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Abstract—Fuzzing has become a popular technique for dis-
covering bugs and vulnerabilities. To increase the probability
of finding bugs, developers should apply fuzzers that maximize
program coverage. Program coverage typically measures the
percentage of program lines or branches a fuzzer executes.
However, these metrics fail to communicate the value of hitting
a particular line, branch, or path. Many bugs manifest only
within non-trivial control flows. To improve software quality,
fuzzing non-trivial program paths should be more important than
fuzzing trivial ones. This paper introduces rare-path coverage
(RP-Coverage), a novel program coverage metric that conveys
the value of discovering an unlikely control flow path. We have
developed a new technique for estimating the probability of
taking an execution path, which relies on probabilistic logic
programming to declaratively express the logic for constructing
and analyzing a probabilistic control flow graph. Our evaluation
indicates RP-Coverage’s promise as a metric for measuring
fuzzing efficacy. Specifically, we observe that defects along
rare paths—intuitively—substantially impact the effectiveness of
fuzzers. However, we argue that existing fuzzing metrics fall
short when conveying this significance. We also observe that
the value of uncovering an unlikely path is better reflected
by increases in RP-Coverage than existing metrics. Specifically,
the average coverage increases are up to 49.5%, 11.1%, and
15.4% for RP-Coverage, line coverage, and branch coverage,
respectively. This finding indicates that RP-Coverage is more
elastic, or sensitive, to path probabilities and thus capable of
more effectively quantifying a fuzzer’s ability to discover unlikely
program paths. As such, RP-Coverage demonstrates promise as
a program coverage metric that enhances fuzzer fitness measures
when supplementing standard criteria.

Index Terms—Analysis metrics, Program coverage, Static anal-
ysis, Fuzzing

I. INTRODUCTION

Two roads diverged in a wood, and I – I took the one
less traveled by, and that has made all the difference.

Robert Frost

Software defects, omnipresent in any non-trivial code base,
threaten the system’s safety and security. Software main-
tenance is concerned with improving software quality by
detecting and eliminating these defects before or after they are
discovered in a live environment [1]. However, effective defect
detection remains an open problem. While some defects are
triggered during typical program execution, others manifest

along an uncommon subset of the program’s semantics and
occur under atypical execution scenarios.

Consider the program depicted in Figure 1, which executes
an important function only if get_rand_letter returns
a lowercase or uppercase “z”. This program contains two
defects. Defect ➊ causes the program to crash if it is not
provided with a command line argument. This bug exemplifies
a common defect, likely to be captured in a test suite or
discovered through routine program use. Defect ➋ results
from an off-by-one error on line four. If get_rand_letter
returns a lowercase “z”, the important function does execute.
This bug exemplifies a rare defect. The unintended behav-
ior manifests only for one of the potential 52 values that
get_rand_letter can return, suggesting that this bug has
a 1/52, or less than 2%, probability of triggering.

1 i n t main( i n t argc, char *argv[]) {
2➊ char *arg = argv[1];
3 char c = get_rand_letter();
4 i f (97 <= c && c <= 121) {
5 c = make_uppercase(c);
6 }
7 i f (c == ’Z’) {
8➋ important_function();
9 }

10 ...
11 }

Fig. 1: Common and rare program defects

The coverage achieved by a fuzzer and its ability to find
bugs is strongly correlated [2]. To improve mutation-based
fuzzing, recent research efforts focus on increasing program
coverage by biasing fuzzers towards “rare” execution paths
[3], [4]. Nevertheless, existing coverage criteria may not be
able to fully convey the value these efforts contribute to
fuzzer performance. Consider Fuzzer A and Fuzzer B, which
cover 50% and 51% of a program’s branches, respectively.
Fuzzer B has demonstrated a 1% improvement over Fuzzer
A. However, suppose the additional branch Fuzzer B uncovers
is an unlikely branch containing a rare bug. We argue that
the slight increase in branch coverage does not convey the
significance of uncovering this additional branch.



1 char *CUR;
2 i n t important = 1;
3 i n t a = 1;
4 # d e f i n e CMP3(s, c1, c2, c3) \
5 ( ((unsigned char *) s)[0] == c1 && \
6 ((unsigned char *) s)[1] == c2 && \
7 ((unsigned char *) s)[2] == c3 )
8 i n t main ( i n t argc, char **argv) {
9 CUR = argv[1];

10 i f (CMP3(CUR, ’D’, ’O’, ’C’)) {
11 CUR = CUR + 3;
12 parse_cmt();
13 i f (parse_att()) {
14 important *= a; /* BUG */
15 ...
16 }
17 }
18 assert(important != 0);
19 re turn 0;
20 }
21 void parse_cmt() {
22 i f (*CUR == ’<’ || *CUR == ’>’) {
23 a = 0;
24 CUR++;
25 }
26 }
27 i n t parse_att() {
28 i f (CMP3(CUR, ’A’, ’T’, ’T’))
29 re turn 1;
30 re turn 0;
31 }

Fig. 2: Path-specific defect adapted from parser.c of libxml.
Only one path causes the assertion on line 18 to fail.

