝑝)
𝑝𝑎𝑠𝑠 (𝑜𝑝) + 𝑓 𝑎𝑖𝑙 (𝑜𝑝) (4)

Phase II returns a ranked list of operations in the descend-
ing order of suspicious score. The code line or APIs with

the highest suspicious score is the most likely to be the root
cause, in other words, a fault-inducing operation.

3.3 OptDebug’s API
OptDebug is a Scala library (jar file) that can easily be im-
ported into any Apache Spark application. It wraps the entry
point of Apache Spark i.e., SparkContext with OptDebug.

class OptDebug(sc:SparkConf) {

def textFile(String:log) : OptRDD[TaintString]

...

class OptRDD[U] {

def runWithOptDebug[U](test: U => Boolean)

...

A user can initiate taint-tracking with simple two line
modifications. While loading an input to create an RDD, she
can invoke the OptDebug.textFile() API instead, which
returns an OptRDD of type TaintString instead of an RDD
of type String. A user can then invoke runWithOptDebug
with a test, which triggers the debugging process, if the user-
provided test predicate fails on any output.

3.4 Implementation
OptDebug is written in Scala programming language and
packaged into a jar file. It relies on two key language features:
static type inference and operator overloading, both sup-
ported in Scala and Python, the two widely used languages
in data analytics. Behind the scenes, OptDebug requires a
data provenance tool in Phase I. Its current implementation
uses Titian [27], but it can be easily ported to use a more
recent data provenance tool. OptDebug’s taint analysis is
completely runtime-agnostic, as it does not require modifi-
cations to a DISC system runtime and is implemented as an
application-level analysis (i.e., Python or Scala frontend).

4 EVALUATION
We evaluate OptDebug on three key criteria i.e., debug-
ging time, fault localization accuracy, and runtime overhead.
Specifically, we aim to answer the following research ques-
tions:

• Fault Localizability: What are OptDebug’s preci-
sion and recall in localizing fault-inducing code or
operation?

• Debugging Time: How long does OptDebug take to
find fault-inducing code in a user application?

• Runtime Overhead: What is the runtime overhead
of OptDebug?

We perform a series of systematic experiments on a diverse
range of subject program benchmarks running on a large-
scale cluster environment.

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Muhammad Ali Gulzar and Miryung Kim

ID Program Description LOC Dataset Size Program Faults Source

P1 Flying Hours Find the total flying hours per
departure hour 25 25GB Error in time calculations Gulzar et al. [23]

P2 Commute Mode Trips Estimate the total trips per mode of
transport 50 2.4GB Wrong threshold for

"on foot" trips Gulzar et al. [22]

P3 Movie Age on Netflix Find the count of movies per movie
age on Netflix 40 28GB Age calculation fault for

movies before 2000
Kaggle Netflix
Dataset [5]

P4 Student GPA Find each student’s GPA from course
scores 45 93GB Typo in percentage to GPA

conversion Teoh et al. [40]

P5 US Car Accidents Find the average visibility level per
accident severity type 35 22GB NaN visibility measurement

mapped to zero
Kaggle US Accident
Dataset [5]

P6 Weather Analysis Find the delta between max and min
snowfall reading per state per month 65 37GB Measurements in "inches"

treated as "mm" Gulzar et al. [20]

Table 1: Subject Programs, Data Sets, and Program Faults

Subject Programs. Real-world applications for DISC sys-
tems are mostly closed-source with closed data and they
do not come with known code faults. Therefore, there is a
lack of applications on which OptDebug can be evaluated.
Existing DISC benchmarks, such as TPC [7], HiBench [3],
and PigMix [6], are performance benchmarks with no real
bugs and with minimal programming logic diversity.
To evaluate OptDebug, we select six subject dataflow

applications with known faults. These programs ingest real-
world data as input and comprise a diverse set of dataflow
operators with minimal logical overlap between individ-
ual applications. Specifically, the programs leverage fre-
quently used operators such as map, flatmap, averageByKey,
reduceByKey, groupByKey, and filter. The faults in these
program are inspired by bugs reported on Stackoverflow/-
mailing lists [22, 44]. The benchmark programs are publicly
available at https://github.com/maligulzar/OptDebug.
Table 1 lists the six subject programs and their sources.

Program P1, P2, and P6 are derived from related work on
DISC application debugging and test input generation [20,
22, 23]. These three programs come with pre-injected code
faults in them. Program P4 is a slightly modified version of
a benchmark presented elsewhere [40]. Programs P3 and P5
represent data analytics tasks performed on Kaggle’s open
Datasets [5]. For those programs without known code faults
(P3, P4, and P5), we systematically inject faults based on
Zhang et al.’s survey of commonly found errors in big data
applications [44]. All subject programs come with large-scale
datasets ranging from 2.4 GB to 93GB. For Kaggle datasets,
we scale up the dataset size from a few GBs to tens of GBs
via duplication to evaluate OptDebug’s scalability.

