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Enhancing Content Blockers with Code-Aware JavaScript Blocking

Abdul Haddi Amjad

(ABSTRACT)

Advertising and tracking are widespread across various platforms, particularly on the inter-

net. To counter this, millions of users turn to privacy-enhancing technologies like content-

blockers. These tools use filter rules, which are string-based patterns that block or hide ads

and tracking mechanisms. Recently, trackers and advertisers have started mixing tracking

with functional resources to circumvent these content-blockers. Such mixing of resources

poses a dilemma for content-blockers: they either risk breaking essential website functions

or fail to block intrusive ads and tracking. This thesis explores this challenge and presents a

methodology and frameworks that utilize code-aware techniques, including localization and

refactoring strategies, to effectively address mixed resources. First, we assess the prevalence

of mixed resources on the web. For this, introduce TrackerSift, a tool that reveals the preva-

lence of these mixed resources and highlights the potential of targeting JavaScript code to

block them. Second, we identify the ideal granularity level for JavaScript code blocking to

effectively manage these mixed resources without disrupting legitimate functionality. Our

findings indicate that function-level granularity achieves this balance. Third, we present

NoT.JS, a detailed JavaScript blocking tool working at function-level granularity. NoT.JS

is a machine learning-based classifier designed to identify tracking functions using context-

aware features. It creates surrogate scripts by selectively removing tracking code while

preserving the functional code. Our work aims to enhance content-blockers, particularly in

managing mixed scripts effectively, eventually improving user privacy.



Enhancing Content Blockers with Code-Aware JavaScript Blocking

Abdul Haddi Amjad

(GENERAL AUDIENCE ABSTRACT)

In today’s digital world, advertising and tracking are prevalent on the internet. Millions

of people use content-blockers to protect their privacy. These tools help block unwanted

advertisements and trackers. However, advertisers and trackers are increasingly adopting

more sophisticated strategies. They mix tracking code with essential website code, making

it hard for content-blockers to work without breaking the website. This thesis addresses

this complex challenge. First, we find how often these mixed codes are found on the web

and developed a tool called TrackerSift. This tool helps us understand how widespread this

issue is and shows us that we can solve it by focusing on specific blocks in these mixed

codes. Second, we find that targeting specific, smaller sections of a website’s code, notably

its functions, is the optimal approach to block these hidden trackers without breaking the

website’s functionality. Lastly, we create NoT.JS, an advanced tool that can block these

trackers very precisely. NoT.JS is adept at analyzing what each part of a website’s code

is doing, creating a detailed map of it, and then using this information to block only the

tracking code, leaving the necessary website code unaffected. Our research is paving the

way for improved content-blockers that can effectively filter out unwanted tracking without

breaking website’s legitimate functionality, particularly in the case of websites that mix

codes.
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Chapter 1

Introduction

1.1 Background and Motivation

Advertising serves as the fundamental business model for online platforms, providing a cru-

cial avenue for companies to reach a wider audience. Leveraging their extensive user bases,

online services extensively use advertising to generate revenue. The effectiveness of these

advertisements relies on a deep understanding of the target audience, achieved through be-

havioral profiling using JavaScript(JS) APIs [90]. Such techniques enable user tracking,

extracting insights into demographics, locations, and behaviors for personalized advertis-

ing. This advertising and tracking ecosystem significantly impacts millions of consumers

globally [150], spanning various platforms including web, mobile, smart appliances, and aug-

mented/virtual reality devices. While users benefit from free services with intermittent ads,

concerns about transparency in data collection practices raise privacy issues. This scenario

underscores the challenge of balancing free services with the potential intrusions of privacy,

highlighting the complexities inherent in the advertising and tracking ecosystem.

To navigate complexities, websites can adopt an approach focusing on Strategic Initia-

tives and Privacy-Enhancing Technologies (PETs). Strategic Initiatives include transitioning

to subscription models (like those of Netflix and Hulu), compensating users for advertisement

views (as in Brave Rewards [47]), adhering to privacy regulations (CCPA [50] and GDPR

[58]), and following technical advertisement standards (such as IAB’s [60]). These initiatives

1



enhance transparency and improve user experience. Additionally, a complete line of research

[102, 136] rigorously audits the adherence to these initiatives, ensuring compliance and effec-

tive implementation. Concurrently, developing PETs, including content-blockers like uBlock

Origin [70], and exploring alternatives like Google’s Privacy Sandbox [59], shifts the focus

from advertisement revenue to prioritizing user privacy and experience. This integrated

approach aims to reduce costs while fostering a more privacy-conscious and user-friendly

advertising environment. In this thesis, we explore the potential enhancements and oppor-

tunities surrounding these PETs such as content-blockers.

Building on this, we investigate into the ongoing struggle between content-blockers and

key players seeking revenue through user tracking—an evolving arms race in the ecosystem.

Currently, content-blockers stand out as the most widely embraced privacy-enhancing tools,

with millions of installations globally [150]. These tools predominantly rely on manually

curated filter lists [21, 22] designed to intercept network requests to advertising and tracking

endpoints. These filter lists consist of string-based patterns capable of matching with HTTP

requests or HTML elements, effectively concealing and blocking advertising and tracking

elements. As of 2023, there are thousands of filter lists, supported by dozens of different tools,

serving a wide range of purposes [56]. However, trackers have been adopting increasingly

sophisticated techniques to circumvent content-blockers [83, 93, 120].

At a broad level, circumvention techniques can be categorized into two types. The

first involves frequently changing the network location (e.g., domain or URL) of advertising

and tracking resources. Content-blockers counter this issue by frequently updating filter

lists manually [123, 180]. Additionally, ongoing research is exploring solutions, including

the automation of filter-rule generation, to tackle this challenge more effectively [128, 178].

The second type of circumvention entails the mixing of tracking resources with functional

resources, serving both from the same network endpoint [99, 107]. This is further esca-



lated as trackers attempt to encrypt URLs, rendering filter-lists-based solutions unable to

differentiate between tracking and legitimate functionality [24, 196]. Content-blockers face

challenges in dealing with this type of circumvention. They are in a no-win situation—taking

action risks breaking legitimate functionality, while inaction risks allowing privacy-invasive

advertising and tracking to persist.

To effectively bridge the existing gap in this area, we have developed methodologies and

frameworks aimed at automatically identifying and blocking mixed scripts. First, we initiate

an investigation into the prevalence of mixed resources on the web. For this, we developed a

framework, TrackerSift, which systematically identifies mixed resources at various granular-

ities. Starting at the network level with domains and hostnames, it then moves to the code

level, addressing scripts and functions. TrackerSift’s classification across a significant number

of websites reveals a substantial presence of mixed resources, including domains, hostnames,

scripts, and functions. This finding emphasizes the need for fine-grained, JavaScript (JS)

code-level blocking to mitigate tracking in mixed scripts without breaking the legitimate

functionality.

Second, we determine the optimal granularity for addressing mixed resources, striking

a balance between mitigating tracking and minimizing functionality breakage. We adopted

a methodical approach, which begins with broadly blocking all JS on the web, then narrows

down to selectively blocking tracking and mixed JS, and ultimately zeroes in on tracking

functions within mixed JS. Our findings demonstrate that targeting mixed resources at the

JS function level achieves the best balance between mitigating tracking and maintaining

functionality.

Third, leveraging insights from our previous studies, we move towards fully automat-

ing function-level blocking by creating surrogate scripts for mixed resources. We introduce

another framework, Not.JS, designed to capture the dynamic execution context of JS func-



tions, enabling semantic analysis of their execution. It transforms dynamic execution context

into a detailed graph representation of JS execution behavior. Not.JS employs a supervised

machine learning classifier to identify tracking at the function-level granularity and auto-

matically generate surrogate scripts. Overall, our frameworks enhance the effectiveness of

content-blockers in the ongoing arms race with advertisers and trackers, particularly when

they attempt to circumvent these blockers by employing mixed resources.

1.2 Contributions

The contributions of the thesis are as follows:

1.2.1 Untangling Mixed Tracking and Functional Web Resources

In Chapter 3, we investigate the prevalence of mixed resources on the web. Recently trackers

and advertisers started circumventing content blockers by serving ads and functional content

from the same endpoints (e.g., domain or URL) [24, 99, 107, 196]. To tackle this issue, we

propose TrackerSift, a framework specifically designed to progressively classify and separate

mixed web resources at different granularities starting from network-level (e.g., domain and

hostname) to the JS code-level (e.g., script and method). TrackerSift is inspired by the

localization approach [81, 113, 133, 134, 169, 188] to untangle mixed resources beyond JS

code-level granularity. A key challenge in adapting localization techniques to the web track-

ing context is to find a rigorous suite of test cases (i.e., inputs labeled with their expected

outputs) [134]. We address this challenge by using filter lists [21, 22] to label tracking and

functional behaviors during a web page load. In our comprehensive study of 100K websites,

TrackerSift revealed that over 17% of domains, 48% of hostnames, 6% of scripts, and 9% of



methods integrate tracking with legitimate functions. Additionally, it effectively classifies

98% of resources into either tracking or functional categories, demonstrating its precision at

the function-level granularity. Our findings highlight the opportunities at the JS code level

to block these mixed resources in mitigating tracking without breaking legitimate function-

ality. This paper is published in IMC 2021 [86] and also featured in Adblock Summit 2021

[14].

1.2.2 Blocking JavaScript Without Breaking the Web

In Chapter 4, we investigate the effective JS code-level granularity in blocking these mixed

resources, essentially mitigates tracking without breaking legitimate functionality. We quan-

titatively and qualitatively evaluate the impact of different granularities of code-level block-

ing on 100K websites. We start with blanket JS blocking, then investigate selective blocking

of tracking scripts as well as mixed scripts. We further expand our investigation to the

effectiveness of function-level blocking. Our large-scale automated analysis of 100K websites

reaffirms that blanket JS blocking indeed eliminates tracking, but it also breaks website

functionality on approximately two-thirds of the tested websites. We then show that selec-

tive blocking of tracking scripts mitigate tracking without degrading website functionality,

but there remains a significant fraction of scripts that mix tracking and functional behavior.

Specifically, we find that 14.6% of the scripts exhibit both tracking and functional (i.e.,

mixed) behavior. We then adapt TrackerSift, to further localize tracking to the constituent

functions of these mixed scripts. We find that function-level blocking of tracking methods

significantly reduces website breakage while providing the same level of tracking prevention.

Our findings highlight that JS function-level blocking for these mixed resources achieves the

best balance in mitigating tracking without breaking legitimate functionality. This paper is

published in PETS 2023 [89] and also featured in Adblock Summit 2022 [26].



1.2.3 Blocking Tracking JavaScript at the Function Granularity

In Chapter 5, we investigate the ways to fully automate the functional-level blocking process

end-to-end, which is currently painstakingly hand-crafted by experts. Brave [95] and uBlock

Origin [70] have taken the initiative to develop surrogate scripts specifically for the most

prevalent mixed scripts, with the total reaching 27. Privacy engineers meticulously create

these scripts through manual refactoring of mixed scripts, with their primary goal being the

elimination of tracking code while maintaining the integrity of the code’s core semantics.

However, popular filter lists include thousands of exception rules, reported by users, to ad-

dress issues related to functionality breakage 1. NoT.JS leverages browser instrumentation

to capture dynamic execution context, including the call stack and the calling context of

each function call in the call stack for tracking and non-tracking activity While a JS func-

tion’s static representation remains unchanged, the execution context around it may alter its

semantics. First, dynamic execution context enables NoT.JS to semantically reason about a

JS function execution, which is essential in differentiating its participation in tracking and

non-tracking activity. Second, NoT.JS leverages this dynamic execution context to encode

fine-grained JS execution behavior in a rich graph representation that includes individual JS

functions within each script. Third, NoT.JS trains a supervised machine learning classifier

to detect tracking at the function-level granularity and automatically generate surrogate

scripts to specifically block the execution of tracking functions while not impacting the ex-

ecution of non-tracking functions. We evaluate the effectiveness, robustness, and usability

of NoT.JS on the top 10K websites from the top-million Tranco list. Our evaluation shows

that NoT.JS accurately detects tracking JS functions with 94% precision and 98% recall,

outperforming the state-of-the-art by up to 40%. NoT.JS’s contributions in incorporating

dynamic execution context account for 29% improvement in F1-score. Against a number of
1The filter list project tags git commit messages addressing breakage fixes with “P:” - see https://

github.com/easylist/easylist/commits.

https://github.com/easylist/easylist/commits.
https://github.com/easylist/easylist/commits.


JS obfuscation techniques, such as control flow flattening, dead code injection, functional-

ity map, and bundling, NoT.JS remains fairly robust – its F1-score decreases by only 4%.

NoT.JS’s automatically generated surrogate scripts block 84% of the tracking JS function

calls without causing any breakage on 92% of the websites. This paper is under submission

in CCS 2024, also featured in Adblock Summit 2023 [20] and presented at the Google Privacy

Sandbox team.

1.3 Future Roadmap

The future contributions of the thesis are as follows:

1.3.1 Chrome V8 Parser-Based Replacement for Tracking JavaScript

Functions

In this chapter, we plan to explore an alternative solution to block mixed resources with-

out disrupting legitimate functionality, while also addressing the key limitations of NoT.JS.

NoT.JS has three notable shortcomings. Firstly, its surrogate script generation is an offline

process, which is then used to create filter rules for replacing mixed scripts. This approach

is vulnerable to evasion strategies like rotating domains. Secondly, while NoT.JS effectively

generates surrogate scripts at scale, its deployment is challenging on devices with limited

storage, which cannot accommodate these scripts. Thirdly, NoT.JS is currently limited to

capturing the dynamic execution context of the main thread, excluding service workers op-

erating in separate contexts. To remedy these issues, our focus shifts to identifying and

replacing tracking functions at the V8 engine level, specifically at the AST (Abstract Syntax

Tree). This strategy aims to address all three of NoT.JS’s limitations. We have two main



contributions: developing features for tracking detection at the AST level and implementing

AST-level replacements to block calls to privacy-invading JavaScript APIs, thereby disrupt-

ing data collection at its source. This project is a collaborative effort with Brave [12], seeking

to enhance web browsing privacy by improving NoT.JS’s capabilities.

1.3.2 API Patching for Mixed Resources: Evaluating Viability and

Challenges

In this chapter, we plan to investigate potential challenges associated with API patching,

a common solution employed in current practices like scriptlets [71] and SuugarCoat [185].

We hypothesize that race conditions in API patching could pose significant issues. This

is because any third-party script or even a Chrome extension has the potential to override

these APIs, potentially leading to race conditions and subsequent disruption of intended

functionalities. The primary objective of this project is twofold. Firstly, we aim to identify

whether there are scripts or extensions that override privacy-invasive APIs and, if so, to

understand the underlying reasons, whether they are performance-related or have other,

possibly malicious, intentions. Secondly, we examine whether these race conditions could

interfere with the existing solutions for handling mixed resources, potentially complicating

their effectiveness. Ultimately, this research seeks to determine if there is a need to refine

our techniques in the future to either address or avoid such race conditions, ensuring that

current solutions continue to function effectively without unintended consequences.



Chapter 2

Review of Literature

2.1 Existing Countermeasures against Web Tracking.

Privacy enhancing content blockers, such as uBlock Origin [27] and Brave [95], primarily

rely on manually curated filter lists [21, 22, 23, 25, 95] to block tracking network requests at

the client side. These filter lists contain URL- or domain-based rules to determine whether

a network request should be allowed or blocked. Prior research shows that trackers are able

to evade filter lists by changing their network location, such as the URL or domain [4, 147,

159, 190]. These evasions necessitate manual updates to the filter lists to accommodate the

new network locations, leading to a perpetual arms race between the maintainers of filter

lists and trackers [1, 2, 3, 5, 124, 186, 195].

To mitigate this issue, recent approaches, such as AdGraph [127], WebGraph [177],

and PageGraph [181], use machine learning to automatically generate filter list rules, aiming

at the identification of tracking network requests. These approaches adopt a graph-based

representation of the webpage execution to classify network requests. Both WebGraph and

PageGraph enhance AdGraph by incorporating additional features into their graph repre-

sentation. For instance, WebGraph additionally captures storage accesses (e.g., cookie read-

/write), exhibiting superior performance against URL/domain-based evasion. While these

approaches detect and block tracking network requests, their instrumentation is limited to

the interactions between the initiator script and the tracking request, making it ineffective

9



in pinpointing the origin of tracking activity within mixed resources.