In this paper, we propose accentuating the value of explor-
ing a rare program path through a new coverage criterion:
rare-path coverage or RP-Coverage. Intended to supplement
existing coverage criteria, RP-Coverage quantifies a fuzzer’s
ability to explore unlikely program paths. RP-Coverage is a
weighted form of path coverage in which each control-flow
edge is weighed with the probability of that edge being taken,
and the weight of a particular path is the product of its edges’
weights. The paths with the lower probabilities are likely to
significantly influence fuzzer efficacy and are more valuable
to uncover.

To demonstrate the practical applicability of RP-Coverage,
we have implemented and evaluated Rare-Path Probability
Hound (RPP-HOUND), a tool for statically estimating program
path probabilities. As a way to streamline this potentially
cognitively taxing process, RPP-HOUND takes advantage of
probabilistic logic programming as a means to declaratively
encode the analysis rules. The rules’ expressive and compre-
hensible nature makes them readily amenable to fine-tuning,
auditing, and reuse. To evaluate RP-Coverage, we explore the
RP-Coverage attained by state-of-the-art fuzzers and assess
how RP-Coverage correlates with the fuzzer’s ability to ex-
plore unlikely paths.

Our key finding is that RP-Coverage is more sensitive to rare
paths than line or branch coverage. Specifically, we observe
that RP-Coverage better reflects the value of uncovering rare
paths with average increases up to 49.5%, 11.1%, and 15.4%

for RP, line, and branch coverage, respectively. Additionally,
we have shown the potential of RP-Coverage to identify
fuzzing scenarios in which interesting rare paths remain un-
explored. A fuzzer’s RP-Coverage is noticeably smaller in
these scenarios than line or branch coverage. The promise
of RP-Coverage to supplement existing fuzzer fitness criteria
is indicated by our experiments with state-of-the-art fuzzers,
whose performance mostly converged across our benchmarks.

This paper makes the following contributions:
• It introduces RP-Coverage, a new criterion for measuring

a program’s rare execution path coverage.
• It concretely applies RP-Coverage to implement RPP-

HOUND, a tool for estimating path probabilities; RPP-
HOUND’s design relies on probabilistic logic program-
ming to express program analysis rules.

• It presents the findings of our empirical evaluation that
applies RP-Coverage to state-of-the-art fuzzers to ascer-
tain the utility of this coverage criterion to express a
fuzzer’s efficacy.

The rest of this paper is organized as follows. Section II
presents a motivating example and describes the key elements
of our approach; Section III discusses the design and imple-
mentation of RPP-HOUND; Section IV presents our evaluation
results; Section V discusses the implication of our evaluation;
Section VI compares our approach with the related state of
the art; and Section VII presents concluding remarks.

II. MOTIVATION AND APPROACH

A key technical underpinning of RP-Coverage is a new
treatment of path coverage and its calculation. Recall that ex-
isting notions of path coverage involve calculating the ratio of
paths executed to total paths [5]. The traditional path coverage
criterion assumes that all paths have equal weight. However,
we observe that the probabilities of executing specific paths
can vary widely. Driven by this observation, our insight is
that path coverage should be calculated based on a weighted
control flow graph (CFG) and that probability is a natural
metric to represent the weights.

To motivate the need for a new type of coverage and
its applicability to real-world scenarios, consider the C code
snippet in Figure 2. This code snippet has been adapted
from libxml and was used as a motivating example in [4].
We further adjust the snippet to introduce a critical post-
condition invariant for the important global variable and
an intentional bug that violates that invariant. Specifically, on
line 14, the variable important is multiplied by variable a
and updated, an assertion is added on line 18, and variable a
is set to zero on line 23.

A violation of this invariant comprises a critical bug that
must be detected before the software is released. However,
modern fuzzers face challenges generating inputs that can
trigger deep but serious bugs like this one. Notice that only
three inputs would cause the control flow to pass through
line 14. Furthermore, the control flow must pass through lines
23 and 14 in strict sequence for the assertion on line 18 to
fail, triggering the bug. Consider the inputs “DOC>X” and
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Fig. 3: RPP-HOUND system overview and data-flow diagram

“DOCATT”. If a fuzzer generates both, the line coverage
would include lines 14 and 23, albeit without triggering the
bug. This scenario highlights a shortcoming of line and branch
coverage criteria in quantifying how effective a fuzzer is in
triggering this class of bugs. Path coverage would capture this
scenario, but it treats identifying this specific path with the
same value as any other.

We introduce RP-Coverage to express the influence of
discovering new paths on program coverage. To that end,
we assign each path a weight of 1

P , where P is the path’s
probability. Thus, RP-Coverage is defined as the ratio of the
total weights of covered paths to the total weights of all
possible paths.

Our approach to calculating RP-Coverage starts from stati-
cally estimating the probability of a program path. We build on
a technique presented in [4], which applies branch selectivity
as a heuristic for estimating branch probabilities [6]. However,
the approach implemented in RPP-HOUND simplifies the
problem space and offers a declarative programming model.
Specifically, the novelty of our technique lies in taking ad-
vantage of probabilistic logical programming as our analysis
engine. Logic programming has been shown as a highly effec-
tive mechanism for performing scalable program analysis [7],
[8]. Our technique uses probabilistic reasoning to concisely
express path program paths and calculate their probabilities.
Similarly to prior logic programming techniques for program
analysis, we model the analyzed program’s statements and
structure as relational facts, but we also assign probabilities
to the facts as appropriate. Then, we rely on the language
engine to infer the overall path probabilities.

