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Abstract—Tens of thousands engineers are contribut-
ing to Google’s codebase that spans billions of lines of
code. To ensure high code quality, tremendous amount
of effort has been made with new testing techniques and
frameworks. However, with increasingly complex data
structures and software systems, traditional test case
based testing strategies cannot scale well to achieve the
desired level of test adequacy. Differential (Diff) testing
is one of the new testing techniques adapted to fill this
gap. It uses the same input to run two versions of a
software system, namely base and test, where base is
the verified/tested version of the system while test is
the modified version. The output of two runs are then
thoroughly compared to find abnormalities that may
lead to possible bugs.
Over the past few years, differential testing has been

quickly adopted by hundreds of teams across all major
product areas at Google. Meanwhile, many new differ-
ential testing frameworks were developed to simplify
the creation, maintenance, and analysis of diff tests.
Curious by this emerging popularity, we conducted the
first empirical study on differential testing in practice
at large scale. In this study, we investigated common
practices and usage of diff tests. We further explore
the features of diff tests that users value the most
and the pain points of using diff tests. Through this
user study, we discovered that differential testing does
not replace fine-grained testing techniques such as unit
tests. Instead it supplements existing testing suites.
It helps users verify the impact on unmodified and
unfamiliar components in the absence of a test oracle.
In terms of limitations, diff tests often take long time to
run and appear to generate noisy and flaky outcomes.
Finally, we highlight problems (including smart data
differencing, sampling, and traceability) to guide future
research in differential testing.
Index Terms—Testing, empirical study, differential

testing

I. Introduction
High code quality standards demand rigorous testing

of large scale codebases which include enormous number
of test cases. As codebases evolve, test suites must also
evolve, sometimes, requiring hundreds of additional unit
and integration tests. Figure 1 illustrates the rapid growth
of the total number of tests at Google over one month.
Testing at this scale may lead to several critical problems.
First, intuitively constructing test cases to cover every
corner case is difficult. Second, defining test oracle manu-
ally requires the deep understanding of both business and
coding logic. Third, running large number of test cases can
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Fig. 1: Number of tests at Google over a month
be time consuming. Last, common testing practices lack
the capability to test a software system end-to-end .
Differential testing, also known as back-to-back testing

(or diff testing), is a testing technique that attempts to
overcome the challenges of generating test oracle and test-
ing real production pipelines [10]. It executes two versions
of a software system, base and test, on the same test input
and compares resulting outputs to identify unexpected
behaviors. In a diff test, test is a modified system that
needs to be tested whereas base is a verified version of
the system that guarantees to produce a correct output.
The comparison of intermediate and final outputs allows
users to intuitively see changes in system behavior due
to codebase changes. These output differences may also
reflect on any unwanted behavior due to code bugs in a
program. Diff testing often consumes large-scale test data
sampled from a production data. Due to large sample
size, it significantly increases the chances to exercise all
program paths. However, it is still challenging to perform
data comparison in order to isolate change impact and to
sample the data while achieving full code coverage.
Given these known trade-offs (also described else-

where [10]), diff testing is widely used in practice where it
supplements traditional testing methods (e.g., unit tests
and integration tests) with the primary goal of verifying
preserved behavior of a modified system. To our best
knowledge, differential testing has never been studied
as a pure testing technique and how it is leveraged in
practice. At Google, diff testing has already been adopted
by hundreds of teams with over 600 active diff testing
framework users.
In this paper, we present the findings of the first user

study on diff testing in practice (i.e., at Google). We
conducted this user study in three parts: (1) an online
survey completed by 117 software engineers spanning
across more than 100 teams, (2) additional one-on-one
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Fig. 2: Diff test workflow and framework
interviews with 5 experienced diff test users, and (3) log
analysis of 2104 diff tests from an organization-wide diff
testing framework. Through this investigation, we aim to
understand the common practices and configurations of
diff test and the benefits users acquire by using it. We
also seek to find circumstances where conventional testing
practices are ineffective and the features that make diff
tests useful. Most importantly, we plan to discover the
challenges and limitations of using diff tests. The survey
is further extended with few open-ended questions to
collect general perception, experience, and future needs
and improvements desired in diff testing. The research
study questions are summarized below:

• RQ1 Diff Test Practices. How do software devel-
opers practice diff testing? i.e., the input and output
data, structure and configurations of diff tests.

• RQ2 Usage and Popularity. What are the usage
patterns of diff tests? i.e., the frequency and the
breakdown of running time of diff tests?

• RQ3 Diff Test Incentive. What are the key benefits
and features of diff testing?