Experiment Environment. We perform our experiments on
a dedicated large-scale cluster computing environment that
spans 13-nodes where each node has 8 cores, 4TB storage,
3.10GHz CPU, and 48GB memory. Overall, the cluster of-
fers approximately 104 cores, 53TB disk storage, and 576GB
memory. We deploy Apache Spark 3.0.1 along with Apache

Hadoop HDFS 2.7. The replication factor for HDFS is set to
3. During our experiments, we dedicate the entire cluster to
HDFS and shut down other services to minimize the perfor-
mance impact of other applications on the evaluation results.
We restart SparkContext for each experiment instance to
avoid any implicit caching. Every experiment is repeated
four times, and the results are averaged to balance out any
outlier.

Baseline. We compare OptDebug’s debugging accuracy
using standard metrics of precision (how many of OptDe-
bug’s results are true bugs?) and recall (how many of known

fault-inducing operations are found by OptDebug?). For de-
bugging time, we use two baselines. First, we compare Opt-
Debugwith an operation-level taint analysis technique with-
out data provenance. This baseline will enable operation-
tainting for the entire input data, as opposed to simplified
input data. Second, we conservatively construct a baseline
where OptDebug’s taint analysis is replaced with standard
line coverage collection using the IntelliJ Idea coverage plug-
in. The reason behind having two baselines is to assess the
benefits of each insight i.e., (1) using data provenance to sim-
plify an input data set, and (2) using taint analysis to keep
track of operation instead of coverage profiling per test. For
overhead evaluation, we compare the execution time of the
data provenance job using Titian and the original job using
vanilla Spark.

4.1 Fault Localizability
To evaluate OptDebug’s capability to detect code faults,
we measure how precisely and accurately OptDebug finds
faulty code lines (/operations) in the subject programs. While
OptDebug reports potential faults in a ranked list, in our
evaluation, we conservatively assume that a developer may
consider only the code faults with the highest suspicious
score. The number of code faults with the highest suspicious
score can be more than one when there is a tie.

OptDebug: Fault-Inducing Operation Isolation for Dataflow Applications SoCC ’21, November 1–4, 2021, Seattle, WA, USA

Program Input Simplified Input Known Detected
Count via Titian Faults Faults

P1 8.8 x 108 1,730,183 2 2
P2 9.6 x 107 45,515 1 2
P3 7.8 x 107 220,000 2 3
P4 5.0 x 109 198,000 1 1
P5 5.7 x 107 210 1 1
P6 1.6 x 109 709,200 2 2

Table 2: Input Reduction by Data Provenance. Known
Faults vs. Detected Faults

Tarantula Ochiai OP2 Barniel
0

20

40

60

80

100

10
0

83

33

10
0

86

44

25

80

𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠 𝑆𝑐𝑜𝑟𝑒𝑠

𝐴
𝑣
𝑒𝑟
𝑎
𝑔
𝑒
(%

) Recall Precision

Figure 7:OptDebug’s average precision and recall with
various suspicious score calculation methods.

For each fault, we use the operation name and the corre-
sponding line number as a ground truth. In terms of suspi-
cious score, we use Tarantula as a default method described in
Equation 1. In Table 2, columnKnownFault shows the num-
ber of known faults present in each program, and column
Detected Faults shows the number of faults that OptDe-
bug reported with the highest suspicious score. For instance,
in program P2, an incorrect speed threshold, (10, 15) instead
of (0, 15), is used to classify trips covered on foot.
if (10<speed <15) // Correct: 0<speed <15

("Foot", speed)

else

("Invalid", speed)

OptDebug returns the ranked list of operation with their
suspicious scores: [(77 : >, 1.0), (80 : Int.new(),
1.0), (67 : >, 0.15), . . .]. OptDebug identifies the two
locations (lines 77 and 88) with the highest, equal suspicious
score. (77: >) is the location of the actual, injected fault
in if condition. (80 : Int.new()) is a false positive, as
it corresponds to the else block. On P2, OptDebug shows
the recall and precision of 100% and 50% respectively. In
contract, on program P1, OptDebug isolates the single most
precise operation responsible for a test failure, reaching 100%
precision and recall.

To understand the efficacy of various suspicious score cal-
culation methods, we compare the precision and recall of
OptDebug with different SBFL methods i.e., Tarantula [29],

P1 P2 P3 P4 P5 P6
0
20
40
60
80
100
120
140
160

33
.8

12
.8

12
.1

11
6.
8

8.
8

55
.1

55
.3

5.
6 14
.8

12
.1

4.
2

26
.5

𝑆𝑢𝑏 𝑗𝑒𝑐𝑡 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑠

𝑇
𝑖𝑚

𝑒
(𝑠
)

Original Job Time OptDebug’s Debugging Time

Figure 8: OptDebug running time is on average 47%
faster than the time to execute the target program
with the original, entire input, showing significant
speed up over trial and error debugging.

Ochiai [9], OP2 [35], and Barniel [8]. Figure 7 presents the
average precision and recall for each method across six pro-
grams. Y-axis represents recall and precision, and X-axis
represents a different method. When using Tarantula, Opt-
Debug achieves 86% precision and 100% recall on average,
performing better than the other three. In contrast, OP2
performs the worst with only 33% recall and 25% precision.
Overall, Tarantula seems to be the best choice for OptDebug
hence set as a default method.

4.2 Debugging Time
We evaluate the time OptDebug takes to find the fault-
inducing operation after a given application produces a fail-
ing outcome defined via a test predicate. We perform three
different kinds of comparison in order to shed light on where
and how OptDebug can save debugging time:

• OptDebug’s total debugging time vs. the original job
execution time: A developer tends to re-execute a pro-
gram over and over again during trial and error de-
bugging. Therefore, OptDebug’s total debugging time
should be much faster than the original job time.