III. IMPLEMENTATION

We reify our approach as RPP-HOUND, depicted in Fig-
ure 3. RPP-HOUND comprises three distinct phases: (1) it con-
verts a program into an intermediate analysis representation,
(2) it translates the program into a database of probabilistic
control-flow facts, and (3) it applies ProbLog rules to the facts
to estimate probabilities for program paths. We detail each
phase next.

A. Phase I: Generating Code Property Graph

A code property graph (CPG) represents a program by
merging its abstract syntax tree (AST), CFG, and program
dependency graph (PDG) [9]. The AST provides information
on the program’s source code; the CFG captures how the
statements in the AST are connected; and the PDG represents
the data dependencies within the statements. The power of
CPGs lies in providing the advantage of all three graphs in a
single convenient representation. While designed for concisely
describing software vulnerabilities as graph traversals, CPGs
provide a convenient intermediate representation for many
program analysis problems.

RPP-HOUND’s approach for calculating path probabilities
involves constructing the program’s probabilistic control flow
graph. A CPG is an appropriate intermediate representation
for approaching this task because it encodes control-flow
relationships in the CFG and branch predicates in the PDG
and AST. RPP-HOUND employs JOERN, an open-source CPG
framework, for executing this phase.

B. Phase II: Translating CPGs into Prolog Facts

RPP-HOUND’s second phase translates a given CPG into
logical facts representing the program’s probabilistic control
flow, or probabilistic control flow graph (Prob-CFG) [4]. As its
logic engine, RPP-HOUND uses ProbLog [10], a probabilistic
extension of Prolog. The structure of the relational facts of
ProbLog was amenable to concisely expressing Prob-CFGs.
A separate Prob-CFG is generated for each program method.
Following the commonly used terminology for specifying
CPGs, we will use the term method to refer to both meth-
ods in object-oriented languages and functions in imperative
languages. The logic required for generating a Prob-CFG
is implemented in approximately 500 lines of Scala code.
RPP-HOUND constructs a Prob-CFG for each method by
labeling outgoing edges from control structure nodes (e.g., if,
else, loops, etc.). The labels represent the probability that the
control flow will take the given edge.



Probabilities are calculated with branch selectivity, as de-
fined in Equation 1.

P (b) =
|Tb|
|Db|

, 0 ≤ P (b) ≤ 1. (1)

The branch condition domains are identified by querying the
control structure’s data dependencies in the PDG and AST
components of the CPG. The conditions and the domains of
the variables that comprise them are represented as satisfia-
bility modulo theory (SMT) constraints. The size of Db and
Tb are determined using the automata-based model counter
(ABC) SMT solver [11]. This definition of probability assumes
the variables in branch conditions are uniformly distributed.

Invoking an SMT solver is expensive. This approach is
vulnerable to a performance bottleneck for programs with
many branches or overly complex branch conditions. To
mitigate the impact of this bottleneck, we further simplify
the problem space. Instead of constructing SMT constraints
representing a variable’s actual domain—often as large as
232—we constrain the domains to 28. A statistical rule of
thumb is that an event may be considered rare if its probability
is less than 0.05 [12]. When implementing RPP-HOUND, we
observed that many branch conditions produced probabilities
less than 0.05 regardless of whether the domain size was 232

or 28. In some conditions, this simplification over or under-
approximates the branch’s probability. We plan to evaluate the
validity of this assumption more formally; however, we believe
the performance gained from constraining the SMT problems
outweighs the potential inaccuracies.

RPP-HOUND traverses the CPG for each method and
outputs a set of ProbLog facts representing the program’s
probabilistic control flow. The output of this phase is the
following control-flow relations:

• cfg_edge(X, Y): a direct control flow edge between
nodes X and Y.

• P::cfg_edge(X, Y): a direct control flow edge be-
tween nodes X and node Y with a probability P.

• branch(X, Y, TF): node X is a branch with an edge
to Y when the condition evaluates to TF (1 for true or 0
for false).

• loop(X): node X is the control structure for a loop.
• method(X, Name): node X is the entry point for a

method called Name.
• calls(Caller, Callee, Call): Caller calls

method Callee at node Call.
• returns(Meth, Ret): Meth returns at node Ret.

This phase outputs a set of facts representing an intra-
procedural Prob-CFG for each method. The declarative
ProbLog rules infer the set of inter-procedural edges and
context-sensitive paths, demonstrating another advantage of
using declarative probabilistic programming for this analysis.

To achieve the necessary level of scalability, RPP-HOUND
implements two optimizations that minimize the size of the
Prob-CFG database. First, adjacent nodes with single incoming
and outgoing control-flow edges are merged. Second, the anal-
ysis ignores any methods that are unreachable by user inputs.

(1) icfg_edge(X,Y) :-
cfg_edge(X,Y),
\+calls(_,_,X).