2.2 Script-level Blocking against Web tracking

Trackers/advertisers evade content blockers by utilizing a common network location to serve

both tracking and non-tracking resources. For instance, trackers have started using Content

Delivery Networks (CDNs) or engage in CNAME cloaking [109, 111, 112] to serve both

tracking and non-tracking requests from a common network location. Content blockers are

thus presented with a dilemma: either block the network request, potentially disrupting

legitimate website functionality, or permit the network request, consequently letting go of

tracking/advertising. To address this issue, a few content blockers such as uBlock Origin

have introduced support for “scriptlets”, which are custom JS snippets injected at runtime to

substitute the code that initiates tracking/advertising network requests [71]. This scriptlet

strategy is effective in countering tracking, even when originating from the same network

location as non-tracking resources, as it eliminates tracking at its origin — well before a

tracking network request is initiated. However, akin to filter lists, scriptlets are manually

curated, rendering them challenging to scale across the entire web. At present, Brave Browser

and uBlock Origin are capable of blocking a mere 27 scripts1, while popular filter lists

comprise over 6,000 exception rules designed to enable functionality-critical scripts [187].

Consequently, tens of thousands of privacy-invasive scripts remain unblocked.

Static or dynamic program analysis approaches have also been proposed to detect

tracking/advertising JS code. Ikram et al. [122] employed machine learning to analyze

syntactical and structural aspects of JS code, aiming to classify tracking scripts. However,

their static analysis approach remains vulnerable to basic JS obfuscation techniques. Chen

1https://github.com/gorhill/uBlock/tree/master/src/web_accessible_resources

https://github.com/gorhill/uBlock/tree/master/src/web_accessible_resources


et al. [100] devised event-loop-based signatures based on dynamic code execution to detect

tracking scripts. They found that some trackers bundle tracking and non-tracking code

within a single script, posing a similar challenge when tracking and non-tracking resources

are served from the same network location.

The increasing prevalence of mixed scripts, particularly those facilitated through bundling,

poses a fundamental challenge to privacy-enhancing content blocking [8]. According to the

Web Almanac, bundling is already a common practice on top-ranked websites; specifically,

17% of the top 1000 websites employ the Webpack JS bundler [19]. Furthermore, there has

been a 5× increase in the downloads of prominent bundlers such as Webpack over the past

five years 2. Amjad et al. showed that the prevalence of mixed scripts on top 100K websites

increased from 12.8% in 2021 [87] to 14.6% in 2022 [89].

2.3 Function-level Blocking against Web tracking

Prior research has proposed a function-level characterization of JS code. Smith et al. pro-

posed SugarCoat [184] to systematically generate substitutes for scripts involved in tracking

activities. SugarCoat relies on existing filter lists to identify tracking scripts for rewriting,

rendering it ineffective against false negatives present in these filter lists. SugarCoat makes

use of PageGraph [181] to pinpoint the code locations where scripts access the privacy-

sensitive data, such as document.cookie and localStorage. Subsequently, these code lo-

cations, which can include JS functions, are replaced by benign mock implementations that

are manually generated by developers. However, to date, only six mock implementations 3

are created for the designated APIs through developer assistance. This reliance on manual

effort from developers limits SugarCoat’s applicability to a large number of tracking scripts.
2https://npmtrends.com/webpack
3https://github.com/SugarCoatJS/sugarcoat/tree/master/mocks

https://npmtrends.com/webpack
https://github.com/SugarCoatJS/sugarcoat/tree/master/mocks


2.4 Code Localization

The problem of localizing tracking-inducing code shares similarities with prior research on

fault-inducing code localization. For example, spectra-based fault localization (SBFL) [81,

113, 133, 134, 169, 188] collect statement coverage profiles of each test, passing or failing, to

localize the lines of code that are most likely to induce a test failure. Bela et al. [191] and

Laghari et al. [141] presented a call frequency-based SBFL technique. Instead of coverage

information, they use the frequency of method occurrence in the call stack of failing test

cases. A method that appears more in the failing call stack of failing test cases is more

likely to be faulty. In NoT.JS, methods responsible for more frequently initiating tracking

requests than functional requests is classified as tracking. Abreu et al. [79] studied how

accurate these SBFL techniques are, and their accuracy is independent of the quality of

test design. Jiang et al. [132] used call stack to localize the null pointer exception, and

Gong et al. [119] generated call stack traces to successfully identify 65% of the root cause

of the crashing faults. One common limitation across most fault-localization approaches is

that they require an extensive test suite capable of exercising faulty behavior, along with an

instrumented runtime to collect statement-level coverage.



Chapter 3

Untangling Mixed Tracking and

Functional Web Resources

3.1 Introduction

Background & Motivation. Privacy-enhancing content blocking tools such as AdBlock

Plus [10], uBlock Origin [9], and Brave [12] are widely used to block online advertising and/or

tracking [118, 149, 155]. Trackers have engaged in the arms race with content blockers via

counter-blocking [160, 166] and circumvention [84, 143]. In the counter-blocking arms race,

trackers attempt to detect users of content blocking tools and give them an ultimatum to

disable content blocking. In the circumvention arms race, trackers attempt to evade filter

lists (e.g., EasyList [21], EasyPrivacy [22]) used to block ads and trackers, thus rendering

content blocking ineffective. While both arms races persist to date, trackers are increasingly

employing circumvention because counter-blocking efforts have not successfully persuaded

users to disable content blocking tools [103, 168, 174].

Limitations of Prior Work. Trackers have been using increasingly sophisticated tech-

niques to circumvent content blocking [84, 94, 143]. At a high level, circumvention techniques

can be classified into two categories. One type of circumvention is achieved by frequently

changing the network location (e.g., domain or URL) of advertising and tracking resources.

Content blocking tools attempt to address this type of circumvention by updating filter lists

13



promptly and more frequently [125, 182, 192]. The second type of circumvention is achieved

by mixing up tracking resources with functional resources, such as serving both from the

same network endpoint (e.g., first-party or Content Delivery Network (CDN)) [84, 101, 108].

Content blocking tools have struggled against this type of circumvention because they are in

a no-win situation: they risk breaking legitimate functionality as collateral damage if they

act and risk missing privacy-invasive advertising and tracking if they do not. While there

is anecdotal evidence, the prevalence and modus operandi of this type of circumvention has

not been studied in prior literature.

Measurement & Analysis. This paper aims to study the prevalence of mixed resources,

which combine tracking and functionality, on the web. We present TrackerSift to conduct

a large-scale measurement study of mixed resources at different granularities starting from

network-level (e.g., domain and hostname) to code-level (e.g., script and method). Track-

erSift’s hierarchical analysis sheds light on how tracking and functional web resources can

be progressively untangled at increasing levels of finer granularity. It uses a localization

approach to untangle mixed resources beyond the script-level granularity of state-of-the-art

content blocking tools. We show how to classify methods in mixed scripts, which com-

bine tracking and functionality, to localize the code responsible for tracking behavior. A

key challenge in adapting software fault localization approaches to our problem is to find

a rigorous suite of test cases (i.e., inputs labeled with their expected outputs) [134]. We

address this challenge by using filter lists [21, 22] to label tracking and functional behaviors

during a web page load. By pinpointing the genesis of a tracking behavior even when it

is mixed with functional behavior (e.g., method in a bundled script), TrackerSift paves the

way towards finer-grained content blocking that is more resilient against circumvention than

state-of-the-art content blocking tools.

Results. Using TrackerSift, our measurements of 100K websites show that 17% of the



69.3K observed domains are classified as mixed. The requests belonging to mixed domains

are served from a total of 26.0K hostnames. TrackerSift classifies 48% of these hostnames

as mixed. The requests belonging to mixed hostnames are served from a total of 350.1K

(initiator) scripts. TrackerSift classifies 6% of these scripts as mixed. The requests belonging

to mixed scripts are initiated from a total of 64.0K script functions. TrackerSift classifies

9% of these script functions as mixed. Our analysis shows that the web resources classified

as mixed by TrackerSift are typically served from CDNs or as inlined and bundled scripts,

and that blocking them indeed results in breakage of legitimate functionality. While mixed

web resources are prevalent across all granularities, TrackerSift is able to attribute 98% of

the script-initiated network requests to either tracking or functional resources at the finest

function-level granularity.

Our key contributions include (1) large-scale measurement and analysis of the

prevalence of mixed web resources; and (2) a hierarchical localization approach to un-

tangle mixed web resources.

3.2 TrackerSift Methodology

In this section, we describe the design of TrackerSift to untangle mixed web resources.

TrackerSift conducts a hierarchical analysis of web resources to progressively localize track-

ing resources at increasingly finer granularities if they cannot be separated as functional

or tracking at a given granularity. TrackerSift needs a test oracle capable of identifying

whether a web page’s behavior (e.g., network requests) is tracking or functional. TrackerSift

relies on filter lists, EasyList [21] and EasyPrivacy [22], to distinguish between tracking and

functional behavior.

As also illustrated in Figure 3.1, we next describe TrackerSift’s hierarchical analysis at



increasingly finer granularities of domain, hostname, script, and method.

3.2.1 Domain Classification

Domain

Hostname

Script

Method

ads.com example.com news.com

ad.example.com cdn.example.com maps.example.com

cdn.example.com/ads-1
Initiated by clone.js@m1()

cdn.example.com/ads-2
cdn.example.com/nonads-2
Initiated by clone.js@m2()

cdn.example.com/nonads-1
Initiated by clone.js@m3()

cdn.example.com/ads
Initiated by sdk.js

cdn.example.com/logo.png
Initiated by stack.js

cdn.example.com/ads-1
cdn.example.com/nonads-1  
Initiated by clone.js

Figure 3.1: This toy example (not based on real
data) illustrates how TrackerSift progressively
classifies tracking (red) and functional (green) re-
sources. For mixed resources (yellow), it proceeds
to a finer granularity for further classification.

As webpage loads, multiple network requests

are typically initiated by scripts on the page

to gather content from various network loca-

tions addressed by their URLs. We capture

such script-initiated requests’ URLs and ap-

ply filter lists to label them as tracking or

functional. We then extract the domain

names from request URLs and pass the la-

bel from URLs to domain names. For each

domain, we maintain a tracking count and

functional count. All the domains that are classified as tracking or functional are set aside

at this level. The rest representing mixed domains serving both tracking and functional

requests are further examined at a finer granularity. For instance, in Figure 3.1, the domain

ads.com and news.com serve solely tracking and solely functional content, respectively. The

domain example.com serves both and thus needs analysis at a finer granularity.

3.2.2 Hostname Classification

At the domain level, we find the requests served by mixed domains and extract their host-

names. We increment the tracking and functional count for each hostname within mixed

domains based on the corresponding request’s label. The hostnames serving both tracking

and functional requests are further analyzed at a finer granularity, while the rest are clas-



sified as either tracking or functional. In Figure 3.1, example.com was previously classified

as mixed and therefore, all hostnames belonging to example.com need to be examined. We

classify ad.example.com and maps.example.com as tracking and functional, respectively.

In contrast, cdn.example.com is mixed and thus needs analysis at a finer granularity.

3.2.3 Script Classification

We locate the script initiating the request to a mixed hostname and label it as either func-

tional or tracking, reflecting the type of request they initiate.

Browser

resource

extension

requestWillBeSent
responseReceived

HTTP 
request

Database

Crawling

HTTP 
response

Events: EasyList
EasyPrivacy

requests

type: script

Script-initiated
labeled

requests

Labeled
requests

example.com

Labeling

Figure 3.2: TrackerSift’s web crawling and label-
ing

Like other levels, we measure the count of

tracking and functional requests launched

from each script and redistribute those

into functional, tracking, and mixed scripts,

where mixed scripts will be further ana-

lyzed at a finer granularity. In Figure 3.1,

sdk.js, clone.js, and stack.js all initiate

requests to the mixed hostname cdn.example.com. We classify sdk.js and stack.js as

tracking and functional, respectively. Since clone.js requests both tracking and functional

resources, it needs analysis at a finer granularity.

3.2.4 Function Classification

We analyze the corresponding requests for each mixed script and locate the initiator JavaScript

methods of each request. We then measure the number of tracking and functional requests

initiated by each of the isolated methods. In the final step, we classify the methods into

functional, tracking, and mixed. In Figure 3.1, for the mixed script clone.js, we classify

m1() as tracking and m3() as functional. Since m2() requests both tracking and functional



Table 3.1: Classification of requests at different granularities

Granularity Tracking Functional Mixed Separation Cumulative
(Count) (Count) (Count) Factor Separation

(%) Factor (%)

Domain 755,784 566,810 1,129,109 54% 54%
Hostname 161,604 106,542 860,963 24% 65%
Script 235,157 490,295 135,511 84% 94%
Method 23,819 74,223 37,469 72% 98%

resources, it is classified as mixed.

3.3 Data

In this section, we describe TrackerSift’s browser instrumentation that crawls websites and

labels the collected data. Note that TrackerSift’s hierarchical analysis is post hoc and offline.

Thus, it does not incur any significant overhead during page load other than the browser

instrumentation and bookkeeping for labeling.

Crawling. We used Selenium [67] with Chrome 79.0.3945.79 to automatically crawl the

landing pages of 100K websites that are randomly sampled from the Tranco top-million

list [171] in April 2021. Our crawling infrastructure, based on a campus network in North

America, comprised of a 13-node cluster with 112 cores at 3.10GHz, 52TB storage, and

832GB memory. Each node uses a Docker container to crawl a subset of 100K webpages.

The average page load time (until onLoad event is fired) for a web page was about 10 seconds.

Our crawler waits an additional 10 seconds before moving on to the next website. Note that

the crawling is stateless, i.e., we clear all cookies and other local browser states between

consecutive crawls.

As shown in Figure 3.2, our crawler was implemented as a purpose-built Chrome ex-

tension that used DevTools [13] API to collect the data during crawling. Specifically, it



Table 3.2: Classification of resources at different granularities

Granularity Tracking Functional Mixed Separation
(Count) (Count) (Count) Factor

(%)

Domain 6,493 50,938 11,861 83%
Hostname 4,429 9,248 12,383 52%
Script 194,156 134,726 21,168 94%
Method 17,940 40,500 5,579 91%

relies on two network events: requestWillBeSent and responseReceived for capturing

relevant information for script-initiated network requests during the page load. The former

event provides detailed information for each HTTP request such as a unique identifier for

the request (request_id), the web page’s URL (top_level_url), the URL of the document

this request is loaded for (frame_url), requested resource type (resource_type), request

header, request timestamp, and a call_stack object containing the initiator information

and the stack trace for script-initiated HTTP requests. The latter event provides detailed

information for each HTTP response, such as response headers and response body containing

the payload.

Labeling. We gather authoritative source labels by applying filter lists to the crawled

websites. Filter lists are not perfect (e.g., they are slow to update [182] and are prone to

mistakes [84]) but they are the best available source of labels. We use two widely used filter

lists that target advertising (EasyList [21]) and tracking (EasyPrivacy [22]). These filter

lists mainly build of regular expressions that match advertising and/or tracking network

requests. As shown in Figure 3.2, network requests that match EasyList or EasyPrivacy are

classified as tracking, otherwise they are classified as functional. Note that we maintain the

call stack that contains the ancestral scripts that in turn triggered a script-initiated network

request (e.g., XMLHTTPRequest fetches). For asynchronous JavaScript, the stack track that

preceded the request is prepended in the stack. Thus, for script-initiated network requests,

we ensure that if a request is classified as tracking or functional, its ancestral scripts in the



(a) domain (b) hostname (c) script URL (d) script method

Figure 3.3: Distribution of resources at increasingly finer granularities. Y-axis shows the count
of unique (a) domains, (b) hostnames, (c) scripts, and (d) script methods. X-axis represents the
common logarithmic ratio of the number of tracking to functional requests. Interval (-∞,-2] is
classified as functional (green), (-2,2) is classified as mixed (yellow), and [2,∞) is classified as
tracking (red).

stack are also classified as such. Since network requests that are not script-initiated can not

be trivially classified as tracking or functional, we exclude them from our analysis.

3.4 Results

Classifying Mixed Resources. We compute the logarithmic ratio of the number of track-

ing to functional network requests to quantify the mixing of tracking and functional resources.

ratio = log
(

# of tracking requests

# of functional requests

)
(3.1)

At each granularity, we classify resources with the common logarithmic ratio less than -2

as functional because they triggered 100× more functional requests than tracking requests.

Similarly, we classify resources with the common logarithmic ratio of more than 2 as tracking

because they triggered 100× more tracking requests than functional requests. The resources

with the common logarithmic ratio between -2 and 2 are classified as mixed. We analyze the

suitability of the selected classification threshold using sensitivity analysis later in Section



3.5.

Results Summary. Table 3.1 summarizes the results of our crawls of the landing pages

of 100K websites. Using the aforementioned classification, we are able to attribute 54% of

the 2.43 million script-initiated network requests to tracking or functional domains. The

remaining 46% (1129K) of the 2.43 million requests attribute to mixed domains that are

further analyzed at the hostname-level. We are able to attribute 24% of the requests from

mixed domains to tracking or functional hostnames. The remaining 76% (860K) of the

requests attribute to mixed hostnames that are further analyzed at the script URL-level.