• OptDebug’s debugging time with and without taint
analysis: This experiment is to assess the benefit of
operation-tainting, as opposed to leveraging a code
coverage collection tool to gather the coverage profile
of each input in isolation and to apply SBFL.

• OptDebug’s debugging time in Phase II with the sim-
plified input vs. the entire input (i.e., with and without
data provenance): This experiment is to contrast the
role of solving data debugging prior to solving code

debugging through input simplification.

Debugging time vs. the original job time. We compare the
total debugging time taken byOptDebug against the original

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Muhammad Ali Gulzar and Miryung Kim

P1 P2 P3 P4 P5 P6
0
5
10
15
20
25
30 27

.2

7.
6

24
.9

6.
9 8.
6

16

26
.3

4.
3 7.

9 9.
5

3.
9

11
.7

𝑆𝑢𝑏 𝑗𝑒𝑐𝑡 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑠

𝑇
𝑖𝑚

𝑒
(𝑠
)

SBFL
OptDebug’s Taint Analysis

Figure 9: OptDebug’s taint analysis on a simplified in-
put is on average 27% faster than applying spectra-
based fault localization on a simplified input.

job execution time running on vanilla Apache Spark with-
out any instrumentation. This is to put the total debugging
time in the context of the original execution, as develop-
ers often tend to rerun the program to reproduce a failure
symptom during trial and error debugging. Figure 8 shows
the comparison results. Consider program P6. The original
job on the entire input dataset takes 55.1 seconds on vanilla
Apache Spark. OptDebug only takes 26.5 seconds (47% of
the original job time) to localize code faults automatically.
Program P2, P4, and P5 follow a similar trend where the
total debugging time is only a fraction of the original job
time. In practice, debugging a DISC application is a highly
time-consuming process, with repetitive reruns of the job
with the original input and different input subsets. There-
fore, it is highly likely that a developer would spend 10×
or 100× in debugging time, relative to the original job time.
This major time saving comes from the input reduction in
Phase I. By solving the data debugging problem first using
data provenance, OptDebug eliminates input records that
are either irrelevant or have no-additional influence on the
debugging process in Phase II. Table 2 reports the reduction
in the input size, which manifests into the low debugging
time.
For programs P1 and P3, the debugging time is higher

than the original time, 1.6× and 1.2×, respectively. For these
programs, DP has a limited input simplification effect, e.g., in
P1 in Table 2 where the simplified input size is still in millions
of records. In such cases, Phase II is slow, as taint analysis
is a computation- and memory-intensive process; tainting
must maintain a taint object which grows in size as the
corresponding data record propagates through downstream
dataflow operators. Across six subject programs, OptDebug
takes only 47% of the original job time on average.

Operation-level tainting vs. coverage collection then SBFL.

For Phase II, we implement operation-level taint analysis
instead of the typical SBFL process that collects the coverage
profile of each test case in isolation. Because the size of

P1 P2 P3 P4 P5 P6

500

1,000

20
8.
5

32
.2

37
.5

72
9.
2

21
.6

41
5.
9

37
2.
2

71
9.
9 92
4.
8

𝑆𝑢𝑏 𝑗𝑒𝑐𝑡 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑠

𝑇
𝑖𝑚

𝑒
(𝑠
)

OptDebug OptDebug without Data Provenance

Figure 10: Simplifying the input data using data prove-
nance can speed up debugging by 17× on average.

simplified input is still large, repetitive program execution
of a single test case at a time would require significant time.
Besides, coverage collection often works at the granularity
of statements (or lines); thus, it cannot distinguish multiple
operations on the same statement.
We compare OptDebug’s operation-level taint analysis

that requires only one execution with consolidated test in-
puts. For the baseline of coverage collection and then SBFL,
we assume multiple independent test executions with cov-
erage collection. By default, OptDebug reports code faults
with the level of a line number and a corresponding opera-
tion name, which is by construction more precise. However,
for a fair comparison, we downgrade OptDebug to report
only the line number without the operation’s name to com-
pare OptDebug against SBFL built on a typical line-level
coverage collection tool. We use IntelliJ Idea code coverage
plugin to capture the line coverage in Scala.

In Figure 9, Y-axis represents the running time in seconds:
OptDebug’s taint analysis vs. coverage collection followed
by SBFL. In both cases, we use the simplified input provided
by data provenance in Phase I. Across all subject programs,
OptDebug’s taint analysis is consistently faster than SBFL
on the simplified input, as the baseline SBFL requires mul-
tiple test executions (i.e., 𝑝 = 2 and 𝑓 = 2, leading to 4
independent runs). In contrast, OptDebug combines four
test inputs and invokes taint analysis as a single execution.
Overall, OptDebug’s taint analysis takes 27% less time than
SBFL to report results at the same line granularity.