(2) icfg_edge(X,Y) :- calls(_,Y,X).
(3) icfg_edge(X,Y) :-

calls(_,M,Z),
returns(M,X),
cfg_edge(Z,Y).

Fig. 4: Inter-procedural Prob-CFG rules

We manually specify functions that accept user input (e.g.,
fread, scanf, getopt, etc.) and then identify methods
that are reachable by the return values of those functions.
Both of these optimizations reduce the graph size and ProbLog
memory overhead.

C. Phase III: Estimating Path Probabilities

RPP-HOUND’s third and final phase employs ProbLog
to identify context-sensitive inter-procedural program paths
and calculate their corresponding probabilities. Specifically,
RPP-HOUND uses PITA [13], a ProbLog library for SWI-
Prolog[14], a popular Prolog engine. We selected PITA be-
cause it fully supports the ProbLog syntax while simultane-
ously providing the mature functionality of SWI-Prolog.

Inter-procedural control edges are inferred from the intra-
procedural control flow facts extracted in the previous phase.
The rules in Figure 4 specify the relationship that infers an
inter-procedural control-flow edge between nodes X and Y.

Rule (1) represents intra-procedural edges. Any existing
CFG edges not originating from a call should be included in
the inter-procedural CFG. Rule (2) represents edges between
functions. There is an edge between nodes X and Y if X is
a call site and Y is the callee. Note that icfg_edge facts
are not inherently context-sensitive. Context sensitivity will
be introduced when constructing execution paths. Rule (3)
establishes a back-edge from a called function to its call site.
There is an edge between nodes X and Y if X is the return
site of a function that was called by the node immediately
preceding Y.

The rules in Figure 4 are integrated into additional rules
for traversing the graph and capturing the visited nodes.
Notice that using the existing icfg_edge(X, Y) rules to
create an icfg_path(X, Y) rule would fail to calculate
the probability of two nodes being connected by a particular
path. Instead, we used the rules that appear in Figure 5.
These rules provide an expressive and comprehensible analysis
specification for identifying particular execution paths.

Rules (1) and (2) indicate that the path has reached its
endpoint—or reached the depth limit—and must be returned in
the Path out variable. Rules (3-5) mirror the rules in Figure 4.
Rules (4) and (5) also demonstrate how the analysis handles
context sensitivity. The third term of get_path represents
the calling context history. The head of the list represents the
most recent call site. In rule (4), the analysis encounters a
new call; the call node is pre-pended to the calling context



% Rule (1) Reached the end of the path
get_path(X,X,[Ctx|_],Visited,Path) :-

reverse([(X,Ctx)|Visited],Path).

% Rule (2) Reached the depth limit
get_path(X,_,[Ctx|_],Visited,Path) :-

\+db(less_than_depth(Visited)),
reverse([(X,Ctx)|Visited],Path).

% Rule (3) Standard intra-procedural CFG edge
get_path(X,Z,[Ctx|Calls],Visited,Path) :-

db(less_than_depth(Visited)),
cfg_edge(X,Y),
\+call_edge(X,Y),
not(member((X,Ctx),T)),
get_path(Y,Z,[Ctx|Calls],[(X,Ctx)|Visited],

Path).

% Rule (4) Call edge; update the callsite context
get_path(X,Z,[Ctx|Calls],Visited,Path) :-

db(less_than_depth(Visited)),
calls(_,Y,X),
not(member((X,Ctx),Visited)),
get_path(Y,Z,[X,Ctx|Calls],[(X,Ctx)|T],Path).

% Rule (5) Call back-edge; update the callsite context
get_path(X,Z,[Ctx|Calls],Visited,Path) :-

db(less_than_depth(Visited)),
calls(_,Method,Ctx),
returns(Method,X),
cfg_edge(Ctx,Y),
not(member((X,C),Visited)),
get_path(Y,Z,Calls,[(X,Ctx)|Visited],Path).

% Rules (6) and (7) Loops are treated as single path
get_path(X,Z,[Ctx|Calls],Visited,Path) :-

db(less_than_depth(Visited)),
in_loop_cond(X,L),
loop(L),
branch(L,Y,1),
not(member((L,Ctx),Visited)),
get_path(Y,Z,[Ctx|Calls],[(L,Ctx)|Visited],Path).

get_path(X,Z,[Ctx|Calls],Visited,Path) :-
db(less_than_depth(Visited)),
in_loop_cond(X,L),
loop(L),
branch(L,Y,0),
member((L,Ctx),T),
get_path(Y,Z,[Ctx|Calls],[(L,Ctx)|Visited],Path).

Fig. 5: Inferring context-sensitive, inter-procedural program paths in ProbLog

list. In rule (5), the analysis encounters a method return and
subsequently pops the current context off of the head of the
list. As the analysis visits nodes, it is added to a visited list
with its calling context. Rules (6) and (7) are included to
prevent infinite loops. Our approach assumes that all loops
will terminate and treats them as a single path instead of a
branch. In Rule (6), if node X is a loop and that loop has not
been visited, the path will always follow the true edge. In Rule
(7), if node X is a loop that has already been visited, the next
node will follow the false edge.