We are able to attribute 84% of the requests from mixed hostnames to tracking or functional

script URLs. The remaining 16% (135K) of the requests attribute to mixed script URLs

that are further analyzed at the script method-level. We are able to attribute 72% of the

requests from mixed script URLs to tracking or functional script methods. This leaves us

with less than 2% (37K) requests that cannot be attributed by TrackerSift to tracking or

functional web resources and require further analysis.

Next, we analyze the distribution of the ratio of tracking to functional requests by web

resources at different granularities of domain, hostname, script URL, and script method in

Figure 3.3. Table 3.2 shows the breakdown of web resources classified as tracking, functional,

and mixed at different granularities.

3.4.1 Domain Classification

2451K requests in our dataset are served from a total of 69,292 domains (eTLD+1). Fig-

ure 3.3b shows three distinct peaks: [2, ∞) serve tracking requests, (-∞, -2] serve func-

tional requests, and (-2, 2) serve both tracking and functional requests. We can filter

31% of the requests by classifying 6,493 domains that lie in the [2, ∞) interval as track-



ing. Notable tracking domains include google-analytics.com, doubleclick.net, and

googleadservices.com, bing.com. We can filter 23% of the requests by classifying 50,938

domains that lie in the (-∞, -2] interval as functional. Notable functional domains include

CDN and other content hosting domains twimg.com, zychr.com, fbcdn.ne, w.org, and

parastorage.com. However, 46% of requests are served by 11,861 mixed domains that lie in

the (-2, 2) interval. These mixed domains cannot be safely filtered due to the risk of breaking

legitimate functionality, and not filtering them results in allowing tracking. Notable mixed

domains include gstatic.com, google.com, facebook.com, facebook.net, and wp.com.

3.4.2 Hostname Classification

1129K requests belonging to mixed domains are served from a total of 26,060 hostnames.

Figure 3.3b shows three distinct peaks representing hostnames that serve tracking, functional,

or both tracking and functional requests. We can filter 14% of the requests by classifying

4,429 hostnames that lie in the [2, ∞) interval as tracking. We can filter 9% of the requests

by classifying 9,248 hostnames that lie in the (-∞, -2] interval as functional. However, 76%

of the requests are served by 12,383 hostnames that lie in the (-2, 2) interval are classified as

mixed. Again, these mixed hostnames cannot be safely filtered due to the risk of breaking

legitimate functionality, and not filtering them results in allowing tracking. Take the example

of hostnames of a popular mixed domain wp.com. The requests from wp.com are served from

tracking hostnames such as pixel.wp.com and stats.wp.com, functional hostnames such as

widgets.wp.com and c0.wp.com, and mixed hostnames such as i0.wp.com and i1.wp.com.



3.4.3 Script Classification

860K requests belonging to mixed hostnames are served from a total of 350,050 initiator

scripts. Figure 3.3c again shows three distinct peaks representing scripts that serve tracking,

functional, or both tracking and functional requests. We can filter 27% of the requests by

classifying 194,156 scripts that lie in the [2, ∞) interval as tracking. We can filter 57% of the

requests by classifying 134,726 scripts that lie in the (-∞, -2] interval as functional. However,

16% of the requests are served by 21,168 scripts that lie in the (-2, 2) interval are classified

as mixed. These mixed scripts cannot be safely filtered due to the risk of breaking legitimate

functionality, and not filtering them results in allowing tracking. For example, let’s analyze

the initiator scripts of a mixed hostname i1.wp.com. The requests to this hostname are the

result of different initiator scripts on the webpage www.ibn24.tv. Specifically, a tracking

request to i1.wp.com is initiated by the script show_ads_impl_fy2019.js and a functional

request to i1.wp.com is initiated by the script jquery.min.js. As another example, on

the webpage somosinvictos.com, both tracking and functional requests to i1.wp.com are

initiated by the mixed script lazysizes.min.js. Note that the scripts classified as track-

ing initiate requests to well-known advertising and tracking domains. For example, script

uc.js served by consent.cookiebot.com initiated requests to googleadservices.com, dou-

bleclick.net, and amazonadsystem.com.

3.4.4 Function classification

135K requests belonging to mixed scripts are served from a total of 64,019 script meth-

ods. Figure 3.3d again shows three distinct peaks representing methods that serve tracking,

functional, or both tracking and functional requests. We can filter 17% of the requests by

classifying 17,940 methods that lie in the [2, ∞) interval as tracking. We can filter 55%



of the requests by classifying 40,500 methods that lie in the (-∞, -2] interval as functional.

However, 28% of the requests are served by 5,579 methods that lie in the (-2, 2) interval are

classified as mixed. These mixed methods cannot be safely filtered due to the risk of breaking

legitimate functionality, and not filtering them results in allowing tracking. For example,

let’s analyze script methods for a mixed script tfa.js on the webpage hubblecontacts.com.

While both tracking and functional requests are initiated by the script, the tracking request

was initiated by get method, and the functional request was initiated by X method. As

another example, let’s analyze script methods for a mixed script app.js on the webpage

radioshack.com.mx. In this case, both tracking and functional requests are initiated by the

mixed script method Pa.xhrRequest.

3.5 Future Directions

In this section, we discuss some case studies, opportunities for future work, and limitations.

Circumvention strategies. There are two common techniques for mixing tracking and

functional resources.

(1) Script inlining: Despite potential security risks, publishers are willing to inline

external JavaScript code snippets (as opposed to including external scripts using the src

attribute) for performance reasons as well as for circumvention [142, 165]. For example,

we find that the Facebook pixel [16] is inlined on a large number of websites to assist with

targeting Facebook ad campaigns and conversion tracking.

(2) Script Bundling: Publishers also bundle multiple external scripts from differ-

ent organizations with intertwined dependencies for simplicity and performance reasons.

JavaScript bundlers, such as webpack [73] and browserify [49], use dependency analysis to



bundle multiple scripts into one or a handful of bundled scripts. For example, pressl.co

serves a script app.*.js that is bundled using the webpack [73]. This bundled script includes

the aforementioned Facebook pixel and code to load functional resources from a first-party

hostname. Existing content blocking tools struggle to block inlined and bundled tracking

scripts without the risk of breaking legitimate site functionality. Finer-grained detection by

TrackerSift presents an opportunity to handle such scripts by localizing the methods that

implement tracking.
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Figure 3.4: Sensitivity analysis of the classifica-
tion threshold (default is -2 and 2) by studying the
proportion of mixed scripts as a function of vary-
ing thresholds. The X-axis represents the thresh-
old buckets. For example, 1.5 represents (-1.5,
1.5).

Threshold sensitivity analysis. We set

the classification threshold to a symmet-

ric value of (-2,2) for classifying mixed re-

sources in Equation 4.1. To assess our choice

of the threshold, we analyze the sensitiv-

ity of script classification results in Figure

3.4. Similar trends are observed for domain,

hostname, and method classification. The

plot shows the percentage of scripts classi-

fied as mixed as we vary the threshold from 1

to 3 in increments of 0.1 Note that the curve

plateaus around our selected threshold of 2.

Thus, we conclude that our choice of the threshold is stable and reasonably separates mixed

resources from tracking and functional resources.

Breakage analysis. We conducted manual analysis to assess whether blocking mixed

resources results in breakage of legitimate functionality. To assess functionality breakage,

we load a random sample of websites with (treatment) and without (control) blocking mixed

scripts as classified by TrackerSift. We label breakage as: major if the core functionality



Table 3.3: Manual analysis of breakage caused by blocking mixed scripts on randomly selected 10
websites.

Website Mixed Script Breakage Comment

caremanagementmatters.co.uk jquery.min.js Minor scroll bar and two widgets
missing

gratis.com main.js Major page did not load
forevernew.com.au require.js Major multiple page banners missing
flamesnation.ca player.js Minor video pop missing
biba.in MJ_Static-Built.js Major page did not load
ecomarket.ru 2.0c9c64b2.chunk.js Major page did not load
peachjohn.co.jp jquery-1.11.2.min.js Major navigation and scroll bar miss-

ing
shoobs.com widgets.js None no visible functionality break-

age
editorajuspodivm.com.br jquery.js Major navigation and scroll bar miss-

ing
resourceworld.com jquery.min.js Major navigation bar and images

missing

such as search bar, menu, images, and page navigation is broken in treatment but not

in control; minor: if the secondary functionality such as comment/review sections, media

widgets, video player, and icons is broken in treatment but not in control; and none: if

the core and secondary functionalities of the website are same in treatment and control.

Note that we consider missing ads as no breakage. Table 3.3 shows our breakage analysis

on a representative sample of 10 websites. We note major or minor breakage in all except

one case. Thus, we conclude that mixed web resources indeed cannot be safely blocked by

existing content blocking tools.

Blocking mixed scripts. When TrackerSift classifies a mixed script with different tracking

and functional methods, we can simply remove tracking methods to generate a surrogate

script that can then be used to shim the mixed script at runtime. Existing content blockers

such as NoScript, uBlock Origin, AdGuard, and Firefox SmartBlock use surrogate scripts

to block tracking by mixed scripts while avoiding breakage [11, 15, 18, 152]. However, these

surrogate scripts are currently manually designed [17]. TrackerSift can help scale up the

process of generating surrogate scripts by automatically detecting and removing tracking



Call Stack Analysis

cdn.example.com/ads-2

type : script
call stack:

test.com/clone.js m2

ads.com/track.js t

cdn.example.com/nonads-
2
type : script
call stack:

test.com/clone.js m2

test.com/user.js k

test.com/get.js a

ads.com./track.js
t

test.com/clone.js
m2

test.com/get.js
a

test.com/user.js
k

test.com/clone.js
m2

ads.com./track.js
t

test.com/clone.js
m2

test.com/get.js
a

test.com/user.js
k

Call Graph

Functional
Tracking

Figure 3.5: Call stack analysis for the requests ads-2 and nonads-2 that can not be separated at
method level i.e. m2. Call stack is analyzed to identify the first point of divergence i.e track.js t
and it could be removed to block the tracking request.

methods in mixed scripts. Note that removing tracking methods is tricky because simply

removing them risks functionality breakage due to potential coverage issues of dynamic

analysis. To mitigate this concern, we plan to explore a more conservative approach using a

guard—a predicate that blocks tracking execution but allows functional execution. Such a

predicate has a similar structure to that of an assertion. We envision using classic invariant

inference techniques [115, 167] on a tracking method’s calling context, scope, and arguments

to generate a program invariant that holds across all tracking invocations. If an online

invocation satisfies the invariant, the guard will block the execution. A key challenge in this

approach is collecting the context information, e.g., program scope, method arguments, and

stack trace, for each request initiated by the mixed method at runtime. We plan to address

these challenges in leveraging TrackerSift for generating safe surrogate scripts in our future

work.

Blocking mixed methods. Our analysis shows that TrackerSift’s separation factor is 91%

even at the finest granularity. This leaves 5.6K mixed methods that cannot be safely blocked.

One possible direction is to apply TrackerSift in the context of a mixed method initiating a

request. We can define context as calling context, program scope, or parameters to the mixed

method. In the case of calling context, we can perform a call stack analysis that takes a

snapshot of a mixed method’s stack trace when the method initiates a tracking or functional



request. We hope to see distinct stack traces from tracking and functional requests by a

mixed method. We can consolidate the stack traces of a mixed method and locate the point

of divergence, i.e., a method in the stack trace that only participates in tracking requests.

We hypothesize that removing such a method will break the chain of methods needed to

invoke a tracking behavior, thus removing the tracking behavior.

Figure 3.5 illustrates our proposed call stack analysis using a toy example. It shows

the snapshot of stack traces of requests nonads-2 and ads-2. These requests are initiated

by a mixed method m2() on the webpage. The two stack traces are merged to form a call

graph where each node represents a unique script and method, and an edge represents a

caller-callee relationship. The yellow color indicates that a node participates in invoking

both tracking and functional requests. t in track.js is the point of divergence since it only

participates in the tracking trace. Therefore, t is most likely to originate a tracking behavior

which makes it a good candidate for removal.

3.6 Summary

We presented TrackerSift, a hierarchical approach to progressively untangle mixed resources

at increasing levels of finer granularity from network-level (e.g., domain and hostname) to

code-level (e.g., script and method). We deployed TrackerSift on 100K websites to study

the prevalence of mixed web resources across different granularities. TrackerSift classified

more than 17% domains, 48% hostnames, 6% scripts, and 9% methods as mixed. Overall,

TrackerSift was able to attribute 98% of all requests to tracking or functional resources by

the finest level of granularity. Our results highlighted opportunities for finer-grained content

blocking to remove mixed resources without breaking legitimate site functionality. NoT.JS

can be used to automatically generate surrogate scripts to shim mixed web resources.



Chapter 4

Blocking JavaScript Without

Breaking the Web

4.1 Introduction

JavaScript is often used to provide rich user experiences on the web. The volume of

JavaScript on the web has steadily increased over the years. The median web page load

today ships 500+ kilobytes of JavaScript [194]. While some of it is used to implement vari-

ous libraries and frameworks (e.g., jQuery, React), almost half of it is third-party scripts that

implement advertising and tracking services. The research community is concerned about

the negative impact of JavaScript on performance [96, 140, 193], security [106, 117, 151, 203],

and privacy [114, 129, 137, 154, 155].

Due to these concerns, there is a small but active community of web users who want

to use the web without JavaScript. In fact, all major browsers now provide a native way

for users to block all JavaScript [48]. Moreover, users can employ browser extensions such

as NoScript [39] that block all scripts – except those from a trusted source. HTML5 now

also supports the noscript element that allows web developers to gracefully support such

browsers that do not support scripting [62].

While blanket JavaScript blocking does alleviate these concerns, it inevitably breaks

29



the legitimate website functionality. The privacy community has developed content-blocking

tools that selectively block tracking resources (e.g., scripts) on a webpage. Privacy-enhancing

content blockers, such as uBlock Origin [9], block network requests to known trackers by

matching request URLs with manually curated filter lists [22, 31].

Since these privacy-enhancing content blockers are now used by more than one-third of

web users [46, 148], there are strong financial incentives for web developers to evade content

blockers. The typical evasion strategy is to manipulate the URLs, e.g., change the URL

path or hostname such that filter lists are no longer effective [84, 126]. This has led to an

arms race where filter lists must be promptly updated in response to such evasion attempts

[101, 144, 185]. Filter list curators have also made a concerted effort to selectively block the

underlying scripts from downloading or execution that are responsible for initiating tracking

requests. In response, a new evasion strategy has emerged where web developers attempt

to mix tracking and functional code in the same script (e.g., JS bundling [101]). Privacy-

enhancing content blockers risk breaking a webpage if they block such scripts or compromise

user privacy if they do not.

Privacy-enhancing content blockers aim to eliminate tracking while preserving website

functionality. However, if they are forced to choose — e.g., when tracking and functional code

is mixed —they always prioritize functionality preservation. This is because most users tend

to disable privacy-enhancing content blockers if they break legitimate website functionality.

Recent research [88, 185] has shown that many websites now mix functional and tracking

code that renders privacy-enhancing content blocking useless.

In this paper, we conduct a first-of-its-kind empirical investigation of JS blocking. To

this end, we quantitatively and qualitatively evaluate the impact of different granularities

of JS blocking on 100K websites. Our goal is to assess whether it is feasible to eliminate

tracking effectively while preserving website functionality at different granularities of JS code



i.e., script and method. Beyond blanket JS blocking, we first investigate selective blocking

of tracking scripts as well as mixed scripts. We further expand our investigation to the

effectiveness of method-level blocking.

Our large-scale automated analysis of 100K websites reaffirms that blanket JS block-

ing indeed eliminates tracking, but it also breaks website functionality on approximately

two-thirds of the tested websites. We then show that selective blocking of tracking scripts

mitigates tracking without degrading website functionality, but there remains a significant

fraction of scripts that mix tracking and functional behavior. Specifically, we find that

14.6% of the scripts exhibit both tracking and functional (i.e., mixed) behavior. We then

adapt Spectra-based fault localization (SBFL), a popular faulty code localization technique,

to further localize tracking to the constituent methods of these mixed scripts. We find

that method-level blocking of tracking methods significantly reduces website breakage while

providing the same level of tracking prevention.

We also qualitatively analyze a sample of 383 websites under different JS blocking

configurations for functionality breakage. We characterize functionality into four compo-

nents e.g., navigation, single sign-on, appearance, and additional functionality, and quantify

breakage on 3-levels (none, minor, and major). Our evaluation shows that method-level JS

blocking is far better at preserving functionality while achieving a similar level of tracking

prevention. Specifically, we find that script-level JS blocking results in 3.8× major breakage

and 1.5× minor breakage as compared to method-level JS blocking.