With and without input simplification. To quantify the
impact of using data provenance for input simplification, we
compare the end-to-end running time (i.e., the original job
time plus the total debugging time). If data provenance is not
used in Phase I, Phase II must employ taint analysis on the
entire input data. As shown in Figure 10, for programs P1, P4,
and P6, OptDebug without data provenance takes in excess
of one hour, in comparison to approximately 4, 12, and 7
minutes respectively with data provenance enabled for input

OptDebug: Fault-Inducing Operation Isolation for Dataflow Applications SoCC ’21, November 1–4, 2021, Seattle, WA, USA

P1 P2 P3 P4 P5 P6
0

100

200

300

400

500

33
.8

12
.8

12
.1

11
6.
8

8.
8 55
.111
1.
8

13
.6

13
.8

53
7.
4

12

28
0.
2

𝑆𝑢𝑏 𝑗𝑒𝑐𝑡 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑠

𝑇
𝑖𝑚

𝑒𝑠
(𝑠
)

Original Job time Job Time with Titian [28]

Figure 11: Runtime overhead incurred by Data Prove-
nance, in comparison to the original job time

simplification. We set the timeout threshold on the cluster to
1 hour, after which the programs were manually terminated,
as tainting takes too long. For the rest, the overhead of not
using data provenance varies from 11× to 42×. The result
clearly indicates the benefits of solving the data debugging
problem first by eliminating irrelevant input records that do
not contribute to the selected passing and failing tests.

4.3 Runtime Overhead
The benefit of using data provenance (DP) comes at an up-
front cost of runtime overhead incurred on the original job
execution. The given application must be instrumented such
that the data lineage is captured at a job execution time. In
the current version ofOptDebug, we use Titian as the default
data provenance engine (other DP tools are equally applica-
ble). We compare the running times of a job with and without
DP enabled. Figure 11 shows the time comparison between
the two runs. Across six subject programs, Titian-enabled
run takes from 1.1× (10% slower) to 5.1× of the original job
execution. While Titian reports a 30% average overhead in
their VLDB Journal publication, the dense shuffle stages (i.e.,
the high number of unique keys with evenly distributed val-
ues) may lead to a large footprint of lineage tables and thus
high overhead. Programs P2, P3, and P5 show a much rea-
sonable overhead of up to 40%. To minimize this overhead,
OptDebug may switch to leveraging more recent, advanced
data tracking techniques such as Smoke [38], data influence
debugging [14, 43], and input simplification [20] in addition
to using Titian [27].

4.4 Discussion
Based on our evaluation, we discuss OptDebug’s limitations
and the future research directions to address them. We en-
vision OptDebug as a purely debugging tool that is not
intended to be enabled on production service. Based on the
usage, a user may choose to enable it after observing some

wrong output or keep it enabled during the program devel-
opment. As mentioned before, the runtime overhead of data
provenance may prohibit users from enabling OptDebug
at all times. We propose using more recent low overhead
data tracking tools [38] and other input simplification tech-
niques [20]. Our decision to use Titian is solely based on its
easy-to-use API and seamless integration with Apache Spark,
which OptDebug currently supports. OptDebug is designed
to be extensible, enabling seamless integration with any off-
the-shelf data tracking tools. For instance, BigSift [20] can
be used in Phase I to produce a minimal subset of records
that can replicate test failures by delta debugging.
Currently, OptDebug randomly selects 𝑓 failing outputs

and 𝑝 passing outputs. When using DP for input simplifi-
cation, different output records may lead to different sized
inputs, consequently influencing the debugging time of Opt-
Debug. In particular, inputs with data skews are likely to
result in unusually high debugging times for OptDebug,
since many records with the same key may not show the
benefit of DP-based size reduction. Another consequence of
this random selection could be that OptDebug may localize
an entirely different faulty operation, with possibly lesser or
higher confidence. This uncertainty exists in any debugging
method where the results of automated debugging depend
on the chosen execution outcomes under investigation. A
possible future work can help OptDebug identify how many
𝑝 and 𝑓 outputs to select and which ones to prioritize.

OptDebug’s fault localizability thrives in cases when an
application is complex and comprises multiple execution
paths. In such cases, OptDebug can identify fault-inducing
operation with very high confidence as it is more likely that
the provenance tags of a passing output have minimal over-
lap with the provenance tags of a failing output. On the
contrary, when an application lacks execution path diversity,
OptDebug struggles to isolate fault-inducing operations.
When data records flow through a similar set of operations
and produce overlapping provenance tags for both passing
and failing outcomes, every operation wold have nearly iden-
tical suspicious scores.

5 RELATEDWORK
Data Provenance. In database systems, data provenance
(DP) is the widely used approach for explaining query re-
sults and data tracing for debugging purposes. The goal of
DP is to find the input data records that contributed toward
the generation of another data record [11, 12, 18, 25]. More
recently, data provenance techniques have been adapted to
support data tracing on data-intensive computing systems.
For instance, RAMP [26] and Newt [32] support data prove-
nance on Hadoop-based DISC systems. Both systems enable
backward tracing and, therefore, can be used by OptDebug.

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Muhammad Ali Gulzar and Miryung Kim

However, the two DP techniques provide coarse-grained
provenance, as they rely on black-box instrumentation and
often produce over-approximated backward traces. Further-
more, they store lineage information in external storage,
adding additional runtime overhead and slow provenance
query speed. Interlandi et al. overcome these two limitations
in Titian by capture data lineages at the data transformation
level and by storing lineage tables in in-memory storage [27].
Instead of a traditional two-phase approach (instrumentation
followed by provenance query), Smoke uses the specification
of data transformation operators to build a data provenance
query, eliminating the need of proactively capturing data
lineages and thus reducing runtime overhead [38].