Using the Prolog findall predicate, RPP-HOUND finds
all of the paths between the program’s main method entry and
exit nodes, capturing those paths with their probabilities. Each
path is saved to a file that details the nodes in the path, with
their associated source file and line number, and the path’s
aggregate probability. Similar to all path-based analyses, our
approach must adequately manage the issue of path explosion.
We limit the path depth to achieve a reasonable trade-off be-
tween resource consumption and obtaining meaningful results.
As in [4], we selected 60 as the depth limit.

Currently, calculating RP-Coverage is an offline process.
As a result, programs must be instrumented to output program
execution traces. After RPP-HOUND has calculated path prob-
abilities, we calculate RP-Coverage by ingesting the program
traces and using them to identify what paths were executed.
The probabilities of executed paths are used to calculate the
paths’ weights and overall RP-Coverage.

IV. EVALUATION

This work aims to answer the following research questions:

• RQ1: What is the utility of RP-Coverage as a metric for
measuring fuzzer performance?

• RQ2: How does RP-Coverage correlate with existing
coverage criteria for state-of-the-art fuzzers?

• RQ3: Does probabilistic logic programming offer viable
machinery for constructing effective and maintainable
rare-path analysis?

We evaluate the efficacy of RP-Coverage by applying it to
four benchmark programs. To capture the program’s execution
trace dynamically, we instrument each program. In particular,
we inject a function call at each point in the program that
involves a change in control flow (e.g., branches, loops, and
return statements). The injected function records the branch’s
line number and whether the control flow follows the branch’s
true or false edge. We calculate RP-Coverage by comparing
the program’s traces to its corresponding set of paths.

We introduce a post-condition invariant violation into our
benchmark programs to study how program coverage and rare
path execution correlate. We increment two global variables at
the beginning of each basic block influenced by user input. For
each pair of variables, we generate a mutation of the program
that decrements one of the global variables. When the program
has finished executing, we check whether the global variables
are equal. If not, the path of interest has been executed, and
we note that in the program trace. Each program mutation
represents a mechanism for testing a distinct program path.

Our evaluation uses four benchmark programs: a reg-
ular expression program (regex) from an example in the
KLEE project repository [15], a password checking program
(pwcheck) from an example in the Symbolic PathFinder
project [16], a program that checks if a string is a pangram
(pangram) from a programming tutorial website [17], and a
modified version of the program in Figure 2 (parser). Some
program constructs make it difficult to match an execution



(a) pangram

(b) pwcheck

(c) regex

(d) parser

Fig. 6: Evaluation results; Column One: RP, line, and branch coverage achieved by executing AFL++ for 200,000 iterations;
Column Two: Change in coverage when the fault is triggered in each benchmark mutation; Column Three: RP-Coverage
achieved by executing AFL++ and FAIRFUZZ for 200,000 iterations



TABLE I: Cumulative RP, line, and branch coverage achieved
when each fault is triggered

Fault # Rare-path Line Branch
pangram

1 8.0e-10 71.0 60.0
2 7.6e-4 87.0 80.0
3 4.8e-4 81.2 73.3
4 8.0e-10 71.0 60.0
5 8.0e-10 71.0 60.0
6 31.4 100.0 100.0
7 8.0e-10 71.0 60.0

pwcheck
1 3.0e-6 86.7 84.2
2 3.0e-6 74.7 63.2
3 3.0e-6 74.7 63.2
4 3.0e-6 74.7 63.2
5 3.0e-6 86.7 84.2
6 3.0e-6 74.7 63.2
7 3.0e-6 74.7 63.2
8 49.1 100.0 100.0
9 3.0e-6 74.7 63.2
10 49.1 100.0 100.0
11 3.0e-6 74.7 63.2

Fault # Rare-path Line Branch
regex

1 2.3e-08 63.4 52.9
2 0.0030 93.0 94.1
3 0.0015 93.0 94.1
4 2.3e-08 63.4 52.9
5 4.7e-08 81.7 64.7
6 3.6e-13 63.4 47.1
7 99.9 100.0 100.0
8 3.6e-13 63.4 47.1

parser
1 0.0015 86.1 84.6
2 0.0015 86.2 84.6
3 0.0030 100.0 100.0
4 0.0015 81.5 76.9
5 2.3e-08 78.5 76.9
6 0.0015 92.3 92.3
7 2.3e-08 78.5 76.9
8 9.1e-11 35.4 30.8

parser (path-based bug)
9 99.2 100.0 100.0

trace to its corresponding path, such as recursive function
calls within a loop. We manually modify our subject programs
to remove such troublesome constructs while preserving the
program’s original semantics as much as possible. In addition,
we manage the input size for some programs to improve
the likelihood that a fuzzer would maximize the number of
execution paths it can take.

For this evaluation, we estimate the probabilities of all
paths in the benchmark programs. These programs are small
enough to identify all paths exhaustively—assuming all loops
are treated as single iterations. In other words, we calculate
the RP-Coverage by accounting for all paths.