We summarize our key findings and contributions below:

• We find that method-level JS blocking is able to prevent tracking on par with script-

level JS blocking while improving functionality preservation by 3.8× major breakage

and 1.5× minor breakage.



(a) Control (b) NoScript (c) uBlock Origin (d) Mixed (e) Method

Figure 4.1: The snapshot of livescore.com with (a) control-setting (no content blocker), (b) No-
Script (default setting), (c) uBlock Origin (default setting), (d) mixed script blocked (_app-*.js),
and (e) JS method blocked (method in _app-*.js).

• By comparing two web crawls conducted one year apart, we find a 14% increase in the

number of websites that employ mixed scripts on 100K websites.

• Even at the method-level granularity, there remain 6% mixed methods that combine

tracking and functionality and require even deeper program analysis for effective block-

ing without breaking functionality.

• The data set crawled for this study offers a full-scale view of JS code integration on

today’s websites, presenting a detailed lineage of tracking, functional, and mixed JS

code units across 100K websites.

4.2 Motivation

In this section, we present a case study to illustrate the tradeoff between tracking prevention

and functionality breakage.

No JS blocking. Let’s take the example of livescore.com, a top-10 ranked sports

website [61]. We first load the homepage of livescore.com in a stock Chrome browser

without any JavaScript intervention. Loading this webpage results in 294 network re-

quests in 11 seconds, including 83 requests to fetch scripts and 175 requests initiated by

these scripts. For motivation, consider two of these scripts that initiate network requests

to known1 tracking endpoints: gtm.js served by googletagmanager.com and _app-*.js
1See, for example, Disconnect tracking protection list [54]



Figure 4.2: Steps for localizing tracking and functional JS code using Spectra-based fault localiza-
tion. Ê shows the two network requests on intuit.com. Filter lists are used to label requests in
Ë. Spectra-based fault localization is used to classify resources based on participation, as shown in
Ì and Í.

served by livescore.com. gtm.js sends network requests to googleadservices.com and

google-analytics.com. _app-*.js sends network requests to doubleclick.net. Upon

careful inspection, we find that _app-*.js also sends a network request to livescore.com

/api/announcements/ that includes known tracking cookies such as _gads [98, 161]. While

both scripts are responsible for network requests to tracking endpoints, _app-*.js is a mixed

script that seems to implement both legitimate website functionality (e.g., add media, pop-

ulate game statistics) and tracking. Figure 4.1 (a) shows the homepage of livescore.com

in the control configuration (without any blocking).

Figure 4.3: Illustration of the breakage metrics for
automated JS blocking. Request count (Ê) and
HTML of website (Ë) are compared with control
configuration.

Blanket JS blocking. The naive way is to

block all JS on livescore.com at the page

load time. This capability is available in all

major browsers [48]. While this approach

blocks all the aforementioned tracking re-

quests, it also completely breaks the website

functionality. livescore.com becomes un-

usable and in fact notifies the user2 that JS needs to be enabled for the website to display

correctly. NoScript [39] also blocks all JS on livescore.com, including gtm.js served by

2The notice on livescore.com states: “Your browser is out of date or some of its features are disabled, it
may not display this website or some of its parts correctly. To make sure that all features of this website
work, please update your browser to the latest version and check that Javascript and Cookies are enabled.”



googletagmanager.com and _app-*.js served by livescore.com. This again completely

breaks the website functionality. Figure 4.1 (b) shows the homepage of livescore.com when

NoScript [39] is used.

Selective JS blocking. We next use a tracker blocking tool, called uBlock Origin [9], on

livescore.com. Note that these tracker blocking tools do not specifically target JS. In-

stead, they use a curated filter list to block network requests to known tracking endpoints

that may incidentally include network requests to fetch JS. Thus, compared to blanket

JS blocking, uBlock Origin aims to block all network requests to known tracking end-

points while allowing other network requests. After loading livescore.com with uBlock

Origin installed, we observe that gtm.js is blocked, thus eliminating all subsequent track-

ing network requests from gtm.js. However, instead of blocking _app-*.js, uBlock Ori-

gin blocks the network request to doubleclick.net while it allows the network request

livescore.com/api/announcements/ containing tracking cookies. Figure 4.1 (c) shows the

homepage of livescore.com when uBlock Origin [9] is used. Although there is no website

breakage, uBlock Origin has essentially decided not to block _app-*.js to avoid website

breakage even though it results in tracking requests. As we elaborate later, trackers have

been increasingly putting tracker blocking tools in such a bind.

Tracking and Mixed JS blocking. To understand why uBlock Origin chose not to

block _app-*.js, we next use uBlock Origin but also configure it to block _app-*.js. As

shown in Figure 4.1 (d), this leads to a major functionality breakage on livescore.com; the

navigation button, game statistics, and the featured news section are not rendered correctly.

Put simply, there is a no-win situation when it comes to _app-*.js. Blocking it results in

website breakage, and not blocking it results in tracking.



- u = function(e) {

+ donotExecuteMe = function(e) {

...

return fetch(e).then(c.cg).then(

(function(e){return e || {}}))

Listing 4.1: JS method u that initiates tracking

requests in script _app-*.js. We replace this

method name with donotExecuteMe.

Method-level JS blocking. Recent work

[88, 185] has applied dynamic analysis to

identify tracking methods in mixed scripts

manually. Our analysis of network requests

initiated by _app-*.js shows that the track-

ing requests were initiated by the method

shown in Listing 4.1. As shown in Figure

[61] (e), when this method in _app-*.js is

blocked (e.g., it is renamed such that all calls to this method are invalidated), the entire

webpage renders completely while all tracking requests are also blocked. It is noteworthy

that manually refactoring mixed scripts is not feasible at scale. Therefore, only a handful of

mixed scripts have been refactored in prior work [66].

4.3 Methodology

This section describes our methodology for automated analysis of JS blocking on 100K

webpages (Phase I) and manual inspection of JS blocking on 383 websites (Phase II).

4.3.1 Phase I: Automated JS Blocking Analysis

Figure 4.2 shows our automated JS blocking analysis pipeline comprising a JS collection step

and JS code localization step. Figure 4.3 shows our JS blocking impact analysis step.

JavaScript Corpus Collection. We crawl landing pages of 100K randomly sampled web-

sites from Tranco top-million list [171] using a custom-built Chrome extension. We spend

20 seconds on a page, exceeding the median onLoad time by 13.5 seconds on average. This



allows us to capture the vast majority of the content fetched, which is consistent with over

90% of all webpages [64]. Nonetheless, we measure the impact of increasing the crawl time

to 90 seconds on 200 web pages randomly sampled from 100K. We notice average differences

of 2% and 5.2% in tracking and functional requests, respectively, causing an insignificant

impact on our findings. Thus, we set the crawl time to 20 seconds.

For each webpage, our crawler outputs a JSON file that maps each network request to

its initiator script and method (step Ê). We then label each network request and its initiator

code (e.g., JS script and methods) as tracking or functional using filter lists [22, 31] (step

Ë). We use EasyList [31] and EasyPrivacy [22] that are used by existing content blockers

such as uBlock Origin [9], Brave [12], and Adblock Plus [6]. These filter lists only do binary

classification and tend to classify mixed resources as functional to avoid website breakage.

This is an inherent limitation of filter lists that our work aims to highlight in the context of

JavaScript blocking.

Localizing Tracking and Functional JS Code. Next, we classify each script and method

using spectra-based “fault” localization (SBFL) [80, 135]. SBFL requires a set of failing and

passing test cases. For every test, it simply collects the list of code units that participated in

the test execution. Based on the test output, it labels the participating code units as either

passing or failing. Finally, it compares the participation of code units in passing and failing

tests and assigns a score to them.

We adapt SBFL to localize tracking code units (i.e., scripts, methods). Instead of test

cases, we analyze each network request and the methods and scripts in the call stack trace of

the network request. For example, Figure 4.2-Ê shows two network requests on intuit.com.

We use filter lists (step Ë) to classify a request (and its call stack) as tracking (i.e., failed

test case) and functional (i.e., passed test case). We then calculate “tracking score” (Eq

4.1) for each code unit (i.e., script or method) based on its participation in the call stack



ID Level JS Blocked Annotated Entity
block Tracking Mixed Functional

CTRL None None 7 7 7

ALL script Blanket 4 4 4

TS script Selective 4 7 7

MS script Selective 7 4 7

TMS script Track & Mixed 4 4 7

TM method Method 4 7 7

Table 4.1: Six different JS blocking configurations. 7 represents an unblocked entity, and 4

represents a blocked entity.

trace of tracking and functional requests, as shown in step Ì. The script utag.js initiates

132 tracking requests and 160 functional requests. In this script, method loader initiates

131 tracking requests and 1 functional request. Method fireCORS initiated 159 functional

and 1 tracking request. Figure 4.2 demonstrates the calculation of the tracking score on the

webpage in step Í.

tracking score = log
(

number of tracking requests

number of functional requests

)
(4.1)

We classify code units that participate 100× times more in tracking than functional

(i.e., tracking score of > 2 ) as tracking. We classify code units that participate 100× times

more in functional than tracking (i.e., tracking score of < −2 ) as functional. This threshold

is determined experimentally in prior work [88]. The code units that fall in neither category

are classified as mixed. The localization step results in a list of tracking, functional, and

mixed JS methods and scripts. In this example, script utag.js is classified mixed, method

fireCORS() is functional, and method loader() is tracking.

JS Blocking Impact Analysis. To measure the impact of blocking JS code units, our

custom-built Chrome extension loads every page from the 100K websites and blocks the as-

sociated tracking JS script or method from the list of labeled methods and scripts. It blocks



Script Script Method Websites
Domain (%)
google-analytics.com analytics.js wd 38%
google-analytics.com analytics.js ta 25%
facebook.net fbevents.js c 19%
googlesyndication.com sodar2.js Ma 11%
twitter.com widget.js i.e 7%

Table 4.2: Top JS methods found on the maximum number of websites in control configuration.

the JS scripts from loading in the browser, similar to existing content blockers. To block a

script method, it simply replaces the method name with doNotExecuteMe to redirect its invo-

cations, as shown in Listing 4.1. Renaming the method name may cause a MethodNotFound

exception that terminates the tracking thread in a webpage’s JS execution as intended. We

conduct this experiment on the same 100K webpages in six parallel configurations shown

in Table 4.1. These configurations are illustrated in the livescore.com case study and

inspired by unique JS blocking strategies that are mostly in practice or proposed by prior

work. Control configuration (CTRL) is used to localize JS code units (scripts and methods)

using the aforementioned SBFL technique and for breakage comparison in the later subsec-

tion. In ALL, all scripts (tracking, mixed, and functional) are blocked to evaluate blanket JS

blocking. This configuration represents NoScript, which blocks all scripts by default. In TS,

tracking scripts are blocked to evaluate selective JS blocking. This configuration represents

the majority of content blockers such as uBlock Origin [9], Brave [12], and Adblock Plus

[6] that use EasyList [31] and EasyPrivacy [22]. In MS, mixed scripts are blocked to see its

adverse consequence on functionality. In TMS, tracking and mixed scripts are blocked to

evaluate tracking and mixed JS blocking. TMS is the optimum choice for content blockers in

tracking prevention, but it risks functionality breakage, as shown in Section 4.2. Finally, we

compare the results of TMS with TM, where we block tracking methods (all located in tracking

and mixed scripts) to evaluate method-level JS blocking.



In CTRL configuration, we have websites that do not crash. However, website crashes

and breakages may still occur in the blocking configurations due to blocking. Website break-

age is a subjective metric that requires a visual inspection, which is not feasible on 100K

webpages. Therefore, we discuss two metrics that are correlated with website breakage [144].

Tracking and Functional request count. Network requests fetch critical functional

resources like scripts, images, and other media as well as JS scripts and images that perform

tracking activity. We use the number of tracking and functional requests as a measure of

tracking and functional activity on a webpage. We compare these numbers with the control

configuration (CTRL) to get the missing requests, as shown in Figure 4.3-Ê. This metric helps

in collecting non-visual breakage clues. For example, we do not see any visual breakage on

website poshmark.ca after blocking mixed script sdk.js?hash=*. Instead, we observe two

missing requests, one that sets the cookie and the other functional request that redirects the

login button.

HTML of websites. We scan the HTML tags with src attributes on a webpage to estimate

visible functional deterioration. These HTML tags include <img>, <video>, and <iframe>.

Each tag has a source, src, attribute that specifies the URL of a resource file. We compare

the missing tags in our experiments with the control configuration (CTRL), as shown in Figure

4.3-Ë. Note that if the attribute of a missing URL belongs to the functional request in the

control configuration (CTRL), then it is classified as functional breakage.

4.3.2 Phase II: Manual Inspection of JS Blocking

Data Sampling

Manually inspecting 100k websites is time-consuming and practically infeasible. We ran-

domly sample 500 websites from the top 100K websites used in Phase I. We exclude dupli-



Total Network Requests Script-Initiated Network Requests Total Total
Blocking Configuration Tracking Functional Total Tracking Functional Total Scripts JS Methods
CTRL 1,175,033 4,279,844 5,454,877 953,931 882,111 1,836,042 256,042 366,025
ALL 265,101 3,248,767 3,513,868 177,352 315,378 492,730 91,984 137,006
TS 355,169 4,049,340 4,404,509 248,103 820,428 1,068,531 164,670 239,960
MS 1,012,708 3,916,499 4,929,157 815,553 684,084 1,499,637 227,658 323,174
TMS 349,888 3,887,372 4,237,260 245,389 657,361 902,750 155,810 224,681
TM 348,135 4,115,351 4,463,486 243,002 749,238 991,240 164,543 233,927

Table 4.3: Characteristics of the crawled dataset across six blocking configurations.
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Figure 4.4: The top domains of request-initiating scripts across six blocking configurations. X-axis
shows the top domains of the request-initiating scripts, and Y-axis shows the % of websites.

cate websites and websites with the same second-level domains (SLD), but different top-level

domains (TLD) e.g.,google.com.uk and google.com. We excluded a total of 117 websites

and manually inspected 383 websites, which is a statistically significant sample size for 100K

websites with ± 5% margin of error [68].

Manual Inspection

Two testers independently inspected 383 websites. Inspecting six configurations for each

website manually and in parallel is prohibitively expensive. Therefore, we choose the three



most important configurations i.e., CTRL (for comparison), TMS (tracking and mixed JS

blocking), and TM (method-level JS blocking). To assist inspection, our study platform

launches three independent instances of Chrome (CTRL, TMS, and TM from Table 4.1) displayed

adjacent to each other. Each tester spent at least 5 minutes inspecting the three windows,

scrolling each page end to end, and clicking on different webpage components. The two

testers spent a total of 85 hours manually inspecting the websites and documenting their

findings according to the following rubric. They report visual and functional differences in the

following four categories and use a 3-level breakage scale (i.e., no breakage, minor breakage,

and major breakage). Any disagreements were discussed and resolved by consensus.

• Navigation. Website navigation contains lists of links to internal webpages. It typ-

ically consists of a menu or navigation bar that contains links to various sections of

the website, such as the homepage, products or services, about us, and contact. Minor

breakage involves non-functional navigation links, abnormal styling layouts, or missing

icons. These issues can be frustrating for users and may make it difficult to navigate

the website. Major breakage involves more serious issues, such as the navigation but-

ton not being operational or the navigation bar not appearing at all. This type of

breakage can significantly impact the website’s usability.

• Single sign-on (SSO). Website SSO allows users to sign in using credentials from

services such as Google and Facebook. Minor breakage typically involves issues such

as non-functional SSO services, unresponsive login buttons, or missing login options.

For example, if the Google SSO service is not functioning, users may be unable to sign

in to the website using their Google account. Major breakage involves more serious

issues, such as the missing SSO service or the failure of all SSO options. This type of

breakage can significantly impact the website’s usability.



• Appearance. This category includes the appearances of media elements, the scrolling

behavior of websites, and the HTML element. We exclude advertisements when in-

specting appearance-based breakage. Minor breakage involves missing media resources,

unstyled HTML, or jittery/unsmooth page scrolling experience. Major breakage in-

volves all the media resources missing altogether or an unscrollable page.

• Additional functionality. Anything that does not fall into the mentioned categories

is added to this category, such as dark mode, website settings, and chatbot. Minor

breakage entails abnormal behavior or non-responsive feature. Major breakage includes

page crashes and missing components.