• RQ4 Desired Improvements. What are the major
challenges and limitations in using diff tests?

Based on our investigation we show that differential
testing is not perceived as an ultimate testing solution to
solve all testing needs. Instead, it supplements fine grained
tests (such as unit test) with an additional coarse-grained
verification. The responses obtained from interviews reflect
that diff tests are highly preferred for end-to-end testing
due to its low maintenance cost. It often consumes large
input dataset aiming for higher test coverage, simulates
a real production system, and does not require a test
oracle upfront. In some cases (such as web UI testing
or code migration testing), diff test is easy to construct
and it produces actionable outcome. Similarly, it has been
commonly used to detect the impact of a change on other
unmodified modules within the same system. Therefore, it
has been repeatedly referred as a sanity check.
In terms of limitation, many factors can introduce flak-

iness in diff test outcome. We observe that diffs heavily
rely on a smart differencer which is capable of isolating a
problem and filter noise. Test data sampling is challenging
and smart sampling techniques can benefit diff testing.
Our analysis of 2104 diff tests reveals that majority of
diff tests take long time to finish in which a large portion
of the time is spent on differencing the output of jobs.

Finally, our findings put emphasis on future research
towards developing better data differencing and sampling
techniques.
This paper presents the first study to the best of our

knowledge that empirically explores differential testing in
practice. The rest of this paper is organized as follows. The
following section provides some background knowledge of
the testing practices. Section III discusses the method-
ology of this user study. Section IV presents the results
of study followed by discussion in Section V. Section VI
presents related work and Section VII concludes the pa-
per.

II. Background
A. Differential Testing in Practice
Differential testing is a testing paradigm which also

inspired other testing techniques e.g., regression testing,
mutation testing and N-version testing [19]. It targets
complex software systems that are rapidly changing. The
fundamental goal of differential testing is similar to that
of regression testing, i.e., detecting the bugs introduced by
any of the recent modifications. While regression testing
requires modifications to test suites to accommodate any
new change in the codebase, diff testing verifies (1) the
behaviors that are intended to be unchanged remain un-
changed, and (2) all the differences in the output are either
expected or explainable. To verify this, diff test requires
comprehensive data comparison to find all differences in
the outputs coming from updated and original version of
a program. This is in contrast to updating the current test
case suites in unit testing or integration testing.
As shown in Figure 2, a typical diff test consists of

three steps. Firstly, a test input is either sampled from
data in production environment or generated synthetically
with the goal to achieve comprehensive test coverage. Most
diff tests create a temporary storage for the test data,
and perform some data pre-processing (e.g., transforming
the raw data into correct format, cleaning up unused and
noisy fields). Second, two versions of a software system
are selected. A base version is chosen with the assumption
that it is bug free, while the other is a test version which
is modified and, thus, needs testing. Both versions of the
system are executed with the same input data prepared
in the first step. This step is called testing phase. In
the last step, i.e., output diffing, intermediate and final
output from both test and base runs are collected and
compared. If the output is expected to be preserved, a
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Section Q # Survey Question Response Format Free-Text Option

1
(Diff Test

in General)

1 How many Diff tests does your team have? MCQs �
2 How does your team use Diff test? MCQs �
3 Do you find Diff tests useful? 1 to 10 Scale �
4 What are the interesting things you like about your Diff tests? MCQs �
5 What are the pain points of Diff tests? MCQs �
6 What are the useful features of end-to-end Diff testing framework of your choice? MCQs �
7 What are the new features you think would userful? MCQs �
8 Suggestions, recommendations or comment for Diff testing framework designer Free Text �

2
(Questions

about a
selected Diff

Test)

9 How is a particular Diff test structured? MCQs �
10 What is the base of this Diff test? MCQs �
11 What is the test of this Diff test? MCQs �
12 What is the running time of this Diff test? MCQs �
13 How large is the test input data? MCQs �
14 What is the sampling strategy (if any) used for Diff testing and where is the data stored? MCQs �
15 What is the output of the tests that are diff-ed? MCQs �

TABLE I: Online survey questions with their response format
passing test should not produce any difference between
the two outputs. In case when changes in behavior are
expected, the diff can be analyzed to verify if the changed
behavior is correctly reflected in the output difference.
B. Differential Testing Automation
Over the past few years, multiple diff testing frameworks

have been developed internally at Google. With the goal
of simplifying diff test creation and maintenance, these
frameworks require none or very limited amount of pro-
gramming. Instead users can automate the orchestration of
diff tests using a configuration file, which should describe
(1) a test data or a data generation program, (2) how to
run the test and base version of a program, and (3) cus-
tomized differencing rules (if needed). Diff test frameworks
will perform these user specified diff tests automatically
and output the difference (or delta). Figure 2 also demon-
strates a diff test framework in high level, which contains
the following components.