Data provenance aims to explain the source of a problem
in the data-space, i.e., isolating culprit faulty data records
as opposed to isolating the problem in code-space i.e., faulty
code lines. To our knowledge, OptDebug is the first to fully
automate code debugging, going beyond prior work that fo-
cused on data debugging only. SinceOptDebug leverages DP
to perform input reduction, any potential advancements in
DP will complement OptDebug, e.g., advancements includ-
ing but not limited to provenance storage [13], influence [14],
input simplification [20], and provenance queries [34].
Spectrum-based Fault Localization (SBFL). In software
engineering, a variety of techniques perform fault local-
ization in the code-space. The most prominent category
is spectrum-based fault localization (SBFL) [42]. SBFL at-
tributes code snippets that participate more often in failing
tests than in passing tests have a high chance of causing
test failures. More specifically, SBFL captures each individual
test’s line (or statement) coverage in isolation and contrasts
the collective coverage profile of passing and failing tests.
The research on SBFL proposes a wide range of ranking
methods, including Tarantula [29], Ochiai [9], Barniel [8],
and OP2 [35]. Pearson et al. conduct a comprehensive study
of which suspicious score methods work best for which type
of faults [37].
In the domain of DISC systems, SBFL has very little ap-

plicability. SBFL requires running several tests in isolation,
which is a reasonable assumption for desktop applications
but is prohibitively expensive for DISC applications with
long latency for context initialization, data partitioning, etc.
SBFL also relies on having an external coverage profiling
tool such JaCoCo [4]. Today’s coverage tools are designed for
single-machine execution only and are not compatible with
parallel, distributed execution. OptDebug realizes the idea
of SBFL by re-designing underlying support with a novel
operation-level taint analysis to overcome the limitation of
repetitive execution of each test in isolation.
Taint Analysis. Taint analysis is an active area of research
in security and privacy [33, 36]. In software engineering,

it has been commonly used for debugging and testing pur-
poses [15, 31]. For example, Penumbra [16] performs faulty-
input isolation using taint analysis. It instruments pro-
gram variables to attach a taint object, similar to OptDe-
bug, to capture the program’s data flow. FlowDebug is an
influence-based data provenance tool that uses taint analysis
to determine the influence-based input and output associa-
tions—finding the input that has the biggest impact on an
output [40]. Similar to data provenance, both approaches
perform debugging in the data-space only. Additionally, taint
analysis is a costly operation that puts intense pressure on
compute and memory needs. OptDebug makes the cost of
taint analysis manageable for large-scale DISC applications
by carrying out the input simplification step first.

In code-space debugging, program slicing isolates a set of
statements or variables used to reach a program variable
at a specific program point [10, 24, 41]. It comes in two fla-
vors: dynamic and static. In DISC systems, existing program
slicing techniques are likely to be ineffective, as program
slicing through the underlying runtime (e.g., Spark) will eas-
ily over-approximate the slice results. OptDebug overcomes
this limitation by staying in the application layer, tagging
provenance-tracking to an individual data record.
Debugging Big Data Analytics. Prior work in debugging
DISC systems includes interactive debuggers such as Am-
ber [30], BigDebug [21], Dagger [39], and TagSniff [17]. A
common goal among these interactive debuggers is to allow
a user to inspect the program states of a DISC application,
similar to step-through breakpoint and watchpoint debug-
ging in gdb. Such debuggers immensely improve the user’s
understanding of a DISC application execution. However,
unlike OptDebug, interactive debuggers leave it to the user
to manually inspect program states to find the root cause in
terms of faulty data or faulty code.

6 CONCLUSION
Prior work in DISC application debugging focuses on the
problem of data debugging only not code debugging. To auto-
matically determine the root cause in terms of code lines and
API operations, OptDebug proposes a novel operation-level
taint analysis to track the history of executed code lines and
APIs. It leverages the capability of data provenance for input
simplification first and extends taint analysis to a new dimen-
sion to tag the history of applied operations, as opposed to
the history of information flows (data). OptDebug is highly
accurate in detecting code faults (i.e., 100% recall and 86%
precision). OptDebug is fast, taking less than half of the
original job execution time. To our knowledge, OptDebug is
the first fully automated code debugging tool that adapts the
key idea of spectra-based fault localization to the domain of

OptDebug: Fault-Inducing Operation Isolation for Dataflow Applications SoCC ’21, November 1–4, 2021, Seattle, WA, USA

data-intensive computing applications in a fast, low overhead,
and highly accurate manner.

ACKNOWLEDGEMENT
We thank the anonymous reviewers for their comments and
Venkatesh Emani for his guidance as a shepherd. The partic-
ipants of this research are in part supported by NSF grants
CCF-2106420, CCF-2106404, CNS-2106838, CHS-1956322,
CCF-1764077, CCF-1723773, ONR grant N00014-18-1-2037,
and Intel CAPA grant.