We fuzz each original (unmutated) benchmark program with
AFL++ [18] 200,000 times and each mutation 100,000 times.
We track the line, branch, and RP coverage the fuzzer achieves
over time for each program and mutation. The changes in
coverage over time for the unmutated programs appear in the
first column of Figure 6. Due to the nature of calculating RP-
Coverage, if the program covers a common path, RP-Coverage
increases only negligibly. As a result, at a given point, the
cumulative RP-Coverage can potentially be smaller than 1%.
The graphs in this column partition the results into two sub-
graphs to represent these minimal changes. The top sub-graph
presents the coverage percentages greater than 10% on a linear
scale, and the bottom sub-graph presents the percentages less
than 10% on a logarithmic scale.

Each program mutation can be interpreted as including a po-
tential program fault. The purpose of these faults is to represent
a particular program path. For each program fault, we identify
the final line, branch, and RP coverage and the increase in
coverage upon discovering the fault. Table I presents the final
coverage metrics for each fault in the benchmark programs.
The shaded rows in gray represent bugs that we consider
rare. We define a rare bug as occurring along a path with
a probability less than 1e-5. The changes in coverage at the

Fig. 7: Change in coverage when the path-based fault (fault
#9) in parser is triggered

Fig. 8: Sensitivity analysis of the impact of coverage changes
in response to variation in rarity thresholds

time of each fault appear in the second column of Figure 6. A
dedicated graph in Figure 7 depicts the changes in coverage
for the path-based fault in parser detailed in Section II, as
the only subject in which the fault depends on a specific
statement execution order. Note that the same bug exists across
all mutations of parser. The graph in Figure 7 presents results
for the same bug evaluated multiple times.

To compare the cumulative RP-Coverage achieved by
AFL++ and FAIRFUZZ, we fuzz each unmutated program
for 200,000 iterations using FAIRFUZZ [3], with the results
appearing in the third column of Figure 6.

To understand the correlation between path rarity and its
impact on coverage metrics, we conduct a sensitivity analysis
that calculates the average increases in line, branch, and RP
coverage for different rarity thresholds. We present the average
increases in coverage for thresholds ranging from 1% to 1e-
10% in Figure 8.

To evaluate the benefits of RPP-HOUND’s optimizations,
we measure the number of ProbLog facts generated for each
benchmark after enabling or disabling each optimization. Ta-
ble II showcases the total number of facts, methods analyzed,
control-flow edges, and method calls, as well as the average
reduction achieved by applying the optimizations.



TABLE II: Impact of RPP-HOUND optimizations on ProbLog
database size

Program and Opts Facts Methods Edges Calls
pangram-no-opts 247 11 148 24
pangram-no-reach 181 11 82 24
pangram-no-folding 168 2 115 1
pangram-optimized 98 2 45 1
pwcheck-no-opts 258 12 159 26
pwcheck-no-reach 184 12 85 26
pwcheck-no-folding 177 3 125 2
pwcheck-optimized 99 3 47 2
regex-no-opts 242 12 148 28
regex-no-reach 180 12 86 28
regex-no-folding 161 3 115 3
regex-optimized 94 3 48 3
parser-no-opts 208 14 134 20
parser-no-reach 148 14 74 20
parser-no-folding 134 5 99 4
parser-optimized 79 5 44 4
Average decrease 61.3% 74.0% 68.7% 89.3%

V. DISCUSSION

In this section, we discuss the results of our evaluation based
on the research questions articulated in the previous section.

A. Utility of RP-Coverage

To answer RQ1 and describe the utility of RP-Coverage, we
take inspiration from economics, in which the term elasticity
refers to how one variable responds to a change in another
variable [19]. For example, if an increase in price for a
commodity significantly lowers its demand, then demand is
considered elastic or inelastic otherwise. By analogy, our
evaluation confirms that RP-Coverage is indeed elastic to path
probabilities. Discovering a path with a lower probability re-
sults in a greater increase in RP-Coverage than discovering one
with a higher probability. In contrast, line and branch coverage
lack that kind of elasticity. In all benchmarks, we observe
a period during which a fuzzer achieves high levels of line
and branch coverage (greater than 80%) but simultaneously
achieves less than 1% RP-Coverage. This result confirms the
elasticity of RP-Coverage and the lack thereof existing criteria.

Rare mutations are marked for each benchmark as follows:
pangram: 2, 3, and 6; pwcheck: 8 and 10; regex: 2, 3, and
7; parser: 1, 3, 4, 6, and 9 (path-based). The corresponding
graph shows that we observe one of the following two trends
for most of these mutations. (1) RP-Coverage increases at a
larger rate than line or branch; (2) the changes in line and
branch coverage are relatively small compared to the less
rare mutations. The path-based fault in the parser benchmark
most strongly supports the second trend. When the fault is
discovered, the increases in line and branch coverage range
from 3-23%, yet the increase in RP-Coverage is over 99%.
This large increase stems from the fuzzer discovering the
specific fault-containing path. Inputs generated by the fuzzer
previously covered the individual lines and branches along that
path but were not in the strict order required to trigger the bug.
The probability associated with this specific path is very low
and thus greatly impacts the increase in coverage.