4.3.3 Dataset

This section summarizes the characteristics of dataset crawled across six blocking configu-

rations. Table 4.3 lists the total network requests and script-initiated requests in six config-

urations over 100K websites and the JS scripts and methods that initiate those requests. In

control configuration (CTRL), out of 5.45 million requests, 22% of the requests are tracking,

leaving the remaining 78% as functional. 34% of the total requests are initiated by JS scripts.

In script-initiated requests, 52% are tracking, and the remaining 48% are functional. These

script-initiated requests are initiated by 366K JS methods inside 256K scripts.

Figure 4.4 shows the top domains of the scripts that initiate network requests. In

control configuration (CTRL), 39% of websites initiate requests from the script served by

google-analytics.com, 30% of websites initiate requests from the script served by googletagma-

nager.com, and 29% of websites initiate requests from the script served by googlesyndication.com.

Our baseline JS blocking configuration is ALL in which all tracking, mixed, and func-

tional scripts are blocked. Note that a small number of scripts may still load in All if such



scripts were previously not observed during the localization step in Section 4.3.1.

When tracking JS scripts are blocked (TS configuration), the majority of tracking script

domains disappear, including google-analytics.com. We observe a relatively lower occur-

rence of script domains in TMS than TM because TMS blocks all tracking and mixed scripts that

include all tracking methods and some functional methods. Whereas in TM, only tracking

methods are blocked. For example, due to the mixed nature of scripts from facebook.net,

scripts from facebook.net appear in TM, but not in TMS.

1 wd = function(a, b, c, d) {

2 var e = O.XMLHttpRequest;

3 if (e) return 1;

4 var g = new e;

5 if (("withCredentials" in g)) return 1;

6 a = a.replace(/^http:/, "https:");

7 g.open("POST", a, 0);

8 g.withCredentials = 0;

9 g.setRequestHeader("Content-Type", "text/plain");

10 g.onreadystatechange = function() {

11 ...

12 ta = function(a) {

13 var b = M.createElement("img");

14 b.width = 1;

15 b.height = 1;

16 b.src = a;

17 return b}

Listing 4.2: Methods wd and ta in analytics.js served by google-analytics.com are present on

38% and 25% of 100K websites, respectively.

Table 4.2 shows the top five request-initiating JS methods across 100k websites. Method



wd in script analytics.js is served by google-analytics.com. It appears in 38% of the

100K websites where it sets up a request and its header using XMLHttpRequest [74] API,

shown in Listing 4.2. Method ta in script analytics.js is served by google-analytics.com.

It appears in 25% of the websites where it adds the <img> tag with a specific source given

as a parameter to the function, shown in Listing 4.2. Both of these methods are classified

as tracking in the localization step in Section 4.3.1.

4.4 Results

This section presents the results of our empirical investigation of different types of JS blocking

listed in Table 4.1.

4.4.1 Phase I: Large-scale JS Blocking Analysis

We aim to address the following research questions in our analysis of JS blocking.

1. How resilient is website functionality against blanket JS blocking (ALL)?

2. How effective is selective script-level JS blocking in tracking prevention and function-

ality preservation (TS and MS)?

3. How common is it for website developers to mix tracking and functionality in the same

script?

4. How effective is method-level JS blocking in tracking prevention and functionality

preservation (TMS and TM)?



RQ1: Blanket JS Blocking

We first study the naive approach to JS blocking by blocking all JS scripts (ALL configuration

in Table 4.1). Specifically, we block all 256K scripts on 100K webpages and compare the

breakage metrics (i.e., network request count and HTML resource count) with the control

(CTRL). Given blanket JS blocking, we expect a sharp drop in the number of tracking or

functional requests. Figure 4.5 (a) shows that 22% of functional requests and 76% of tracking

requests remain after blocking all JS scripts (ALL). Note that a few requests are initiated

by the scripts previously not captured in the localization step in Section 4.3.1 and hence,

were not blocked in blanket JS blocking (ALL) configuration. Figure 4.5 (b) presents the

average percentage of reduction in request count per webpage. On average, per webpage,

the tracking and functional request count decrease by 70% and 65%, respectively. This

shows that webpages today can retain one-third of functionality even with extreme blocking

strategies. Another observation is that the tracking reduction per webpage is higher than

functional reduction, which means that many webpages often sacrifice tracking but attempt

to retain functionality.

To map this behavior per webpage, we find the number of webpages with different levels

of request reduction for both tracking and function. Figure 4.6 illustrates the result. We find

that the majority of the webpages (57%) have either less than 10% request reduction or more

than 90% request reduction in both tracking and functional. This result shows both (1) high

resilience against tracking reduction and functional breakage due to anti-content blocking

strategies such as loading resources by changing network endpoints [84, 143], and also (2)

low resilience where blocked scripts are critical for a functioning webpage [88, 185]. Further

inspection of HTML DOM elements reveal that 191K functional HTML tag sources are

missing from 100K webpages when ALL scripts are blocked, reflecting severe functionality loss.

Table 4.4 shows the breakdown of the category of these missing sources. In ALL configuration,
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Figure 4.5: (a) compares the request count of control configuration with blanket JS blocking (ALL).
(b) shows average % reduction in request per website for blanket JS blocking (ALL).

71K functional <img> tags, 21K functional <iframe> tags, and 100K functional <script>

tags are missing.
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Figure 4.6: The % of blocked request in blanket
JS blocking configuration (ALL).

Tag Blanket JS

Category Blocking (ALL)

<image> 70600

<video> 5

<iframe> 21052

<script> 100278

<source> 39

Table 4.4: Missing HTML tags whose URLs are
classified as functional in blanket JS blocking
(ALL).

Takeaway. Two-thirds (66%) of the webpages experience a significant functionality

breakage when blanket JS blocking is employed.

RQ2: Effectiveness of Selective JS Blocking

Since Blanket JS blocking is ineffective, we study the effectiveness of selective JS blocking

by blocking tracking scripts (TS configuration in Table 4.1). Later, we block mixed scripts

(MS configuration in Table 4.1) to see its adverse effects on functionality.
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Figure 4.7: (a) compares the request count of control configuration with selective JS blocking (TS
and MS). (b) shows average % reduction in request per website for selective JS blocking (TS and
MS).
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Figure 4.8: The % of blocked request in selective
JS blocking configuration (TS).

Tag Tracking Mixed
Category JS Blocked (TS) JS Blocked (MS)
<image> 12607 20035
<video> 0 0
<iframe> 11774 14682
<script> 21650 37197
<source> 23 37

Table 4.5: Missing HTML tags whose URLs are
classified as functional in selective JS blocking
(TS and MS).

Blocking Tracking Scripts. In this experiment, we block 93K tracking scripts (TS) from

256K JS scripts across 100K live webpages and investigate its impact on tracking mitigation

and functional breakage. Figure 4.7 (a) reports that 95% of functional requests persist,

whereas 30% of tracking requests manage to survive. Figure 4.7 (b) shows an average

reduction in requests per webpage. In the case of TS, we observe a 57% reduction in tracking

requests and an 11% reduction in functional requests per webpage on average. Measurement

with HTML tag metric in Table 4.5 shows that blocking tracking JS scripts (TS) results in

46K missing functional sources across 100K webpages. In TS configuration, 13K functional

<img> tags, 12K functional <iframe> tags, and 22K functional <script> tags are missing.



Blocking Mixed Scripts. In this experiment, we block only mixed JS scripts (MS). We

expect a decrease in both functionality and tracking, as mixed scripts represent both. Figure

4.7 (a) visualizes these results. Overall, we see 86% of tracking and 92% of functional

requests. This observation is consistent with other HTML tag metric in Table 4.5. In MS

configuration, 20K functional <img> tags, 15K functional <iframe> tags, and 37K functional

<script> tags are missing. Figure 4.9 show visual breakage on pressl.co due to blocking

mixed JS scripts that eliminate tracking at the cost of critical functional breakage.

We further ask Do all webpages react similarly when tracking scripts are blocked? Our

goal is to unfold the resilience of different webpages with blocked tracking scripts (TS).

Figure 4.8 measures the distribution of webpages across different levels of functional

breakage and tracking mitigation from blocking tracking scripts. 39K webpages experience

less than 10% functional deterioration, and 35K webpages experience less than 10% tracking

mitigation.

Figure 4.9: Visual impact of blocking mixed JS
script. The left side shows a normal website,
whereas the right side shows a breakage due to
blocking.

The left of the bar chart represents webpages

that heavily employ mixed scripts, making

JS script blocking ineffective. 19K webpages

are only left with greater than 90% function-

ality deterioration and tracking mitigation,

representing the class of webpages relying

less on mixing scripts and thus are suscepti-

ble to JS script blocking. Although JS script

blocking is effective on a few webpages, it does not apply to a significant proportion of web-

pages that employ mixed scripts. Therefore, we must address the tracking behavior concealed

in mixed scripts.
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Figure 4.10: Comparison of % mixed JS scripts
when tracking score is in [-2,2] for web corpus
collected in 2021 and 2022.
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Figure 4.11: Comparison of % mixed JS scripts
without any threshold on tracking scores for
web corpus in 2021 and 2022.

Takeaway. To maximize tracking prevention while minimizing functional breakage,

mixed scripts need to be inspected at a finer granularity.

RQ3: Prevalence of Mixed Scripts

A trivial way for web developers and trackers to bypass filter lists is by mixing functional

behavior with tracking in a single script. Privacy-enhancing content blockers, such as uBlock

Origin, cannot afford to break the webpage and have no choice but to allow such scripts to

load in the browser. To gather concrete evidence on the prevalence of this practice, we first

conduct a longitudinal experiment on the frequency of mixed JS scripts over the past two

years (2021 and 2022) on 100K webpages. In 2021, we crawled 100K webpages and classified

the collected JS code using the SBFL-inspired approach from Section 4.3. We repeat the

same experiment in 2022 on the same 100K webpages.

Figure 4.10 shows the result of the experiment. The x-axis represents the percentage of

scripts that are mixed, ranging from 0 to 100 in 10 bins each of size 10. The y-axis represents

the number of webpages in each bin. In 2021, 15% of webpages out of 100K have between



11% to 20% of scripts that were mixed. This number increases to 18% in 2022. Overall, in

2021, out of 220K JS scripts, 28K are mixed JS scripts, making it 12.8%, whereas, in 2022,

37.5K out of 256K JS scripts are mixed, making it 14.6%. There is 14% increase in the

number of websites employing mixed scripts over 100K websites, as compared to last year.

For example, on the website kixie.com, we observe a new mixed JS script 20564323.js in

2022, initiating HubSpot analytics code along with the functional code that redirects the

Try Kixie Free button. We also find that the change in total script count corroborates the

general belief that JS scripts across the web have increased marginally since 2021 [194].

While investigating selective JS blocking, we also find deterioration in the functionality

when only tracking scripts are blocked (TS). Naturally, we ask why does blocking tracking

scripts (TS) result in functional deterioration? We suspect that such an issue may arise due

to the narrow threshold on SBFL’s tracking score. JS code units (i.e., scripts, methods) with

> 2 score are annotated as purely tracking. Functional behavior in tracking scripts can also

exist due to the dynamic nature of webpages. Between the tracking score measurement and

blocking experiments, the script may have changed, or the webpage deliberately refactors

the script slightly for reasons such as JS obfuscation [163, 183] or minification [158]. For

better threshold selection, we must answer what are the consequences of widening the tracking

score threshold? We conduct a brief sensitivity analysis on the tracking score’s threshold.

Figure 4.11 shows the new distribution when the threshold is set to maximum. We find that

46% of the webpages have more than 50% of their scripts mixed with at least one tracking

or functional request, further reducing the applicability of JS script blocking and showing

the extent of this problem. Our investigation in RQ3 highlights the following trade-off. We

either sacrifice functionality when blocking mixed JS scripts or let go of privacy. If functional

preservation is critical, we forego opportunities to block numerous tracking activities.



Takeaway. Websites are increasingly employing sophisticated code refactoring tech-

niques (e.g., inlining or bundling) to mix tracking code with functional code, making

existing content-blocking techniques ineffective.

RQ4: Fine-Grained JS Blocking

In RQ4, we assess the benefits of performing JS blocking at the method-level. Our hypothesis

is that blocking tracking JS method will provide higher precision in tracking prevention,

leading to significantly lower functional breakage than JS script-level blocking. In our first

experiment, we compare the effectiveness of method-level JS blocking (TM) against tracking

and mixed JS blocking (TMS).

We combine results from blocking both tracking and mixed scripts (TMS) as the baseline

because all tracking methods are either located in tracking scripts or mixed scripts. Blocking

a tracking JS method (TM) may eliminate the tracking behavior of a mixed script or a tracking

script.

Figure 4.12 summarizes these results. Both baseline tracking and mixed JS blocking

(TMS) and method-level JS blocking (TM) reduce the tracking requests by 71% and block on

average 62% of the tracking requests per page. The two configurations cover most of the

tracking requests among themselves, and blocking them will yield the same result. More

surprisingly, we see an improvement in total functionality retention when blocking method-

level (TM) i.e., a 6% total improvement, whereas the average functional request breakage

per page decreases by 7%. On evaluating HTML, JS method-level blocking(TM) retains

approximately 2X more functional HTML tag sources, such as images and scripts, than

blocking tracking and mixed JS scripts (TMS), as shown in Table 4.6. For example, in

Figure 4.14, we visually inspect deeretnanews.com to find functional media breakage in
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Figure 4.12: (a) compares the request count of control configuration with tracking and mixed
(TMS) and method-level JS blocking (TM). (b) shows average % reduction in request per website for
tracking and mixed (TMS) and method-level JS blocking (TM).
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Figure 4.13: The % of functional requests
in tracking and mixed (TMS) JS blocking and
method-level JS blocking (TM). A higher % of
functional requests is desirable.

Tag Tracking & Mixed Tracking JS Methods
Category JS Blocked (TMS) Blocked (TM)
<image> 30512 17524
<video> 0 2
<iframe> 18362 14035
<script> 56852 30011
<source> 37 35

Table 4.6: Missing HTML tags whose URLs are
classified as functional in tracking and mixed
(TMS) and method-level (TM) JS blocking.

TMS configuration that loads normally in TM configuration.

We further investigate how much functional breakage does each webpage face with

method-level blocking (TM) compared to the baseline TMS? Figure 4.13 sheds more light on the

functional request count between two blocking granularities. With method-level JS block-

ing (TM), 40% webpages have less than 10% functional breakage (preserved more than 90%

functional requests). In comparison, tracking and mixed JS blocking (TMS) leads to around

25% of webpages in this category.



We observe two classes of webpages: (1) webpages that decouple functionality and

tracking more prominently at the method-level and hence, are less prone to functional break-

age, and (2) webpages that tightly integrate tracking code with functional, which is harder

to separate even at the method-level and thus results in high functional breakage when such

methods are blocked. Further investigation on the number of such mixed methods finds that

6% of 366k JS methods integrate tracking with functional code.

Takeaway. Nearly 40% of the webpages implement functional and tracking code in

a modularized fashion. Blocking tracking methods in such webpages shows improved

tracking prevention and reduced functional breakage as compared to script-level block-

ing. The rest of the webpages demand increasing the granularity (i.e., statement-level)

or incorporating more sophisticated dynamic analysis.

4.4.2 Phase II: Visual Inspection of JS Blocking and Web Break-

age

In Phase II, we perform a qualitative study to validate our quantitative findings with an in-

depth visual inspection of sampled websites, as described in Section 4.4. We seek to answer

the following research questions:

5. Does our manual inspection validate that method-level JS blocking is more effective

than JS blocking?

6. Is method-level JS blocking the most effective in minimizing breakage while preventing

tracking?

7. Can webpages withstand the removal of tracking methods?



RQ5: Validating the effectiveness of method-level JS blocking.

Figure 4.15 summarizes the results of investigating true functional breakage on 383 websites,

measured according to four established metrics (i.e., navigation, SSO, appearance, and oth-

ers) and three levels of breakage. The X-axis represents the percentage of websites with func-

tional breakage.

Figure 4.14: Image compares the func-
tional breakage in tracking and mixed JS
blocking (right) as compared to method-level
JS blocking (left), which loads the website
deeretnanews.com normally.

Overall, there is an evident decline in the

number of broken websites, for both ma-

jor and minor breakage, when JS method-

level blocking is used instead of tracking and

mixed JS blocking. These results validate

the findings of quantitative analysis in RQ4.

In tracking and mixed JS blocking (TMS),

68 websites have minor breakage and 118

websites have major breakage, whereas, in

method-level JS blocking, 45 websites have

minor breakage, and 29 websites have major breakage. Most of the breakages were observed

in additional feature categories, comprising broken widgets (e.g., chatbots and feedback) and

malfunctioning home buttons.