• Job scheduler and monitor. Job scheduler and
monitor are responsible for running the input gen-
eration jobs, base and test systems, and collecting the
output of each job pairs for later comparison.

• Differ. Differ is critical for any end to end diff testing
framework since the output of the two executions can
be large, and comparing them manually is error prone.
Many commercial or research [15] differencing tools
can be integrated within such testing frameworks to
highlight the differences.

• Storage. All test results, including the status and
output of all jobs in base and test systems, diffing
results such as counters and diff samples should be
stored in a persistent storage.

• User Interface Most diff test frameworks provide a
web-based user interface for users to monitor diff test
status and analyze diff test result. Aiming to provide
one-stop UI for user, some frameworks also integrate
their UI with other systems so users can report bugs
or trigger the following releases after examining the
diff test results.

III. Methodology
We structured our user study in three categories. An

online survey distributed among software engineers at

Google followed by one-on-one interviews with diff test
users. Lastly, we analyzed test logs collected through one
of the most popular end-to-end diff test frameworks at
Google.

A. Survey questions
We designed survey questions to investigate the weak-

nesses and strength of diff testing and discover new in-
sights about the perception of diff testing (and testing in
general) that can fuel future research on testing. The on-
line survey form comprised of 15 multiple choice questions
divided into two sections.
The first section of survey contained 8 questions to

understand the overall perception of diff testing. In the
second section, we asked participants to select the most
important diff test of their team and answer 7 additional
questions on the structure, final outcome, running time,
input data size, etc., of the selected diff test. A participant
could select multiple answers simultaneously and could
also enter additional response in a free-text format. Two
questions in the survey were free-text format only. We
limited the number of free-text only questions to two to
maintain higher response rate by avoiding time consuming
questions. One question asked the survey participants
to answer on a Likert scale. Table 1 presents the most
important survey questions. We categorize survey question
responses by manually looking at open text format answers
and visualize aggregated responses on different chart graph
to observe the trends.

B. Subject Interviews
Five interview were conducted with diff test users.

Among the subjects volunteered to take part in the in-
terviews, we randomly selected five. The interviews were
performed one on one and lasted for 20 to 25 minutes.
For the first five minutes we ask warm up questions
regarding a subject’s job title, team, tenure at Google,
and years of experience with diff tests. In the next 15
minutes, we inquired the reasons behind using diff tests
and the testing method it replaced. We also asked about
effectiveness of diff tests and if it is able to find bugs
that other techniques overlooked. In the last 5 minutes, we
encouraged participants to share their general thoughts on
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Fig. 3: Demographics of survey participants
diff test and the future improvements they would like to
see in diff tests.

C. Test Log Analysis
We performed statistical analysis on diff test logs that

contained telemetry data from an end-to-end diff testing
framework at Google. A log entry in this dataset comprised
of running configurations as well as runtime metrics (such
as runtime, execution order, job status etc.) of the exe-
cuted diff test. In total, we analyzed 282423 runs of 2104
diff test projects reaching millions of job runs. Each of such
job contains an execution order number and the type of
job (testing, diff or counter diff). Using this information,
the timeline of each job is re-constructed to ultimately find
statistics related to time spent on each type of job as well
as other common statistics.

D. Threats to Validity
Due to limited number of survey responses and one-

on-one interviews, the conclusions derived in this study
may not generalize to other settings. As stated before,
all participants of this study belong to one organization
where a specific culture and bias may hold regarding a
specific development style. Google hosts its codebase in
a huge monolithic repository [6] that requires extensive
pre-commit testing with strict resource and running time
requirements as well as data privacy control. Therefore,
a more defensive attitude towards testing is preferred to
eliminate the possibility of releasing buggy production
code. Hence, the results of this study may not generalize
to other organizations emphasizing less on testing.
Due to automatic orchestration of diff tests using frame-

works, the ease in diff test deployment can impact the
user’s perception of diff test. We tried to mitigate the
effects of such confounding variables by explicitly dis-
tinguishing the diff test from framework. However, such
biases may still pose threats to internal validity.
The online survey comprised of a few multiple choice

questions with predetermined answers based on informal
feedback from diff test users. While submitting their re-
sponses, study participants may be tempted to select one
of the available responses rather than writing their own
which may contaminate the study results. We attempted

to encourage participants to provide open-ended answers
in text.