The results of the sensitivity analysis appearing in Figure 8
present further evidence of the elasticity of RP-Coverage. For
higher probability thresholds, the line and branch coverage
changes are high (30-40%), while RP-Coverage is low (less
than 10%). Based on this analysis, a threshold of 1e-5 is the
inflection point where the changes in all three coverage metrics
are similar. At thresholds less than 1e-7, RP-Coverage starts
growing much faster than line or branch. This dissimilarity
in the coverage criteria for different probability thresholds
indicates the usefulness of RP-Coverage in describing the
behavior of fuzzers not currently covered by existing criteria.
When combined with these existing criteria, RP-Coverage can
provide a more complete picture of a fuzzer’s effectiveness.

We observe that line and branch coverages adequately
measure a fuzzer’s ability to discover bugs on common paths.
However, discovering bugs that manifest along a rare path pro-
duces a smaller increase in these coverages than RP-Coverage.
We conclude that a large increase in RP-Coverage suggests
that the fuzzer is more adequately exploring the program’s
less likely—and potentially more interesting—paths.

B. RP-Coverage Performance and Applicability

Our evaluation suggests that RP-Coverage has the potential
to provide additional insights into the performance of fuzzers.
To answer RQ2, we aim to understand the ability of RP-
Coverage to reveal the peculiarities of fuzzer performance not
identified by existing metrics. In all benchmarks, we observe
that the achieved percentage of RP-Coverage is strictly less
than line or branch. While regex and parser achieve high
levels of RP-Coverage, pangram and pwcheck stagnate at
approximately 50%. Additionally, in our pwcheck benchmark,
we observe noticeable increases in RP-Coverage thousands of
iterations after seeing a similar increase in line or branch.

Furthermore, we observe similar RP-Coverage trends for
each benchmark when utilizing different fuzzers. The rate at
which the RP-Coverage is achieved varies slightly. However, in
all four benchmarks, the final level of RP-Coverage achieved
converges. This convergence suggests that RP-Coverage has
promise to be a consistent metric across multiple fuzzers.
Contrary to our intuition, FAIRFUZZ’s RP-Coverage increases
exhibited neither a faster rate nor a larger amount. Despite
FAIRFUZZ’s design to bias towards rare paths, our experiments
show no noticeable performance improvements. In contrast, its
coverage increases slower than AFL++ in three benchmarks.
One explanation is the peculiarity of FAIRFUZZ’s allocation
of computational cycles to mutate inputs selectively, as this
strategy would impact the number of iterations it can complete
per second. The observed divergences in RP-Coverage and
existing criteria suggest that the former can reveal additional
insights about fuzzer performance.

C. Rare Path Analysis with ProbLog

Although seemingly of only engineering significance, the
design and implementation of RPP-HOUND answers RQ3
by offering valuable insights for related efforts in creating
advanced program analysis infrastructures. While traditional



approaches for fuzzing rare paths require a serious effort to
understand and modify mature program analysis infrastruc-
tures, our experiences show that the same functionality can be
provided as declarative rules that mature probabilistic engines
can efficiently execute. Logic languages require a database
of facts, whose construction in RPP-HOUND is accomplished
via the power of functional programming techniques of Scala,
with the entire implementation comprising less than 500 LOC
of Scala and seven ProbLog rules.

A naive implementation of our approach would not achieve
the desired performance. We quantify the value of our op-
timizations in Table II. We observe that merging adjacent
nodes largely impacts the total number of facts and control
flow edges. Incorporating user input reachability similarly
impacts the total number of methods analyzed. We gain the
benefits of both optimizations by applying them in tandem.
Across our benchmarks, we observe that applying both opti-
mizations decreases the number of facts, methods, edges, and
calls by 61.3%, 74%, 68.7%, and 89.3%, respectively. These
results highlight the importance of properly optimizing even
the most declarative implementation to achieve the desired
performance. Based on these observations and our experiences,
we conclude that probabilistic logic programming provides a
promising mechanism for specifying and rare paths.

D. Limitations and Threats to Validity

As a proof-of-concept, RPP-HOUND and its implemen-
tation are subject to several limitations. First, the analysis
only explores paths to a depth of 60 nodes. This depth limit
may cause the analysis to overestimate path probabilities.
However, we selected the depth limit demonstrated as effective
by existing literature [4].

To estimate the probability of control-flow paths, we rely on
a heuristic applied successfully in prior rare path analyses [6],
[4]. Nevertheless, this heuristic, branch selectivity, assumes
the values assigned to variables are distributed uniformly.
Although this condition rarely holds in practice, the simplicity
of the heuristic allows for efficient implementation. Despite
the chance for misestimated probabilities, this limitation is an
artifact of our implementation, not the RP-Coverage concept.

Our evaluation is subject to both internal and external
validity threats, which we outline next. Our findings depend
on the correctness of RPP-HOUND’s probability calculations.
In lieu of established correctness benchmarks, we had to rely
on applying our testing discipline to check our implementation
logic and its performance in the field. To further mitigate this
threat, we manually check the calculated probabilities at the
branch level, relying on the maturity of ProbLog inferencing
to correctly calculate probabilities at the path level.

As is commonly the case, our selection of evaluation
subjects is subject to bias. To mitigate this bias, we limited our
selection exclusively to third-party programs, which we only
adapted to meet the specific objectives of our experiments.