Washingtonpost.com (ranked 9th in news and media publisher category in USA [72])

is one of the 383 sampled websites. It suffers a crash (a major breakage) in tracking and

mixed scripts JS blocking (TMS). On the contrary, the website is completely functional and

tracking-free at method-level JS blocking (TM).

Similarly, on tenki.jp (ranked 4th in the streaming and online TV category in Japan

[69]), manual inspection reveals a missing Twitter widget and a Twitter button in tracking



and mixed scripts JS blocking (TMS).

These breakages are documented as minor breakages. However, in method-level JS

blocking (TM), all tracking advertisements are blocked, and both the button and widget ap-

pear correctly and are functional, similar to the control experiment (CTRL). The website

ndtv.com (rank 5th in the news and media category in India [141]) renders multiple ad-

vertisements in the control experiment (CTRL). Website completely crashes in tracking and

mixed scripts JS blocking (TMS), whereas, in method-level JS blocking, it renders normally

without any advertisement.

We also argue that minor improvements can make a difference in many websites. For

example, website gamestop.com (rank 9th in the gaming category in USA [57]) shows 37.5%

breakage in tracking and mixed scripts JS blocking (TMS) whereas shows only 12.5% breakage

at method-level JS blocking(TM).

At TMS, we see unexpected white spaces on the top of the website, a minor breakage

in the appearance category. The webpage’s home button also causes the website to crash,

a major breakage recorded in additional functionality. However, in TM, we only see an

unexpected white space on the website, a minor breakage in the appearance category. These

results also affirm that the breakage metrics (network request and media resources) used in

Phase I are effective measures of breakage.

RQ6: Is method-level blocking most effective in reducing breakage and elimi-

nating tracking?

Although method-level JS blocking (TM) performs significantly better than tracking and

mixed JS blocking (TMS), there are cases where we observe little or no improvement. This is

mainly because of 6% methods still show mixed behavior i.e., include tracking and functional
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Figure 4.15: (Left) Comparison of ”minor” breakage in tracking and mixed JS blocking (TMS)
vs method-level JS blocking (TM) among 383 sampled websites. (Right) Comparison of ”major”
breakage.

code. Elpais.com (currently ranks 2nd in the news and media publisher category in Spain

[55]) fails to load a single resource in tracking and mixed scripts JS blocking (TMS). However,

in method-level JS blocking (TM), it causes the navigation bar to be unresponsive, a minor

breakage due to the mixed method e.loadInternal in script provider.hlsjs.js.

RQ7: Can webpages sustain simply removing the tracking JS method?

On 100K webpages, we have found that webpages in their vanilla form have 1.32 severe

errors on average. Severe error refers to three main compile-time errors in JavaScript: syntax

errors, runtime errors, and logical errors. Errors are common in JS and do not always impact

functionality. Compared to other software, webpages can withstand many runtime issues,

such as network error, JS script not found, and JS script syntax errors that can arise from

diverse host environments. In our experiments, we block JS tracking method by simply

renaming the method, which may lead to MethodNotFound error. Replacing a method

name and redirecting its invocation may generate additional errors. However, such errors do

not affect the website’s functionality, as they only terminate the tracking-inducing thread in



the JS process.

4.5 Discussion

In this section, we present the key takeaways of our empirical investigation, highlight the

key challenges of effective JS blocking, and offer future ideas for dynamic analysis-based

fine-grained JS blocking.

JS blocking at finer granularity. While blocking JS tracking methods is beneficial,

we still observe that 5.5% webpages with some levels of tracking activity and functional-

ity breakage. These webpages contain method(s) that (1) implement both tracking and

functionality or (2) are used by tracking and functional code for downstream activity (e.g.,

initiating a network request). We foresee better separation at a finer granularity. In the

future, we propose applying dynamic program slicing [82, 139, 201] to separate tracking

statements from functional statements. For inseparable code, we propose dynamic invari-

ant detection [116, 146] to construct program variable profiles for tracking and functional

behaviors. Program in-variants for tracking can be used as an automated guard to prohibit

tracking execution.

Dynamic nature of JS. We find that a number of scripts use dynamic features such as

eval() and anonymous functions [158, 176]. A number of scripts also employ JS minification

and obfuscation techniques that produce code that is uninterpretable manually [163, 183].

Such practices further motivate the use of advanced dynamic program analysis techniques

for tracking code identification and removal.

JS dataflow analysis. In this work, we captured the stack trace of a tracking or functional

network request and then annotate the script method at the top of the stack. By focusing



on request-initiator code units, we may miss opportunities to trace back to the source of the

tracking behavior inside the nested JS codebase. Finding such a location may offer better

opportunities to preserve functionality as the request-initiator method or script may simply

be a “gateway” for all network requests. In addition to the call stack, we can also leverage the

dataflow graph of the JS codebase to perform a richer analysis of a webpage’s execution. For

example, in Listing 4.3, the stack trace inside the method B does not contain the parameter

C.

1 function TrackingReq() {

2 C = getVal();

3 B(C)}; };

Listing 4.3: Call stack does not show complete

dataflow.

Since the method B depends on param-

eter C, the identification technique may not

understand the entire context when B() is

called. We recommend capturing such rich

execution traces with calling contexts and

a complete data flow graph to understand

better the flow of information through the

nested code and how it influences the execution behavior, tracking, or functional. We antici-

pate that such traces can help identify better locations (e.g., non request-initiator methods)

to alleviate tracking while preserving functionality.

Performance impact of JS blocking. Although we do not consider performance in our

analysis, our focus is to minimize tracking without comprising functionality. Recent works

[96, 97] show that the removal of non-critical components of JS code can significantly reduce

page load times. Similarly, removing the tracking JS code may reduce the performance

overhead along with functionality preservation.

Other future research directions. We plan to conduct an investigation into more mean-

ingful and semantics-aware tracking code identification. Our key observation is that finding

a tracking code unit in webpages has striking similarities with fault localization. Even a



simple faulty code localization method such as SBFL showed promising results towards

functionality-preserving JS blocking. On the code refactoring front, our observation of 100K

vanilla live websites reveals that today’s webpages can withstand severe errors. Therefore,

we expect that slightly unsafe code refactoring techniques to remove the tracking code may

be promising in effectively preserving functionality while preventing tracking.

Future tracking code identification techniques can greatly benefit from recent advances

in automated debugging and fault localization [131, 153]. For example, given filter list as a

test oracle, we can adapt search-based debugging approaches to perform a systematic search

on JS code and precisely isolate the tracking and functional code units [157]. Similarly, the

completeness of static code dependency analysis (e.g., reachability analysis) can complement

the soundness of dynamic analysis (e.g., call graph) to improve the precision of tracking code

localization.

Code clone detection is an active area of research, with many advanced techniques

available for traditional software [104]. Given annotated JS code units, code clone detection

techniques can identify similar code on webpages to find the presence of tracking code. Once

a JS code clone is correctly detected, we can leverage supervised learning [129, 179] to extract

valuable features, both semantic and syntactic, for accurate tracking code localization. If

such an accurate model is available, a JS blocker can detect tracking JS code units in real

time and block them before loading the website.

Similar to training a classification model, one possible direction is to create a taxonomy

of tracking code’s signature, similar to the ones in malware detection [121, 130, 204], and find

a match with a webpage’s JS entity at page load. However, page load times are critical in the

web domain, refraining from any computationally expensive operation. Using fingerprints

to locate tracking code at page load is a lightweight process that can easily be performed at

page load time without a noticeable slowdown.



Can publishers also benefit from the results of our JS blocking study? Our study

is conducted from the perspective of privacy-enhancing content-blocking tools. If suitable,

we suggest publishers adopt an approach such that either the website works reasonably

without JS or at least employ a highly decoupled JS architecture that separates tracking and

functionality, i.e., separate JS scripts/methods. This architecture will retain functionality

effectively when JS code level blocking reduces tracking. On the contrary, publishers who

want to retain maximum tracking may leverage the current weakness of JS script-level content

blocking by maximizing the overlap between tracking and functional code units.

4.6 Summary

In this chapter, we conduct a large-scale empirical investigation on the impact of different JS

Code blocking methodologies on 100K websites, followed by a careful visual inspection of 383

websites to measure website breakage. Our results show that blanket JS blocking prevents

tracking but incurs major functionality breakage on approximately two-thirds of the websites.

We identify that 15% of the scripts on the web combine tracking and functionality, leading

to website breakage if blocked. When we increase the granularity of JS blocking to target

tracking methods inside mixed scripts, the functional breakage of websites reduces by 2X

while providing the same level of tracking prevention. Our in-depth manual inspection of 383

websites validates that method-level JS blocking reduces major breakage by 3.8×. Through

this study, we highlight the promise of fine-grained JS blocking and the subsequent open

challenges towards adapting such a technique in practice.



Chapter 5

Blocking Tracking JavaScript at the

Function Granularity

5.1 Introduction

Modern websites extensively rely on third-party JavaScript (JS) to implement tracking (e.g.,

advertising, analytics) and non-tracking (e.g., functional content) [19, 98, 154]. In fact, 81%

of all tracking requests are triggered by JS [89]. Privacy-enhancing content blockers aim to

block tracking JS without breaking the legitimate website functionality. As the arms race has

escalated with trackers attempting to evade blocking, the state-of-the-art content blocking

approaches face the following key challenges in blocking tracking JS [27, 100, 127, 177, 181].

First, the state-of-the-art content blocking approaches do not capture the context

needed to effectively detect tracking behavior implemented in a script. While existing ap-

proaches (e.g., [87, 100, 177]) capture the script that initiates a network request, they do not

capture the full stack trace that is needed to understand the sequence of function calls that

result in the network request. The lack of sufficient consideration of the execution context

associated with tracking behavior fundamentally limits their effectiveness.

Second, the state-of-the-art content blocking approaches are challenged when track-

ing and non-tracking resources are lumped together. When both tracking and non-tracking

61



resources are served from the same network location, filter lists [21, 22] or even ML ap-

proaches [127, 177] struggle. This issue is further exacerbated by the use of URL encryption

[24, 196]. This means that URL-based approaches are unable to discern between tracking

and non-tracking resources. Similarly, JS signatures [100] are ineffective when tracking and

non-tracking code is combined in the same script. This is fundamentally a granularity issue

– i.e., specific functions within mixed scripts are responsible for tracking [87].

Third, the state-of-the-art content blocking approaches rely on the laborious process of

manually curated filter lists. Filter lists are used to block tracking network requests [21, 22]

and stop the execution of tracking code [7, 66]. TrackerSift [87] relies on manually curated

filter lists to detect mixed tracking scripts. uBlock Origin employs manually refactored

replacements (aka scriptlets) to handle mixed tracking scripts [34, 71]. The reliance on

manual curation fundamentally hinders scalability.

NoT.JS advances the state-of-the-art by addressing these three challenges. First,

NoT.JS leverages browser instrumentation to capture dynamic execution context, includ-

ing the call stack and the calling context of each function call in the call stack. While a

JS function’s static representation remains unchanged, the execution context around it may

alter its semantics. Dynamic execution context enables NoT.JS to semantically reason about

a JS function execution, which is essential in differentiating its participation in tracking and

non-tracking activity. Second, NoT.JS leverages this dynamic execution context to encode

fine-grained JS execution behavior in a rich graph representation that includes individual JS

functions within each script. Third, NoT.JS trains a supervised machine learning classifier

to detect tracking at the function-level granularity and automatically generate surrogate

scripts to specifically block the execution of tracking functions while not impacting execu-

tion of non-tracking functions. NoT.JS is the first to fully automate the entire surrogate

generation process end-to-end, which are currently painstakingly hand-crafted by experts.



We evaluate the effectiveness, robustness, and usability of NoT.JS on the top 10K

websites from the top-million Tranco list [145]. Our evaluation shows that NoT.JS accurately

detects tracking JS functions with 94% precision and 98% recall, outperforming the state-of-

the-art by up to 40%. NoT.JS’s contributions in incorporating dynamic execution context

account for 29% improvement in F1-score. Against a number of JS obfuscation techniques,

such as control flow flattening, dead code injection, functionality map, and bundling, NoT.JS

remains fairly robust – its F1-score decreases by only 4%. NoT.JS’s automatically generated

surrogate scripts block 84% of the tracking JS function calls without causing any breakage

on 92% of the websites.

We deploy NoT.JS to study the tracking functions in mixed scripts, discovering that

62% of the top 10K websites have at least one mixed script. We find that the tracking

functions are served in the mixed scripts from more than eight thousand unique domains,

including those belonging to tag management services, advertisers, and content delivery

networks (CDNs). Notably, among these mixed scripts, a significant 70.6% are third-party

scripts actively engaged in tracking activities like cookie ghost writing.

Our key contributions are summarized as follows:

1. We propose NoT.JS, a machine learning-based approach to detect and block tracking

at the JS function-level granularity. We show that NoT.JS outperforms the state-of-

the-art in terms of accuracy and is robust against evasion.

2. We implement NoT.JS as a browser extension and show that it can be used to auto-

matically generate surrogate scripts by neutralizing tracking function calls. We show

that these surrogate scripts can be injected into a website to reliably mitigate tracking

at its origin without breaking website functionality.

3. We report to the filter list authors [21, 22] a sample of mixed scripts, detected by



NoT.JS as having both tracking and non-tracking functions, but missed by the filter

lists. The filter list authors’ review confirms that these are mixed scripts, known to

implement tracking, cannot be blocked by filter lists without breaking functionality.

4. We deploy NoT.JS on the top 10K websites to measure the prevalence of tracking

functions in the mixed scripts. We show that these mixed scripts are commonly served

by tag management services, advertisers, and content delivery networks (CDNs). A

majority of these mixed scripts are third-party, actively engaged in tracking activities

such as cookie ghostwriting.

5.2 Threat-Model

In this section, we describe the threat model for mixed scripts – JS that combines both

tracking and non-tracking functionality, making it challenging for privacy-enhancing content

blockers to detect and block them.

Definitions. We use the term initiator function to describe a JS function that directly

initiates a network request. This function is always at the top of the call stack when we

analyze a network request. In Figure 5.1, both getIdentifier and loadImage are examples

of initiator functions. Next, we use the term gateway function to describe a specific type of

initiator function that only initiates network requests and performs no other task. A gateway

function essentially initiates network requests on behalf of other functions. In Figure 5.2,

sendRequest is an example of a gateway function. Finally, we use the term "neutralize"

to remove tracking in a JS by replacing a tracking function call with a mock function call.

Below, we describe two specific techniques that trackers use to combine tracking and

non-tracking JS code.



Figure 5.1: Marker Ê denotes a tracking re-
quest sent to tracker.com, which in turn returns
a user identifier indicated by Ë. This identifier
is stored for monitoring user activity. On the
other hand, Ì marks a non-tracking request dis-
patched to a CDN, which fetches an image rep-
resented by Í

Figure 5.2: Marker Ê marks a call from
getIdentifier to sendRequest, initiating a
tracking request to tracker Ë. The received
identifier is captured at Ì and relayed back to
the originating function Í. Concurrently, Î sig-
nifies a call from loadImage to sendRequest,
resulting in a non-tracking request Ï to a CDN.
The fetched image is displayed at Ð and re-
turned to loadImage Ñ.

Distinct tracking and non-tracking JS functions in the same script. Figure 5.1

illustrates a script containing both tracking and non-tracking JS functions, each with separate

roles. In this example, getIdentifier gathers user data and sends a tracking request to

tracker.com Ê, which returns a user identifier Ë. This identifier is used to track user

activity on the webpage. The same script also includes functions like displayContent

and loadImage, essential for the webpage’s proper functioning. For instance, loadImage

sends a non-tracking request Ì to CDN.com to load an image Í. Blocking the script to

stop getIdentifier would also disable essential functions like loadImage, harming the

webpage’s functionality. Therefore, the ideal approach would neutralize tracking function

calls to getIdentifier while leaving the rest of the script untouched.

Use of gateway functions to initiate tracking and non-tracking requests. Figure 5.2

illustrates how a gateway function, sendRequest, is used to handle both tracking and non-

tracking network requests. The single script includes functions for both tracking and non-

tracking tasks. Specifically, getIdentifier gathers user data for tracker.com to obtain a

user identifier. Conversely, loadImage fetches images for the page from CDN.com. In contrast

with the previous scenario, these functions do not initiate requests directly and delegate this



Ê Ë Ì Í Î Ï

Figure 5.3: NoT.JS pipeline: Ê Crawl sites, save data; Ë Create JS function graph; Ì Extract
features and Í label it; Î Train classifier; Ï Classify tracking/non-tracking JS functions, and create
surrogates.

task to the gateway sendRequest function. For instance, getIdentifier calls sendRequest

Ê to send request to tracker.com Ë. In return, tracker.com provides a user ID Ì, which

is sent back to getIdentifier Í. Similarly, loadImage calls sendRequest to fetch images

from CDN.com, which are then displayed on the webpage in Î - Ð.