IV. Survey and Analysis Results
In this section we present survey and analysis results,

which are further categorized to answer the four research
questions proposed in Section 1.

A. Demographics
Over a period of 30 days, we had received a total of

117 responses with approximately 19% response rate. The
survey responses were confidential but not anonymized. In
Q1 of the survey (Table I), users provided their teams and
usernames. Surprisingly, the 117 participants of the survey
represented 110 different engineer teams. We believe this
is due to the fact that most teams rely on a couple of
engineers to develop and maintain diff tests. Figure 3a
illustrates different roles/job titles of survey participants.
Software Engineers and Software Engineer, Tools and
Infrastructures are the top two job titles.
On average, the participants have been working at

Google for approximately 4.5 years. Figure 3b shows the
distribution of participants’ tenure at Google. Based on
the team names of participants, we derived the nature
of the teams’ product and their sub-organizations within
Google, which is shown in Figure 3c. The highest partici-
pation in the survey was seen by Google Ads organization
followed by Google Search Platform. The teams involved
in the survey develop a diverse range of products including
web services, mobile services, data analysis applications,
self-driving cars, and cloud services. We believe the survey
subject pool to be reasonably diverse with ample represen-
tation from each type of software system.

B. Practices of Diff Tests
As illustrated in Figure 2, a diff test can be performed

in three stages. To understand the common practices of
deploying two pipelines for a diff test, we asked in the
survey about the structure of diff tests (Q9 - Q15, as listed
in Table I).
Step 1: Test Data Generation. The primary criteria

of test data generation is to achieve high test coverage.
However this criteria is hard to measure, so most teams
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instead use a large amount of input records to achieve the
desired test coverage. Responses to Q13 reveal the size of
input dataset in terms of number of data records, which
ranges from 100 to more than 10 million. Figure 4d shows
the response distribution for Q13. Over two-thirds of the
participants mentioned that their test input contained
from 1000 data records to 1 million records. A small
fraction of teams (5 teams) use test data containing more
than 10 million data records, further interviews with the
these participants showed that their diff tests are used
for large scale data processing pipelines and even with
low sampling rate below 1%, the totally number of data
records can easily go over 10 million.
In Questions Q14 and Q15, we would like to find out

how input data was selected and where it was stored. 49
participants (43.4%) mentioned that they did not perform
any sampling and simply used the entire dataset. For
the participants that did sample the input data, majority
of them (49, 72%) used simple sampling strategies like
random sampling, range-based sampling, or first 1% data,
etc., as the selection strategy. The remaining 19 partici-
pants (28%) used various sampling tools developed inter-
nally to minimize the test input size. Interviews with the
participants showed that these sampling tools use value
bucket based sampling algorithms to select input records
covering all possible values in each field. The most widely
used input data format for diff tests is Protocol Buffers[4],
which is lingua franca for data at Google between dif-
ferent modules and software systems. The generated test
data were mostly stored in shared network storage i.e.,
SSTable [1], or in distributed data store i.e., BigTable [1],
or distributed database i.e., Spanner database [2].
Step 2: Test and Base System Execution. Once the test

input data is ready, the next step is to select and run the
base and test versions of a software system. Base acts as a
ground truth version whereas test is the version under test.
Survey questions Q10 and Q11 ask how the selected diff

test is staged, aiming to gather insight about a standard
way (if there is any) of selecting base and test systems.
Responses for these questions are visualized in Figure 4.
Starting with the base, the majority (70%) of teams use
versions that are known to be good; indicated either by
being used in production or marked as golden (Figure 4a).
Interestingly, around 21% of the participants mentioned
that they cache the output of previously known golden
version as base (similar to test oracle) and directly use
that as the output for diffing in next step. Using cached
data as a base version is practiced to avoid repetitive runs
of the same binary on the same data, which may cause
waste of resource and time.
For the test version (Q11 and Figure 4b), 60% of the

participants selected the binaries built with new code
changes (usually called Change List at Google, i.e., CL) as
test, these code changes can be either under review (pre-
submit diff test) or already submitted (post-submit diff
test). 36% of them pick “Canary” builds i.e., the builds
that passed all other tests and are ready to be released
to production environment. In some cases (7%), rather
than selecting a program binary, users selected a dataset
generated from external pipeline and compared it against
the output of base. Further interview with participants
showed that these outputs are usually selected directly
from another staging or testing environment, this is also an
optimization strategy to avoid redundant execution of the
same test binary. Both base and test systems may comprise
of multiple jobs, and each job produces its output that
should be collected and compared in the following steps.
Step 3: Output Differencing. The last step of a diff test

is to difference the outputs from base and test versions of
the software system. In Question 15, we inquire about the
format of outputs which will be compared later. 80% of the
participants mentioned Protocol Buffer format whereas
rest of the participants mentioned output dataset in the
format of csv, html, image, video, or plain text files.
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Fig. 5: Characteristics of diff tests in general.