REFERENCES
[1] 2021. Apache Spark. https://spark.apache.org/.
[2] 2021. Hadoop. http://hadoop.apache.org/.
[3] 2021. Intel HiBench. https://github.com/Intel-bigdata/HiBench.
[4] 2021. JaCoCo. https://jacoco.github.io/.
[5] 2021. Kaggle Datasets. https://www.kaggle.com.
[6] 2021. Pig Mix Benchmark. https://cwiki.apache.org/confluence/

display/pig/PigMix/.
[7] 2021. TPC. http://tpc.org/default5.asp/.
[8] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. 2009.

Spectrum-Based Multiple Fault Localization. In Proceedings of the

2009 IEEE/ACM International Conference on Automated Software En-

gineering (ASE ’09). IEEE Computer Society, USA, 88–99. https:
//doi.org/10.1109/ASE.2009.25

[9] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J. C. van Gemund.
2009. A Practical Evaluation of Spectrum-Based Fault Localization. J.
Syst. Softw. 82, 11 (Nov. 2009), 1780–1792. https://doi.org/10.1016/j.jss.
2009.06.035

[10] Hiralal Agrawal and Joseph R. Horgan. 1990. Dynamic Program Slicing.
In Proceedings of the ACM SIGPLAN 1990 Conference on Programming

Language Design and Implementation (White Plains, New York, USA)
(PLDI ’90). ACM, New York, NY, USA, 246–256. https://doi.org/10.
1145/93542.93576

[11] Manish Kumar Anand, Shawn Bowers, and Bertram Ludäscher. 2010.
Techniques for Efficiently Querying Scientific Workflow Provenance
Graphs. In Proceedings of the 13th International Conference on Extending
Database Technology (Lausanne, Switzerland) (EDBT ’10). ACM, New
York, NY, USA, 287–298. https://doi.org/10.1145/1739041.1739078

[12] Olivier Biton, Sarah Cohen-Boulakia, Susan B. Davidson, and
Carmem S. Hara. 2008. Querying and Managing Provenance Through
User Views in Scientific Workflows. In Proceedings of the 2008 IEEE

24th International Conference on Data Engineering (ICDE ’08). IEEE
Computer Society, Washington, DC, USA, 1072–1081. https://doi.org/
10.1109/ICDE.2008.4497516

[13] Adriane P. Chapman, H. V. Jagadish, and Prakash Ramanan. 2008.
Efficient Provenance Storage. In Proceedings of the 2008 ACM SIGMOD

International Conference on Management of Data (Vancouver, Canada)
(SIGMOD ’08). Association for Computing Machinery, New York, NY,
USA, 993–1006. https://doi.org/10.1145/1376616.1376715

[14] Zaheer Chothia, John Liagouris, Frank McSherry, and Timothy Roscoe.
2016. Explaining Outputs inModern Data Analytics. Proc. VLDB Endow.
9, 12 (Aug. 2016), 1137–1148. https://doi.org/10.14778/2994509.2994530

[15] James Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: A
Generic Dynamic Taint Analysis Framework. In Proceedings of the 2007

International Symposium on Software Testing and Analysis (London,
United Kingdom) (ISSTA ’07). ACM, New York, NY, USA, 196–206.
https://doi.org/10.1145/1273463.1273490

[16] James Clause and Alessandro Orso. 2009. Penumbra: Automatically
Identifying Failure-relevant Inputs Using Dynamic Tainting. In Pro-

ceedings of the Eighteenth International Symposium on Software Testing

and Analysis (Chicago, IL, USA) (ISSTA ’09). ACM, New York, NY, USA,
249–260. https://doi.org/10.1145/1572272.1572301

[17] Bertty Contreras-Rojas, Jorge-Arnulfo Quiané-Ruiz, Zoi Kaoudi, and
Saravanan Thirumuruganathan. 2019. TagSniff: Simplified Big Data
Debugging for Dataflow Jobs. In Proceedings of the ACM Symposium

on Cloud Computing (Santa Cruz, CA, USA) (SoCC ’19). Association
for Computing Machinery, New York, NY, USA, 453–464. https://doi.
org/10.1145/3357223.3362738

[18] Y. Cui and J. Widom. 2003. Lineage Tracing for General Data Ware-
house Transformations. The VLDB Journal 12, 1 (May 2003), 41–58.
https://doi.org/10.1007/s00778-002-0083-8

[19] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified
Data Processing on Large Clusters. Commun. ACM 51, 1 (Jan. 2008),
107–113. https://doi.org/10.1145/1327452.1327492

[20] Muhammad Ali Gulzar, Matteo Interlandi, Xueyuan Han, Mingda Li,
Tyson Condie, and Miryung Kim. 2017. Automated Debugging in Data-
Intensive Scalable Computing. In Proceedings of the 2017 Symposium

on Cloud Computing (Santa Clara, California) (SoCC ’17). Association
for Computing Machinery, New York, NY, USA, 520–534. https://doi.
org/10.1145/3127479.3131624

[21] Muhammad Ali Gulzar, Matteo Interlandi, Seunghyun Yoo, Sai Deep
Tetali, Tyson Condie, Todd Millstein, and Miryung Kim. 2016. BigDe-
bug: Debugging Primitives for Interactive Big Data Processing in Spark.
In Proceedings of the 38th International Conference on Software Engineer-
ing (Austin, Texas) (ICSE ’16). Association for Computing Machinery,
New York, NY, USA, 784–795. https://doi.org/10.1145/2884781.2884813