The gateway functions further abstract tracking and non-tracking in JS code and neces-

sitate the inclusion of the complete execution context of a JS function to determine the most

effective strategy to block the execution of tracking JS code. Since the tracking function

getIdentifier is not always at the top of the call stack (Figure 5.2), simply neutralizing the

initiator function is not effective. Therefore, an ideal approach needs to incorporate a com-

plete execution call stack and calling context to identify tracking JS functions. In this case,

only the function calls to sendRequest invoked from getIdentifier should be neutralized

while maintaining their functionality when sendRequest is invoked from loadImage.

5.3 Design And Implementation

In this section, we describe the design and implementation details of NoT.JS. Figure 5.3

provides an overview of NoT.JS’s pipeline, which starts with automating website crawling

using the Selenium web driver and collecting data using a Chrome browser instrumented



with a custom-built extension Ê. Using the collected data, NoT.JS generates a graph rep-

resentation Ë that leverages the JS dynamic execution context of a comprehensive list of

webpage’s activities like network requests, DOM modifications, storage access, and a subset

of other Web APIs (listed in Table 5.1), that are commonly used by trackers [91]. Using this

graph representation, NoT.JS extracts unique structural and contextual features of tracking

activity Ì and labels it Í, which are then utilized for training a random forest classifier

capable of accurately identifying tracking entities Î. Finally, the classification results are

utilized to generate surrogate scripts that neutralize tracking function calls which can be

replaced at runtime by content blockers Ï.

5.3.1 NoT.JS’s Chrome Instrumentation

NoT.JS first collects the training data to train a fine-grained, high-accuracy classifier. It

automates the website crawling and data collection process using selenium [67] and a custom-

built Chrome extension. We choose Chrome extension interface [51] to capture web activities

due to its ease of use and lightweight nature compared to instrumenting the JS engine, such

as V8 in Chrome [44]. NoT.JS’s Chrome extension captures the JS dynamic execution

context for each activity on the webpage, along with other relevant meta-data such as net-

work requests and response payloads. NoT.JS’s JS dynamic execution context for each web

activity comprises of:

• The call stack 1 outlines the sequence of function calls, including details like the script

URL, method name, and line and column numbers where each function is invoked.

• The scope chain 2 for each function call within the stack that includes the number

of arguments and local and global variables.
1https://chromedevtools.github.io/devtools-protocol/tot/Runtime/#type-CallFrame
2https://chromedevtools.github.io/devtools-protocol/tot/Debugger/#type-Scope

https://chromedevtools.github.io/devtools-protocol/tot/Runtime/#type-CallFrame
https://chromedevtools.github.io/devtools-protocol/tot/Debugger/#type-Scope


Activity Property

Network Request

Network.requestWillBeSent
Network.responseReceived
Network.requestWillBeSentExtraInfo
Network.responseReceivedExtraInfo

DOM Modifications
DOM.attributeModified
DOM.childNodeInserted
DOM.childNodeRemoved

Storage Access
Document.cookie (get/set)
Storage.setItem
Storage.getItem

Web APIs

Navigator.sendBeacon
Navigator.geolocation
Navigator.userAgent
BatteryManager.chargingTime
BatteryManager.dischargingTime
MouseEvent.movementX
MouseEvent.movementY
Element.copy
Element.paste
Document.visibilitychange
Touch.force

Table 5.1: List of webpage’s activities captured by NoT.JS.

The intuition behind capturing dynamic execution context is to gain a deeper understanding

of the web activity. Figure 5.4 illustrates the two primary components of the Chrome ex-

tension, namely the background script and content script, which work together to facilitate

data collection.

Background script. The background script [45] is an essential component of the Chrome

extension that captures webpage activity using the Chrome DevTools Protocol APIs [52].

Specifically, the network API monitors traffic and provides valuable information about

HTTP requests and responses, including headers, bodies, call stack, scope chain, and times-

tamps. Additionally, the DOM API captures changes in the Document Object Model and

provides read and write operations along with the call stack, and the scope chain. However,

the DevToolProtocol does not expose all Web APIs, cookies, or storage APIs, which are



available through the content script as discussed next.

Content script. The content script [53] runs within the context of the webpage and can

interact with its functionality. It is responsible for collecting the JS dynamic execution

context, i.e., call stack and scope chain for the webpage’s activity, and exposing Web APIs,

cookies, and storage APIs that are not available in the background script, by overriding

functions. Listing 5.1 shows the snippet from content.js that overrides the sendBeacon

function of the Navigator object. The overridden function collects two types of information:

the call stack of the JS execution and the scope chain of each function call in the call

stack. The call stack is collected using the console.trace() [28] function, which logs the

stack trace. The scope chain is collected using the Debugger API [29], specifically via the

Debugger.paused event that provides the callFrames.scopeChain parameter.

1 // storing the original sendBeacon function

2 const sendBeac = Navigator.prototype.sendBeacon;

3 // overriding sendBeacon function

4 Navigator.prototype.sendBeacon = function(url, data) {

5 // collect stack trace and scope chain

6 console.trace();

7 Debugger.paused.callFrames.scopeChain;

8 // call back the original function

9 senBeac();}

Listing 5.1: Overriding sendBeacon function using content script.

Figure 5.4 illustrates the sequence of the data collection process with NoT.JS’s chrome

extension. First, content script.js sets up communication with background.js, as shown

in step Ê. On a network activity or DOM modifications (Ë), background.js triggers a mes-

sage for content.js to capture the corresponding JS execution call stack and scope chain,

as shown in Ì. Finally, the collected data is sent to background.js for storage, as shown in



Í and Î. Additionally, the content.js uses the same communication channel to log cookies,

storage, and APIs data on a storage.

Figure 5.4: An illustration of NoT.JS’s chrome-
extension, showing the communication sequence
between background and content scripts.

Data collection. We conduct an automated

crawl of the landing pages of the top 10K

websites in the Tranco top-million list [145]

as of July 2023, using Selenium with Chrome

114.0.5735.133 and a purposely-built exten-

sion. We perform this crawl from the United

States. On average, it took approximately 10

seconds for a webpage to fully load (until the onLoad event is fired) [65], and an additional

30 seconds before moving on to the next website. The crawling process is stateless, as we

cleared all cookies and local browser states between consecutive crawls. This helps to ensure

that the collected data is more reproducible and accurately reflects the current state of the

webpage without being biased by previous webpages visits.

5.3.2 Graph Representation

NoT.JS constructs a graph representation from the collected data of each webpage. NoT.JS’s

graph representation leverages JS function-level features and JS execution context of each

of the webpage’s activity, as listed in the Table 5.1. The graph’s unique structure offers

several advantages over traditional techniques. NoT.JS allows for semantic reasoning with

its dynamic execution context and enables traceability by providing a complete history of how

a particular webpages activity is executed. This information is essential in differentiating the

intention of the same graph node (e.g., JS function) when participating in different execution

scenarios. While their static representation remains unchanged, the JS execution context

around them at runtime may alter their semantics. By building a graph representation



first, NoT.JS facilitates the extraction of structural and contextually rich features, which it

utilizes to identify privacy-invasive JS functions that are otherwise tightly interleaved with

non-tracking code. NoT.JS’s graph representation is the first-of-its-kind [127, 177, 181] to

incorporate the JS execution call stack and calling contexts (scope chain) fully.

Nodes. NoT.JS categorizes a webpage’s activity into five types of nodes: JS functions, DOM

elements, network, storage, and web APIs. The JS function node represents a function

call that has attributes, including its parent script’s URL, name (except for anonymous

functions), scope chain, line, and column number. The scope chain refers to the variables,

functions, objects, and closures that a JS function can access at the time of invocation.

Closures are a special type of function that can access variables in its enclosing function’s

scope chain, even after the function has returned. One function can generate multiple nodes

depending on its calling sequence (call stack) and context (scope chain).

Figure 5.5: Sequence diagram: getMouseMove()
collects data, calls updateCookie(data) to mod-
ify cookie, triggers sendReq(data) to send the
request.

This is particularly useful for gateway

functions that participate in both tracking

and non-tracking activity. For instance,

in Figure 5.2, NoT.JS creates two separate

nodes for the sendRequest function: one for

its invocation within getIdentifier and an-

other for loadImage. The DOM element

node has attributes such as element name,

class, or id and a value if available. The net-

work node represents all the network requests

that are sent by a webpage. The storage node

represents all client-side data storing mecha-

nisms, with attributes that differentiate be-



tween mechanisms such as cookies [30] and

local storage [35]. The web API node type represents Web APIs, as listed in Table 5.1, with

attributes that differentiate between APIs, such as charging time and discharging time.

NoT.JS’s graph representation is the first to include function and web API node types.

Edges. Edges in the graph generated by NoT.JS depict runtime dependencies between

nodes. We extract two types of edges: call and behavioral edges. Call edges represent

the sequence of function calls in a JS execution call stack. These edges connect function

nodes to other function nodes to represent the dynamic caller-callee relationship. Whenever

a function is called, a directed edge is created from the caller function node to the callee

function node. These edges add valuable information about the sequence of function calls,

which existing graph representations do not capture [127, 177]. Such edges enhance NoT.JS’s

capabilities in modeling the semantics of the JS script by making its graph context-aware.

Figure 5.6: A simplified NoT.JS’s graph on
mouse movement tracking.

On the other hand, behavioral edges are

used to represent interactions between the JS

functions, DOM, network, storage, and API

nodes. If a function initiates a network re-

quest, a behavioral edge is created from the

corresponding JS function node to the net-

work node. Similarly, if a function triggers

a storage or Web API call, a behavioral edge

is created between the JS function node and

the corresponding storage or Web API node, respectively. The direction of the edge is de-

pendent on the context of the API call. For instance, if the JS function is storing data, there

is an edge from the JS function to the storage or API node, and vice versa.

Graph construction. Figure 5.5 illustrates how NoT.JS constructs a graph representation



Features send update getMouse
Req() Cookie() Move()

Number of requests sent 1 1 1
Is gateway function 1 0 0
Number of cookie (setter) 0 1 0
Number of web API (getter) 0 0 1
Number of arguments 1 1 0
Number of callee functions 1 1 0
Number of caller functions 0 1 1
Ascendant has cookie accesses 1 0 0
Descendant has cookie accesses 0 0 1
Ascendant has web API accesses 1 1 0

Table 5.2: A small subset of features extracted from Figure 5.6.
for a webpage that tracks user movement on an HTML element, stores it in a cookie, and

sends data to an external server. Each box in the illustration represents an entry of a JS ex-

ecution call stack. The getMouseMove function is responsible for capturing the movement of

the mouse pointer on the specified HTML element. This is achieved through the MouseEvent

API, which provides access to the movementX property. This property represents the differ-

ence in the X coordinate of the mouse pointer between the current event and the previous

mouse move event. Once the data is collected, it is passed on to the updateCookie function,

which updates the cookie value using the document.cookie property. The data is then

passed to the sendReq function, which sends an HTTP request to an external server with

the data.

Figure 5.6 shows a NoT.JS’s graph representation. The graph begins with a behavioral

edge (dotted-line) that obtains mouse movement data associated with the specific HTML

element, represented in Ê, and Ë. The call edge (solid-line) Ì between getMouseMove and

updateCookie represents a function call that also passes the mouse movement data (scope).

The behavioral edge in Í represents the document.cookie call to update the storage node.

The call edge Î between updateCookie and sendReq represents a function call that also

passes the mouse movement data (scope). Finally, the behavioral edge Ï between the func-

tion and the network node represents the HTTP request sent to an external server.



5.3.3 Feature Extraction

Once a fine-grained graph is generated for all observed web activities on a webpage, NoT.JS

extracts two kinds of features from the graph to augment the current node’s attributes:

structural and contextual-based features.

Structural features. Structural features represent relationships between nodes in the

graph, such as ancestry information and connectivity. For example, how many Web API

nodes are present in the ancestor chain of a function node or whether a function directly or

indirectly interacts with a storage node? Adding JS functions from the execution call stack

improves the completeness of the structural features by providing additional context under

which a function is called and filling in the missing pieces about the sequence of events prior

to reaching the current node.

Contextual features. NoT.JS includes JS dynamic execution context in the generated

graph using contextual-based features. We extract three types of contextual features. First,

we count the number of local variables, global variables, and closure variables. Second, we

count the number of arguments passed to the function. Third, we include the number of net-

work requests, DOM modifications, and API (e.g., cookies, storage APIs, etc.) calls made

by the function. These features play a vital role in understanding JS function behavior,

especially during the execution of tracking activity. A function’s calling context has been

used previously to construct the dynamic invariants of a program, which helps in verifying a

given program behavior [156, 164, 200]. Such invariants are often implemented as assertions.

Similarly, NoT.JS’s contextual features can help the downstream training process learn in-

variants about JS function under which the JS function participates in tracking and the

invariants under which it participates in non-tracking activity. Our graph representation is

unique in its ability to extract contextual-based features that cannot be obtained by prior



approaches [127, 177, 181].

Table 5.2 presents a subset of the features, including structural and contextual at-

tributes, obtained from the graph representation of NoT.JS shown in Figure 5.6. The number

of requests sent feature is triggered for all functions, as the function calls appear in the

call stack when tracking requests are initiated, with the sendReq function acting as the gate-

way. Contextual features encompass the number of storage (getter and setter) and web API

(getter and setter) operations, as well as function arguments, providing insights into each

function’s contextual behavior. Furthermore, the inclusion of structural attributes, namely

the ascendant and descendant relationships within the storage and web API nodes, enriches

our understanding of hierarchical structures and code dependencies.

5.3.4 Labeling

We adopt a prior approach [89] to label NoT.JS’s graph representation. We label network

requests as either tracking or non-tracking based on whether their URL matches the rules in

EasyList [21] and EasyPrivacy [22], which are widely employed by content blockers to identify

tracking activity. Next, we analyze the call stack of the requests and label a JS function

as tracking if it exclusively participates in the stack trace of tracking requests. Otherwise,

if a JS function participates in non-tracking requests (or a combination of tracking and

non-tracking requests), we label it as a non-tracking JS function. This approach establishes

a conservative ground truth where the functions with mixed behavior are labeled as non-

tracking. However, these mixed functions comprise only 3.9% of our ground truth, , as

discussed in more detail in Section ??. In addition, we exclude functions that trigger web,

storage, or cookie API calls but are not present in either a tracking or non-tracking request

call stack. This is because we lack evidence from filter lists to label them.



5.3.5 Classification

We use a random forest classifier, which is an ensemble learning method. It constructs

multiple decision trees and combines their predictions to obtain a final prediction. Prior work

[127, 177] also opt to use a random forest classifier since it outperformed other comparable

models. To assess our classifier’s performance, we divide our dataset into training, validation,

and testing sets. Specifically, we use 60% of the dataset for training the classifier, 20%

for evaluating its accuracy during hyperparameter tuning, and the remaining 20% for final

evaluation of the model. To optimize hyperparameters, we use the validation set to configure

the depth of each decision tree in the forest to 20 and the number of trees used in the forest

to 1000. We partition our data to avoid any overlap between the JS functions used across

training/validation and testing.

Data-split Tracking Non-tracking Total

Functions Functions Functions

Training 408,429 674,724 1,083,153

Validation 135,590 225,462 361,052

Testing 136,045 225,007 361,052

Table 5.3: The breakdown of the data employed to train, test, and validate the NoT.JS classifier.

5.3.6 Surrogate Generation and Replacement

Our classifier categorizes JS functions into tracking or non-tracking. For tracking JS, NoT.JS

creates a replacement JS called a surrogate to replace the original JS in future page loads.

NoT.JS’s surrogate generation and replacement is website-specific, which helps address the

variations in obfuscation and minification techniques deployed by different websites. Our

approach for surrogate generation involves neutralizing tracking function calls identified by



the classifier by substituting them with a mock function call within the script. Once surrogate

scripts are generated for a specific website using this approach, we create a filter rule that

enables the substitution of the original script with the surrogate script at runtime.

Surrogate generation. Our surrogate script generation process relies on three key ele-

ments: (1) The classification labels assigned by NoT.JS. (2) The script source as it appeared

when the response was received. (3) The line and column numbers corresponding to the

function call at runtime.

1 function x() {

2 var e = [];

3 ...,

4 t.__satelliteLoadedCallback((function() {

5 var n, a, o;

6 for (n = 0, a = e.length; n < a; n++) o = e[n],

7 t._satellite.-track(o[0], o[1])

7 t._satellite.+mockTrack()

8 })), _satellite.track("pageload")}

Listing 5.2: The example demonstrating the neutralization of tracking function calls during

surrogate generation.