6% of the participants mentioned that they also perform
differencing on Job Counters, which are basic statistics of
a certain monitoring variable, such as number of records
processed in each category, or intermediate performance
metrics, like cpu, ram usage, http response latency, etc.,
which are captured at runtime.

C. Usage and Popularity
The survey also included questions regarding the usage

of diff tests. Q1 of online survey inquires about the number
of diff tests each participant’s team has (as seen in Table I).
29 responses mentioned that their teams use more than 10
diff tests whereas 18 and 16 responses state the use of just
one and 6-10 diff tests respectively. Figure 4e illustrates
this result in a pie chart. Question Q2 investigates the
point in the development cycle when a diff test is invoked.
We provide 4 pre-defined answers based on the devel-
opment testing procedure at Google. Figure 5a presents
the distribution of different diff tests usage. Majority of
the participants ( 60%) responded that they either run
diff tests before the release, on-demand for debugging, or
before checking in new code. Around 20% responded that
they use diff tests in a Cron job fashion to perform regular
sanity checks at fixed intervals.
Question Q9 asks about the use case of diff tests to

investigate the most popular usage scenario of diff tests.
77% of the participants compare the output of two versions
of a program whereas 22% only compare the two datasets
in their diff test. Figure 4f shows the distribution of this
result. In question Q12 and Q13, we ask participants to
provide the running time of the chosen diff test to under-
stand the scale of the test. We observed an approximately
normal distribution of total running time of a diff test with
the mean time of 30 minutes to 1 hour as seen in Figure 5b.
Only 24 participants mentioned their diff tests take more
than 2 hours to finish.
We further analyzed the logs of 2104 diff tests running

through a company-wide diff testing framework to find the
quantitative evidence of usage patterns. Table 6 shows the
overall statistics of this analysis. Among 282,423 runs of
all diff tests 19601 (6.9%) runs failed to finish, 168901
(59.8%) runs finished with diffs in the output, and the
remaining 93921 (33.3%) runs finished without finding any
diffs. On average, each diff test contains approximately 9
jobs where 5 are diff jobs and 4 are non-diff jobs, including

Total diff test projects 2104
Total Diff test runs 282423
Failed test runs 19601
Finished test runs with diffs 93921
Finished test runs without diffs 168901
Average jobs in Diff test 9.85
Average non-diff jobs in Diff test 4.68
Average diff jobs in Diff test 5.17

Fig. 6: Diff test log statistics

data preparation jobs, jobs in base and test systems, etc.
In terms of running frequency, as shown in Figure 7a,
excluding 538 on-demand diff tests, majority (61%) diff
tests run just once or less in a day. Only 12% diff tests
run over 20 times a day. We also reconstruct the timelines
of these jobs and measured the breakdown of running
time of each diff test. Figure 7b presents the number
of diff tests (y-axis in log scale) with the corresponding
running time (x-axis). Majority of the output differencing
jobs take under 15 minutes, however, 4% of the diff tests
take between 2 hours and up to 146 hours. We observe
an exponential decrease in the number of diff tests as the
running time increases. Figure 7c shows the breakdown
of running times of diff test instances, note that since
many jobs are running in parallel, the combined running
time of all jobs always exceeds the actual diff test running
time. Short running diff tests that finish within 30 minutes
spent most time (63%) in differencing the outputs whereas,
for longest running diff tests, a large portion of time is
consumed by the execution of base and test systems.

D. Incentives to Adopt Diff Test
In addition to what traditional testing techniques has to

offer, we inquired the benefits attained by using diff test.
We also explored specific cases where diff tests perform
better than expected. For this purpose, we asked the
participants Q4 and Q3. In response to Q4, we received
several insightful responses through free-text format which
were categorized manually into different groups. 60% of
the participants responded that due to large test data
diff tests provide high code coverage. Around 53% of the
participants mentioned that real production pipeline in
diff testing appeals to them the most. 47% mentioned that
test output diffs are helpful in debugging a test failure. In
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Q3 (see Figure 8), 58% of the participants rated diff tests
8 and more in terms of usefulness where as 4 participants
rated diff tests 4 or less which provided us valuable insights
of when diff test fails to perform (see Section V).
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Fig. 8: Usefulness of Diff test on Likert scale where 10
means most useful.