[22] Muhammad Ali Gulzar, Shaghayegh Mardani, Madanlal Musuvathi,
and Miryung Kim. 2019. White-Box Testing of Big Data Analytics
with Complex User-Defined Functions. In Proceedings of the 2019 27th

ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (Tallinn, Es-
tonia) (ESEC/FSE 2019). Association for Computing Machinery, New
York, NY, USA, 290–301. https://doi.org/10.1145/3338906.3338953

[23] Muhammad Ali Gulzar, Siman Wang, and Miryung Kim. 2018. BigSift:
Automated Debugging of Big Data Analytics in Data-Intensive Scal-
able Computing. In Proceedings of the 2018 26th ACM Joint Meeting

on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ES-
EC/FSE 2018). Association for Computing Machinery, New York, NY,
USA, 863–866. https://doi.org/10.1145/3236024.3264586

[24] Neelam Gupta, Haifeng He, Xiangyu Zhang, and Rajiv Gupta. 2005.
Locating Faulty Code Using Failure-inducing Chops. In Proceedings

of the 20th IEEE/ACM International Conference on Automated Software

Engineering (Long Beach, CA, USA) (ASE ’05). ACM, New York, NY,
USA, 263–272. https://doi.org/10.1145/1101908.1101948

[25] Thomas Heinis and Gustavo Alonso. 2008. Efficient Lineage Tracking
for Scientific Workflows. In Proceedings of the 2008 ACM SIGMOD

International Conference on Management of Data (Vancouver, Canada)
(SIGMOD ’08). ACM, New York, NY, USA, 1007–1018. https://doi.org/
10.1145/1376616.1376716

[26] Robert Ikeda, Hyunjung Park, and Jennifer Widom. 2011. Provenance
for generalized map and reduce workflows. In In Proc. Conference on

Innovative Data Systems Research (CIDR).
[27] Matteo Interlandi, Ari Ekmekji, Kshitij Shah, Muhammad Ali Gulzar,

Sai Deep Tetali, Miryung Kim, Todd Millstein, and Tyson Condie. 2018.
Adding Data Provenance Support to Apache Spark. The VLDB Journal

27, 5 (Oct. 2018), 595–615. https://doi.org/10.1007/s00778-017-0474-5
[28] Matteo Interlandi, Kshitij Shah, Sai Deep Tetali, Muhammad Ali Gulzar,

Seunghyun Yoo, Miryung Kim, ToddMillstein, and Tyson Condie. 2015.

https://spark.apache.org/
http://hadoop.apache.org/
https://github.com/Intel-bigdata/HiBench
https://jacoco.github.io/
https://www.kaggle.com
https://cwiki.apache.org/confluence/display/pig/PigMix/
https://cwiki.apache.org/confluence/display/pig/PigMix/
http://tpc.org/default5.asp/
https://doi.org/10.1109/ASE.2009.25
https://doi.org/10.1109/ASE.2009.25
https://doi.org/10.1016/j.jss.2009.06.035
https://doi.org/10.1016/j.jss.2009.06.035
https://doi.org/10.1145/93542.93576
https://doi.org/10.1145/93542.93576
https://doi.org/10.1145/1739041.1739078
https://doi.org/10.1109/ICDE.2008.4497516
https://doi.org/10.1109/ICDE.2008.4497516
https://doi.org/10.1145/1376616.1376715
https://doi.org/10.14778/2994509.2994530
https://doi.org/10.1145/1273463.1273490
https://doi.org/10.1145/1572272.1572301
https://doi.org/10.1145/3357223.3362738
https://doi.org/10.1145/3357223.3362738
https://doi.org/10.1007/s00778-002-0083-8
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/3127479.3131624
https://doi.org/10.1145/3127479.3131624
https://doi.org/10.1145/2884781.2884813
https://doi.org/10.1145/3338906.3338953
https://doi.org/10.1145/3236024.3264586
https://doi.org/10.1145/1101908.1101948
https://doi.org/10.1145/1376616.1376716
https://doi.org/10.1145/1376616.1376716
https://doi.org/10.1007/s00778-017-0474-5

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Muhammad Ali Gulzar and Miryung Kim

Titian: Data Provenance Support in Spark. Proc. VLDB Endow. 9, 3
(Nov. 2015), 216–227. https://doi.org/10.14778/2850583.2850595

[29] James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visu-
alization of Test Information to Assist Fault Localization. In Pro-

ceedings of the 24th International Conference on Software Engineer-

ing (Orlando, Florida) (ICSE ’02). ACM, New York, NY, USA, 467–477.
https://doi.org/10.1145/581339.581397

[30] Avinash Kumar, Zuozhi Wang, Shengquan Ni, and Chen Li. 2020. Am-
ber: A Debuggable Dataflow System Based on the Actor Model. Proc.
VLDB Endow. 13, 5 (Jan. 2020), 740–753. https://doi.org/10.14778/
3377369.3377381

[31] Timothy Robert Leek, Graham Z Baker, Ruben Edward Brown,
Michael A Zhivich, and RP Lippmann. 2007. Coverage maximization

using dynamic taint tracing. Technical Report. DTIC Document.
[32] Dionysios Logothetis, Soumyarupa De, and Kenneth Yocum. 2013.