Some facets of our evaluation depend on artificially injected
faults that are always introduced at the basic block level. Had
the faults been introduced elsewhere, our evaluation findings

might differ. However, following the basic block-level strategy
reduces the bias inherent in determining where to inject faults.

In determining whether a mutation path is rare, we apply the
probability threshold 1e-5. Although this particular threshold
may seem arbitrary, its selection relies on sensitivity analysis
presented in Figure 8.

Due to the number and size of our evaluation subjects,
our findings may not generalize to a real-world code base,
posing an external threat to validity. Only future work can
help determine how serious this threat is. However, we focus
on achieving manageable analysis workloads when selecting
our subjects.

E. Future Directions

In addition to answering the three research questions above,
our evaluation suggests that RP-Coverage can be a starting
point for several future lines of inquiry. In conveying program
coverage, combining coverage criteria generally proves more
successful than when taken in isolation [20]. An interesting
future research effort may integrate RP-Coverage into a fuzzer
to study RP-Coverage’s ability to guide fuzzing more effec-
tively. Further, RP-Coverage can provide value by supplement-
ing other domains that use program coverage metrics. For
example, evaluating the comprehensiveness of test suites or
generating automated test cases.

The analysis techniques presented herein are not specific
to any particular language. Our design leverages CPGs as an
intermediate representation and can potentially be applied to
other language environments or multilingual programs simply
by supplying small language-specific bindings.

ProbLog’s performance as an inference engine proves suf-
ficient for our subject applications. If scalability and per-
formance become an issue in subsequent efforts, one may
explore the applicability of probabilistic dialects of Datalog,
a logic language designed explicitly for efficiently handling
large volumes of data.

VI. RELATED WORK

RP-Coverage and RPP-HOUND are related to several areas
of the related state of the art. Next, we describe the most
closely related prior works.

Guided fuzzing and fuzzing coverage metrics: Several prior
efforts demonstrate the benefits of biasing fuzzers toward
rare program paths. FAIRFUZZ [3] dynamically updates a
path’s rarity based on the frequency of the fuzzer hitting each
branch. In contrast, [4] introduces a static heuristic based on
branch selectivity [6]. Our approach takes inspiration from
[4] but differs in its implementation strategy. In addition
to proposing a new coverage criterion, our system design
streamlines the analysis by offloading complicated calculations
to a probabilistic logic engine.

Additional works have studied methods for improving path
coverage. PathAFL [21] uses h-paths to assist fuzzers in
identifying interesting paths to explore further. CollAFL [22]
introduces a coverage-sensitive fuzzer and new seed selection
strategies that increase overall path coverage. Our work takes



a different focus by supplementing these techniques with an
additional metric to assess their performances.

Combining coverage criteria is stronger at detecting faults
than any individual criterion [20]. As a result, prior work
has explored introducing new coverage metrics to fill in the
gaps left by existing ones. DeepXplore [23] introduces neuron
coverage, which addresses the shortcomings of traditional
coverage metrics when analyzing deep learning systems. [24]
introduces program state coverage. Although analogous to
these prior works in proposing a new coverage criterion, the
uniqueness of our approach lies in its treatment of path weight.

Declarative program analysis: This work draws on the
extensive prior research that applies logic languages to various
problems in program analysis. Extensive literature demon-
strates the efficacy of using such languages for declaratively
specifying sophisticated analyses for their highly efficient
execution [25], [26]. Specific applications range from low-
level analyses, such as points-to analysis [7], [27], [8], to
higher-level problems, like identifying structural program de-
pendencies [28] or code property violations [29]. Numerous
frameworks use logic languages to specify analyses, including
DOOP [8], PETABLOX [30], and SOUFFLE [31]. Our approach
also benefits from the power of logic programming to express
complex program analysis logic concisely, but we differ in the
logic language we use. Given the increasing applicability of
probabilistic reasoning in various software engineering prob-
lems [32], our approach opens up promising opportunities for
expressing the solutions to these problems using probabilistic
logic languages.

VII. CONCLUSIONS

We have presented Rare-Path Coverage, or RP-Coverage
for short, a new program coverage metric that accounts for
the probabilities of control-flow paths. We have demonstrated
the potential of RP-Coverage as a viable means of evaluating
fuzzing efficacy and performance. Based on our findings, we
proposed RP-Coverage to supplement existing coverages to
provide developers with a more complete picture.

Our empirical evaluation demonstrates that RP-Coverage is
sensitive, or elastic, to path probabilities. As such, it indicates
a fuzzer’s ability to discover less likely but potentially more
interesting portions of the program. Based on our experiences
and evaluation, we anticipate that RP-Coverage can provide
meaningful insights for any software engineering domain that
uses program coverage as a performance metric.

We have concretely demonstrated how RP-Coverage can
be implemented using cutting-edge program analysis ap-
proaches. In particular, the novel aspect of our proof-of-
concept implementation—Rare-Path Probability Hound—is
applying probabilistic logic programming for expressing pro-
gram representation and analysis rules. Our experiences in-
dicate that probabilistic logic programming offers an elegant
approach to solving other software engineering problems.
RPP-HOUND’s source code is available at https://github.com/
SoftwareInnovationsLab/rpp-hound.
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