E. Diff Tests Limitation and Future Improvements
Despite diff test’s popularity, we also aimed at finding

the limitations and challenges of using diff test and the
follow-up improvements to guide future research in test-
ing. For this purpose, we explicitly asked online survey
participants to list the pain points of using diff tests in
Q5. Figure 5c shows the results. 66 participants mentioned
that diff tests have slow performance (see Section IV-C)
and around 50 participants reported the flaky nature of
diff tests mainly due to external dependencies. A few re-
sponses reported that due to indecisive nature, the output
of the test is hard to understand. The online survey also
asked for any desirable features or improvements in diff
tests with the aim to highlight software testing challenges,
which will be discussed in details in next section.

V. Discussion
In this section, we compile insights by analyzing user

responses. Similar to section 4, we categorize the findings
under 4 research questions.

A. RQ1 - Diff Test Practices.
We analyze the structure of diff tests from the responses

of Q9, Q10, and Q11. Majority of diff tests (78%) are
constructed with running base and test systems and then
comparing the output. Unlike unit tests or integration
tests which often isolate the system under test (SUT) by
removing external dependencies using mocking services,
these diff tests try to be as identical to a real production
systems as possible. The base and test systems either

directly reuse the configuration of the production system
or just apply limited modifications. The remaining 22%
diff tests directly compare two sets of data. Interviews
reveal that these datasets are some kind of meta-data
used in production. The purpose of these diff tests is to
verify the consistency in data quality among changing data
sets. For example, some participants mentioned that their
teams generate a new set of aggregated machine learning
training data every week using multiple raw data sources
from past 60 days. Before pushing the new dataset out
for model training, they use diff tests to thoroughly verify
that the changes between new and old datasets are within
predefined thresholds. Again, the systems generating these
base and test datasets for diffing are still the real produc-
tion systems.
Moreover, we did not observe any cases where current

unit tests and integration tests are being replaced by diff
tests, instead diff tests supplement the existing unit or
functional tests. We believe the major reasons are: (1)
diff tests take more resources and longer time to run
and cannot be executed frequent enough for every code
change, (2) privacy control policies at Google forbid using
production data on uncommitted code changes, and (3)
existing unit and functional tests provide deterministic
results that can help engineers to quickly debug and
iterate.

B. RQ2 - Usage and Popularity

Among common usage of diff test, we observe that most
teams at Google use diff tests as the last line of defense
against bugs by testing a complete working pipeline. Diff
tests often match the behavior of a large scale integration
test to verify if final product is stable. We find that diff
tests users do not expect a diff test to provide decisive and
informative outcome. Instead, the test is aimed to perform
a sanity check before the modifications gets checked in or
released. Therefore, pre-built or released binaries are often
used as test system. Diff test also checks if new changes
or modifications have broken hundreds of other features
that should not be impacted. As one participant stated in
response to Q2:

�Response 1. "Diff test is the only sane way to make
sure I am not affecting any of the other 100+ features in
Search when I change my own."
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Among the responses of Q4 we find that many small
teams build interconnected components towards a larger
system. Since the developer of a component might not
be well versed in external team’s component, it can be
challenging to develop unit test cases. A diff test can be
designed to verify the preserved behavior of a system by
comparing the output of base and test.

�Response 2. "We have 6+ internal customer teams
that work independently, and they need to know that no one
has broken their features when changing a shared platform."
Half of the responses in Q2 mentioned the use of diff

test in "pre-check in" phase to verify that the recent
modifications do not adversely affect the features of other
modules. Similarly, a response to Q4 mentioned the use of
diff tests as a smoke test. In smoke test, only a few most
significant features of a program are tested.

�Response 3. "I use them as a very expensive smoke
test to verify a CDD [configuration] change."
In Q1 and Q8, we found that three quarters of the

participants’ teams have under 6 diff tests and about two-
thirds of the teams have diff tests that ingest under 1M
data records. We derive two insights from these statistics:
(1) diff tests are designed to test the most valuable features
instead of every feature of a system and (2) diff tests
performs a large scale last minute sanity check before
putting the system in production. From interviews, we
discovered that diff test input is usually carefully sampled
from production data by each team so that it covers the
important aspect of each feature and therefore, it evolved
over several years as the product grew.