Scalable lineage capture for debugging DISC analytics. In Proceedings

of the 4th annual Symposium on Cloud Computing. ACM, 17.
[33] W. Masri, A. Podgurski, and D. Leon. 2004. Detecting and debugging

insecure information flows. In 15th International Symposium on Soft-

ware Reliability Engineering. 198–209. https://doi.org/10.1109/ISSRE.
2004.17

[34] Tobias Müller, Benjamin Dietrich, and Torsten Grust. 2018. You
Say ’What’, i Hear ’where’ and ’Why’: (Mis-)Interpreting SQL to De-
rive Fine-Grained Provenance. Proc. VLDB Endow. 11, 11 (July 2018),
1536–1549. https://doi.org/10.14778/3236187.3236204

[35] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. 2011. A
Model for Spectra-Based Software Diagnosis. ACM Trans. Softw. Eng.

Methodol. 20, 3, Article 11 (Aug. 2011), 32 pages. https://doi.org/10.
1145/2000791.2000795

[36] James Newsome and Dawn Song. 2005. Dynamic taint analysis: Auto-
matic detection, analysis, and signature generation of exploit attacks
on commodity software. In In In Proceedings of the 12th Network and

Distributed Systems Security Symposium. Citeseer.
[37] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu,

Michael D. Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating
and Improving Fault Localization. In 2017 IEEE/ACM 39th International

Conference on Software Engineering (ICSE). 609–620. https://doi.org/
10.1109/ICSE.2017.62

[38] Fotis Psallidas and Eugene Wu. 2018. Smoke: Fine-Grained Lineage
at Interactive Speed. Proc. VLDB Endow. 11, 6 (Feb. 2018), 719–732.
https://doi.org/10.14778/3199517.3199522

[39] El Kindi Rezig, Lei Cao, Giovanni Simonini, Maxime Schoemans,
Samuel Madden, Nan Tang, Mourad Ouzzani, and Michael Stone-
braker. 2020. Dagger: A Data (not code) Debugger. In 10th Confer-

ence on Innovative Data Systems Research, CIDR 2020, Amsterdam, The

Netherlands, January 12-15, 2020, Online Proceedings. www.cidrdb.org.
http://cidrdb.org/cidr2020/papers/p35-rezig-cidr20.pdf

[40] Jason Teoh, Muhammad Ali Gulzar, and Miryung Kim. 2020. Influence-
Based Provenance for Dataflow Applications with Taint Propagation.
In Proceedings of the 11th ACM Symposium on Cloud Computing (Virtual
Event, USA) (SoCC ’20). Association for Computing Machinery, New
York, NY, USA, 372–386. https://doi.org/10.1145/3419111.3421292

[41] Mark Weiser. 1981. Program Slicing. In Proceedings of the 5th Inter-

national Conference on Software Engineering (San Diego, California,
USA) (ICSE ’81). IEEE Press, Piscataway, NJ, USA, 439–449. http:
//dl.acm.org/citation.cfm?id=800078.802557

[42] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa.
2016. A Survey on Software Fault Localization. IEEE Transactions on

Software Engineering 42, 8 (2016), 707–740. https://doi.org/10.1109/
TSE.2016.2521368

[43] Eugene Wu and Samuel Madden. 2013. Scorpion: Explaining Away
Outliers in Aggregate Queries. Proc. VLDB Endow. 6, 8 (June 2013),

553–564. https://doi.org/10.14778/2536354.2536356
[44] Qian Zhang, Jiyuan Wang, Muhammad Ali Gulzar, Rohan Padhye, and

Miryung Kim. 2020. BigFuzz: Efficient Fuzz Testing for Data Analytics
Using Framework Abstraction. In Proceedings of the 35th IEEE/ACM

International Conference on Automated Software Engineering (Virtual
Event, Australia) (ASE ’20). Association for Computing Machinery,
New York, NY, USA, 722–733. https://doi.org/10.1145/3324884.3416641

https://doi.org/10.14778/2850583.2850595
https://doi.org/10.1145/581339.581397
https://doi.org/10.14778/3377369.3377381
https://doi.org/10.14778/3377369.3377381
https://doi.org/10.1109/ISSRE.2004.17
https://doi.org/10.1109/ISSRE.2004.17
https://doi.org/10.14778/3236187.3236204
https://doi.org/10.1145/2000791.2000795
https://doi.org/10.1145/2000791.2000795
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.14778/3199517.3199522
http://cidrdb.org/cidr2020/papers/p35-rezig-cidr20.pdf
https://doi.org/10.1145/3419111.3421292
http://dl.acm.org/citation.cfm?id=800078.802557
http://dl.acm.org/citation.cfm?id=800078.802557
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.14778/2536354.2536356
https://doi.org/10.1145/3324884.3416641

	Abstract
	1 Introduction
	2 Motivating Example
	3 Approach
	3.1 Phase I: Simplifying Input via Data Provenance
	3.2 Phase II: Spectra Debugging via Operation-Level Taint Analysis
	3.3 OptDebug's API
	3.4 Implementation

	4 Evaluation
	4.1 Fault Localizability
	4.2 Debugging Time
	4.3 Runtime Overhead
	4.4 Discussion

	5 Related Work
	6 Conclusion
	References