C. RQ3 - Diff Test Incentive.
One of our aims from this study is to investigate the

uniqueness and incentives in using diff tests. From re-
sponses to Q3 and Q4, we believe that comprehensive test
coverage with low maintenance overhead and simulating
real production systems are the main reasons behind the
popularity of diff tests at Google. Around half of the
participants mentioned that the diff of output is helpful in
debugging. We believe that showing a delta in the outputs
helps users in bug traceability. One of the participants
mentioned that diff tests are really good at highlighting
the actual impact of a code change.

�Response 4: "It always captures completely unex-
pected things that you cannot think of. It had helped us
find hundred of bugs that other tests missed"
The unexpected outcomes of a test points to the fact
that it is challenging for users to imagine all the possible
outcomes of a program. Therefore, users find the changes
(diffs) extremely useful that are, otherwise, difficult to
intuitively construct. Participants mentioned that when
dealing with a large codebase or large scale software
development, generating assertions for unit or integration
testing is extremely challenging. Since diff tests do not
presume any knowledge of test oracle of the component
under test therefore, writing such tests becomes easy.

�Response 5. "We can’t write actual assertions because
the data is too broad and the "correct" solution is almost
impossible to find. diff tests are about our only option for
true coverage."
We believe that such cases are frequent. For instance,

one participant used diff test to compare the performance
of a modified program with that of a base version. Since
performance figures are nearly impossible to find statically,
assertions about the performance are difficult to construct.

�Response 6. "We like to use diff tests for accurate
performance testing."
We also discover that diff tests have been used in a variety
of settings where they are more effective than conventional
test technique.

�Response 7. "Screenshot diff tests are a much more
reliable way of identifying the results of your front end
changes than looking at various css diffs."
In this case, diff test appears to be a suitable technique to
test web UI. Such testing is hard to automate because of
dynamic content and, real time interactions and environ-
ment producing different outcomes. The outputs are web
pages in HTML and CSS with boilerplate code which adds
noise. Diff tests filters all the styling code and presents the
actual comparison of the content.

D. RQ4 - Desired Improvements
Slow performance with long running time to get test

results is the most voted pain point for diff tests (according
to the responses of Q5). There are three major reasons for
this: (1) diff test simulates real production systems and
exercises end-to-end pipelines, (2) large scale datasets are
used to achieve high test coverage, and (3) diffing jobs
usually take long time to finish.
The responses to Q13, presented in Figure 4d, show that

most input datasets for diff tests contain between 1000 to
1M data records. While this range does not appear to be
large, our interviews clarify that data records are often
encompassed in data structures with thousands of fields
including nested data structure and collections. Therefore,
even a few thousands data records can easily reach a
few GBs in size. On the other hand, all diffing jobs at
Google are implemented using batch-based Mapreduce
technology, and cannot emit partial diffing results while
running, therefore users have to wait for the diffing jobs
to finish to see the results.
The result of diff tests can be inconclusive and hard to

understand. Since there is no definitive fail and pass, users
may not receive any actionable insight from test outcome.
Manual comparison is a time consuming and error-prone
task while automatic comparison is hard to develop but
desirable.

�Response 8. "Diff tests assume that there is no change
and always require a human to evaluate results."

�Response 9. "It can be cumbersome to flag good vs.
bad diffs."
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�Response 10. "In general, it is difficult to achieve
clear pass/fail signal (but it largely depends on the project,
not the diffing solution)."

�Response 11. "Very hard to tune to get a clear signal.
We’ve devoted a lot of effort at getting a clear, actionable
signal and it requires a lot of domain knowledge."
Diff tests are often flaky in nature. Since the scope of

diff tests span the entire system rather a single component,
multiple factors can affect the test outcome and introduce
flakiness. According to an empirical study of the root cause
of flakiness, factors affecting the flakiness include network,
scheduling time, IO, randomness, unordered collections [9].
In our understanding such dependencies are common in
many products across the organization.

�Response 12. "Flaky diffs caused by non-determinism
in the product itself are hard to identify and fix."

�Response 13. "External data/backend dependencies
make it hard to be deterministic."
When the test version of a program introduces a modifi-
cation that impacts every output, the entire output will
be part of the diff. If one of such output is generated
by a bug, the overwhelming size of diff may overshadow
the diff pointing to the actual bug. This is referred to as
noise. Large size diffs lack precision making it easier for
the user to overlook the faults in the output diff. This
demands a high quality differ that can provide meaningful
and actionable diffs.

�Response 14. "False positives when new features are
added is among the major pain points."

�Response 15. "Non-determinism in a search stack
causes "noisy" diffs which are non-essential for the end-
users."

�Response 16. "There are no managed technology
to control expiration of diff ignores - everybody has to
implement their own."

�Response 17. "The results are too noisy and we
cannot detect a slow crawl or even a small step regression.
we have tried running with A(base) and B(test) both being
the same binary and our test results indicated a significant
regression..."
Last but not the least, like all other testing techniques,

diff tests also require the availability of input test data
and therefore, they inherently suffer from the challenge
of input data sampling and selection. Existing sampling
algorithms used within Google are either random sampling
or value bucket based sampling. They do not consider
the correlation between the different data fields or input
sources, thus cannot provide guaranteed test coverage. The
desired smart sampling algorithm should be able to select
or generate minimized input dataset to trigger the changed
behavior of a program and produce meaningful different
outputs. This is a challenging optimization problem, but
can significantly improve the determinism and efficiency
of the diff tests.

VI. Related Work

Differential testing was formally introduced by McKee-
man [10] as regression testing geared towards large soft-
ware systems. The work presents important aspects of diff
testing in the context of C compiler testing. McKeeman
also highlights the issue of oracle identification and testing
at scale and shows that diff testing has proven unpopular
among the developers working on already tested software.
Such findings are contrary to our observations in a large
organization setting and, therefore, motivated this user
study. Evans et. al. reinvented differential testing by auto-
matically repairing test cases for a modified system and
then contrasting the output of two systems [3]. Their
tool requires an automated characterization test generator
(ACTG) to generate two test cases for each version and
then compare the output. ACTG is a non-trivial problem
to automate and requires a deep understanding of program
semantics.
Differential Testing is also closely associated with regres-

sion testing. Regression tests exercise parts of a program
to expose bugs introduced due to recent changes. A major
challenge in regression testing is test selection which tries
to select test cases that are impacted by the modifications.
This problem motivated a large amount of research in test
selection [5], [14], [18]. They investigated different test
selection techniques using cost benefit analysis (testing
cost vs. fault detection). Alternative to test selection is
test generation which becomes more complicated as the
size and complexity of codebase grows [17]. On the other
hand random test generation techniques like Randoop [11]
do not guarantee high code coverage.
Diffut by Xie et al. performs diff testing on object

oriented programs by giving them same input and then
compares the output using an automated tree based dif-
fer [19]. However, this solution is only applicable to certain
domains such as OOP based output. DiffGen [16] tackles
this problem by modifying a program so that execution
of modified parts of the program can guarantee the detec-
tion of changed behavior. BERT [7] performs automated
regression testing in a three-step process similar to diff
testing. However, BERT analyzes changes in the program
and redesigns the test suite to expose bugs in the modified
program. The redesigned test suite tests both original and
modified version of the program to analyze the behavioral
differences including runtime metrics. BERT is an advance
tool for diff testing but suffer from flakiness. Chianti uses
differential testing to perform test selection [13]. It uses
output(diff) of a diff test to select tests whose behaviors
are impacted by the applied changes. Such techniques as-
sume that a test suite is available. However, unavailability
of a good amount of test cases mitigates the need for test
selection.
Flaky tests are ineffective because of inconsistent out-

come. Luo et al. empirically analyzed common root causes
of flaky tests [9]. According to their investigation, con-
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currency, test order dependency, resource leak, network,
time, I/O, floating point operations, un-ordered collection,
etc., are the common causes of flaky tests. Their study
also provides suggestions to eliminate flakiness in tests.
We believe users of diff test can benefit from the findings
of this study to remove flakiness and noise in their test
outcome.
In terms of surveys about software testing techniques

and practices, we struggled to find related work. Few re-
search works empirically evaluated the effectiveness of new
testing methodologies using a benchmark suite [5], [12].
Juristo et al. empirically studied a wide variety of tests
over 25 years [8]. They classified testing techniques into
families and study the maturity in each family. Regarding
regression testing, they did not find any lab study that
can provide the perception of the testing techniques.

VII. Conclusion
We present the first empirical study on the usage, bene-

fits, and limitations of differential testing in practice. Our
study includes user surveys, interviews, and log analysis.
We identified that diff tests suffers from the traditional
problem of test data selection and its effectiveness is
restricted by a high quality differ module. Diff test is
usually used as a sanity check for an entire system and
it simulates real production environment which increases
confidence in system’s quality.
To encourage future research in diff testing, we propose

a set of impactful research problems. We believe that
optimized data differencing techniques can improve the
efficiency and effectiveness of diff testing. Sampling is
still an open research problem which can help select test
data that can lead to high code coverage. We observe
that multiple testing techniques are used simultaneously
to improve software quality. A study on the most ef-
fective combination of testing techniques can really help
practitioners in choosing the best combination of testing
methodologies to achieve testing goals.
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