Leveraging this information, we neutralize tracking function calls by substituting them with

a mock call designed to consistently return an empty response. It is important to note

that surrogate generation is an offline step. To illustrate this process, consider the function

call track(o[0], o[1]) on adobe.com in Listing 5.2 that operates in the context of Adobe

Analytics and is classified as tracking by NoT.JS. NoT.JS records the exact line (line 7) and

column where this function call begins. The column corresponds to the first element, "t"

in this example. In the first step, we verify that the function call exists at the recorded line

and column numbers based on its function name while skipping this step for anonymous



functions. We replace the original function call with the mock call that returns an empty

response. As we discuss later in Section 5.4.5, this simple approach is able to effectively

neutralize a vast majority of tracking function calls while upholding the structural integrity

of the script.

Surrogate replacement. NoT.JS replaces the original mixed scripts with the generated

surrogates at runtime during future page loads. NoT.JS first identifies the target scripts on

a webpage using regular expressions (regex) of generated surrogate scripts. For example, we

can create a regex rule to identify scripts associated with a domain like adobe.com/*analy

tics.js. Once identified, NoT.JS replaces the target script with the corresponding surro-

gate. This replacement mechanism is supported in different Chrome extension environments

like manifest versions 2 (V2) and 3 (V3). In manifest V2, Chrome extensions employ the

Fetch API [32], a conventional method for intercepting and modifying responses at runtime.

When a network request is made, the NoT.JS’s browser extension intercepts it, verifies that

the response status is OK (status code 200), and subsequently modifies the response content.

This approach allows us to replace a mixed script with the corresponding surrogate script.

It is worth noting that this approach is similar to scriptlet replacement in content blocking

tools such as uBlock Origin [71] and AdGuard [7]. Manifest V3 introduces the Declarative

Net Request API [38], which presents distinct capabilities for response modification. This

API does not provide direct response modification capabilities like V2. In the V3 environ-

ment, the original request is blocked and redirected to an alternate URL, effectively replacing

the response content with the content retrieved from the redirected URL [36]. This allows

successful replacement of surrogate scripts in a V3 extension environment.



5.4 Evaluation

This section evaluates NoT.JS’s accuracy, feature contributions, robustness to JS obfus-

cation and enhanced code coverage, and compares it to existing countermeasures. It also

evaluates its automated surrogate generation, replacement, and user-centric manual break-

age inspection.

5.4.1 Accuracy Analysis

We train NoT.JS’s random forest classifier on approximately 1.1 million JS functions in the

training set, do hyper-parameter tuning on 361 thousand JS functions in the validation set,

and then evaluate its accuracy on 361 thousand JS functions in the testing set. Table 5.3

presents a breakdown of the data split between tracking and non-tracking functions. NoT.JS

is able to achieve a precision of 94.3% and a recall of 98.0%. The overall F1-score for NoT.JS

is 96.2%, indicating its effectiveness in accurately distinguishing between tracking and non-

tracking JS functions.

Model Section Precision Recall F1

Score

NoT.JS Standard - 5.1 94.3% 98.0% 96.2%

NoT.JS Obfuscation - 5.3 93.5% 90.4% 91.9%

NoT.JS Coverage - 5.3 88.4% 95.7% 91.9%

WebGraph Comparison - 5.4 49.3% 66.4% 56.5%

Table 5.4: Results showcase NoT.JS’s precision, recall, and F1-score under standard setting, en-
hanced code coverage, post-JS obfuscation robustness, and comparison with WebGraph.

Error analysis. While NoT.JS has a relatively low false positive rate (3.5%) and false neg-

ative rate (1.9%), we investigate the reasons and contexts of its errors below. We conduct a



manual evaluation by randomly sampling 50 instances where NoT.JS incorrectly identifies

JS functions as tracking, despite our ground-truth data missing them. The causes for these

errors can be categorized into three primary categories: The first category includes functions

in mixed scripts that cannot be blocked by filter lists to prevent website functionality break-

age. For example, the function t in js.cookie.min.js on kakaku.com sets the tracking

cookie and is classified as tracking by NoT.JS, while its other functions primarily serve the

history feature on the website. Consequently, being a mixed script, it cannot be blocked by

filter list authors (acknowledged in this GitHub issue [77]), yet it can be handled by NoT.JS.

The second category includes functions that are actually involved in tracking but missed

by filter lists [85]. For example, the function b in the script htlbid-advertising.min.js

on wkrn.com manages ad slots and their configurations. We conduct an in-depth man-

ual evaluation of the entire script, discovering that most of its functions are classified as

tracking by NoT.JS. Following this, we report this issue [76] to filter list authors, lead-

ing to its inclusion in the filter rules. In total, NoT.JS identifies ten such cases out of a

sample of fifty in the aforementioned two categories, that are either missed or cannot be

handled by EasyList/EasyPrivacy. We report these cases to filter list authors, leading to

four [75, 76, 77, 78] being recognized and six still pending review, highlighting NoT.JS’s

superior detection capabilities as compared to EasyList/EasyPrivacy. The last category

includes functions, where forty out of fifty instances represent an actual error by NoT.JS,

primarily due to reliance on features of dynamic execution context. We use the number of

arguments, local and global variables in the scope chain, rather than examining the types

or values passed to these variables. Therefore, functions with identical dynamic execution

contexts—i.e., the same call stack and scope chain—for both tracking and non-tracking

activities are labeled as non-tracking in the ground truth but are classified as tracking by

NoT.JS. These instances are not technically misclassified by NoT.JS, but rather point to the

limitations intrinsic to dynamic execution context. Such multi-purpose functions can serve



both tracking and non-tracking roles. For instance, in Listing 5.3, _setField function in

visitor*.js script served by microsoft.com. If parameter f is set to false, the function

participates in the tracking activity on the website. However, if parameter f is set to true,

the function participates in the non-tracking activity on the website. In ground truth, this

function is labeled as non-tracking because of the same number of arguments. A deeper

examination of parameter types and values could address these issues in the ground truth

and the classification model trained on it in the future. In summary, 20% of the tracking

functions in the sample represent errors in the filter list, while the remaining 80% constitute

actual errors by NoT.JS.

1 a._setField = function(b, d, f) {

2 null == a._fields && (a._fields = {});

3 a._fields[b] = d;

4 f || a._writeVisitor()};

Listing 5.3: _setField function from the Microsoft script domain

False negatives predominantly stem from code coverage, as not all properties of tracking

functions are captured. For instance, a more comprehensive list of Web APIs could be em-

ployed to capture additional characteristics, which would also assist in more precise profiling

of tracking functions and, consequently, fewer false negatives. More comprehensive crawling

can help address these issues, but it may lead to more noise and higher graph construction

costs.

5.4.2 Feature Analysis

We study the most influential features in the classification of JS functions by NoT.JS using

the concept of information gain. The number of storage accesses is one of the top 10 features

in distinguishing tracking functions from non-tracking. Previous research recognizes that



Initiator Non-initiator Context Precision Recall F1
Functions Functions Score

4 7 7 68.2% 65.1% 66.9%
4 4 7 55.8% 99.7% 71.5%
4 4 4 94.3% 98.0% 96.2%

Table 5.5: Ablation analysis results of NoT.JS’s features in terms of precision, recall, and F1-score.

storage APIs are commonly employed by trackers [177]. Figure 5.7a shows that tracking

JS functions have a higher frequency of storage accesses than non-tracking functions. The

average storage access is 15 in tracking functions and 8 in non-tracking functions. Another

top-10 is the number of successor functions, which offers insights into the calling context of

the function. Successor functions show how connected a function is to other parts of the

code. Figure 5.7b shows that tracking JS functions tend to have more successor functions

than non-tracking functions. The average number of successor functions is 252 for tracking

functions and 148 for non-tracking functions. The higher number of successor functions in

tracking activities indicates more complex behavior, likely designed to gather, process, and

transmit personal data.

Ablation analysis.

Next, we evaluate the impact of various graph configurations and features. We sum-

marize our findings in Table 5.5. First, we find that solely incorporating initiator functions

in the graph while excluding non-initiator functions lowers the F1-score of NoT.JS by 29.3%.

This reduction is primarily due to the limitation that focusing solely on initiator functions

omits the broader context essential for distinguishing between tracking and non-tracking

activities. Next, we include both initiator and non-initiator functions but exclude the ex-

ecution context features. Under this configuration, although precision decreases, there is

a notable increase in the recall. This shows that the model now possesses a broader code

coverage — it is identifying a greater number of tracking functions, thereby elevating recall.
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Figure 5.7: CDF highlights NoT.JS features: (a) storage accesses in tracking vs non-tracking
functions, (b) successor functions in tracking vs non-tracking functions.

However, this leads to an increase in false positives. We observe that a call to the same

function in tracking and non-tracking contexts has the same representation in the graph;

thus, the extracted features are not distinctive enough to accurately segregate tracking func-

tions from non-tracking ones. Finally, we include all functions and contextual features. This

setting surpasses the performance of all prior configurations owing to the enhanced code

coverage and execution context. The integration of calling context in NoT.JS results in the

best precision and overall F1 score. This underscores the pivotal role of JS dynamic execu-

tion context with both initiator and non-initiator functions, emphasizing its importance in

precisely identifying tracking JS functions.

5.4.3 Robustness

We evaluate the robustness of NoT.JS in detecting tracking functions amid manipulation

attempts such as JS code obfuscation and code modifications, as well as in the context of en-

hanced code coverage. Code obfuscation. JS obfuscation is often employed to conceal the

meaning of the code, making it harder to decipher for those who may try to reverse engineer

or modify it [105, 202]. From our dataset of 10K websites, we randomly selected 10%, which

includes 15,939 unique scripts. We then obfuscate these scripts using the obfuscater.io



[63] using the following configuration:

1 compact: true,

2 controlFlowFlattening: true,

3 controlFlowFlatteningThreshold: 1,

4 deadCodeInjection: true,

5 deadCodeInjectionThreshold: 1,

6 disableConsoleOutput: true,

7 identifierNamesGenerator: 'hexadecimal',

8 rotateStringArray: true,

9 selfDefending: true,

10 stringArray: true,

11 stringArrayThreshold: 1,

12 transformObjectKeys: true

Listing 5.4: Configuration used to obfuscate the scripts using obfuscator.io [63].

JS obfuscation poses several challenges for NoT.JS. First, it modifies the names of JS

functions using hexadecimal notation, making it difficult for NoT.JS to identify and track the

execution of these functions accurately. Second, it alters the JS execution call stack through

the use of multiple techniques, such as control flow flattening [92, 197] and self-defending

[172, 173]. Control flow flattening involves breaking down JS functions into smaller basic

blocks and then rearranging these blocks to change the order of execution. This can make it

difficult for NoT.JS to understand the flow of the code and track the execution of different

functions. Self-defending adds protection code to the program that can detect if it is being

debugged or modified and attempt to avoid execution in these cases. The protection code

can prevent NoT.JS from gathering the necessary information and changing the execution

call stack of JS activity.

Table 5.4 presents the classification results of NoT.JS on the obfuscated data using the



aforementioned configuration. Overall, obfuscating the JS code reduces the precision by only

0.8% and recall by 7.6%, leading to a 4.3% reduction in the overall F1 score. The marginal

drop in recall can be attributed to the model’s increased likelihood of missing additional

tracking functions. This can be traced back to the non-operational “garbage” functions in

the stack, which the model finds challenging to accurately identify. Given NoT.JS’s reliance

on the dynamic execution context over static features, its precision remains unaffected by

obfuscation. However, to further enhance NoT.JS’s accuracy on obfuscated scripts, future

work could incorporate adversarial training by adding obfuscated scripts in the training set

[110].

Enhanced code coverage. To assess the impact of enhanced code coverage on NoT.JS’s

performance, we conduct a more exhaustive crawl on a randomly selected subset, making

up 10% of our original 10K website corpus. During this analysis, in addition to assessing

the landing page, we explored five distinct internal pages of each website. We implement

bot mitigation strategies that include simulating mouse movements at five unique offsets

using the move_by_offset(x, y) function. Furthermore, we incrementally scroll through

the webpage using the window.scrollBy() function. Upon completing the website crawl,

we utilize the NoT.JS to classify the functions employed during the coverage analysis. As

summarized in Table 5.4, our results indicate a 5.9% decline in precision, which led to a

4.2% reduction in the F1-score. Consequently, the data reveals only a minor decrease in

both precision and the overall F1-score for NoT.JS, suggesting that it maintains a reliable

level of accuracy even with expanded coverage.



5.4.4 Comparison with Existing Countermeasures

We compare NoT.JS with the state-of-the-art baseline, WebGraph, that classifies tracking

script URLs. We evaluate the performance of each. WebGraph predicts the JS script URLs,

presuming all functions in the script will have the script label, whereas NoT.JS uniquely

classifies JS functions. We measure the precision and recall, and later in the section 5.4.5,

we assess the impact on website functionality, with a focus on website breakage

Accuracy analysis. Table 5.4 provides a summary of the results for NoT.JS and We-

bGraph. NoT.JS outperforms WebGraph in classifying tracking JS functions with 45.0%

higher precision, 31.6% higher recall, and an overall 39.7% better F1-score. WebGraph is

unable to fully capture the communication edges between the scripts present in the call

stack during a tracking activity. As a result, the dynamic execution context surrounding

data transfer and the initiator script, which sends the data to the server, is not captured and

modeled. Furthermore, tracking at the script-level granularity obscures important features

that are associated with fine-grained JS functions, making it difficult to distinguish tracking

and non-tracking activity in mixed scripts [89]. Although WebGraph claims a 92% accu-

racy rate in its paper, this is largely because it is tailored to identify tracking script URLs.

Its limitations become evident when dealing with mixed scripts, underscoring the need for

function-level granularity.

5.4.5 Surrogate Generation and Replacement

We assess the feasibility of NoT.JS’s real-time deployment through the evaluation of its sur-

rogate generation and replacement strategy. For our evaluation, surrogates are generated

for a randomly selected 50% of the 10K websites, after which we re-visit each site, substi-

tuting the original script with the surrogate prepared by NoT.JS. We utilize the surrogate
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Figure 5.8: CDF illustrates pre- and post-surrogate replacement metrics for 50% of websites: (a)
tracking functions, (b) tracking requests, (c) non-tracking requests.

replacement strategy as outlined in Section 5.3, implemented as a Chrome extension.

Surrogate generation. As elaborated in Section 5.3, NoT.JS locates the tracking function

call within the script source code and substitutes it with a mock function call, effectively

neutralizing it. During the surrogate generation, we calculate four parameters to assess the

efficacy of the technique. First, we compute the average number of tracking function calls

per webpage that can be successfully neutralized, which is 122.3. Second, we determine

the average number of tracking function calls per webpage that cannot be neutralized due

to the limitations of our instrumentation, which fails to capture the script source code.

The average number of such tracking functions per webpage is 3.1. Third, we calculate

the average number of tracking function calls per webpage that cannot be neutralized as

the script is inlined—i.e., embedded within the HTML of the page. The average number

of such tracking functions per webpage is 4.7. Finally, we measure the average number of

tracking function calls per webpage that cannot be neutralized owing to the dynamism in

the JS [198, 199], rendering us unable to confirm the line number and column number at

run-time. The average number of such tracking functions per webpage is 14.8. In summary,

our surrogate generation technique successfully neutralizes an average of 84.4% of classified

tracking functions per webpage.



Surrogate replacement. After generating the surrogates, we evaluate both privacy and

usability metrics across 50% of these websites, both before and after surrogate deployment.

We calculate the average number of tracking functions, as well as tracking and non-tracking

requests per website. Furthermore, we carry out a performance and user-centered manual

breakage analysis to verify the ongoing usability of websites after surrogate deployment.

Originally, the average number of tracking functions per website is 153.6, which drops to

38.5 after deploying the surrogates, representing an 80.1% reduction per website. Figure

5.8a displays the CDF that shows a significant decrease in tracking functions after surrogate

deployment. Moreover, the average count of tracking requests per website is initially 28.0.

This decreases to 8.4 post-deployment, representing a 76.9% reduction per website. Figure

5.8b displays the CDF that shows a significant decrease in tracking requests on the majority

of websites following surrogate deployment. Finally, the average number of non-tracking

requests per website is 74.3 and drops minimally to 71.5 after deploying the surrogates.

Figure 5.8c displays the CDF, illustrating the number of non-tracking requests against the

website distribution. The overlapping lines in the graph indicate negligible impact on website

usability.

Performance analysis. We evaluate the performance overhead across 50% of these web-

sites, both before and after surrogate deployment, utilizing Selenium [67] to extract standard

page performance metrics for each visit. These metrics include JS memory usage and the tim-

ing of key page load events. Table 5.6 summarizes the results. Regarding JS memory usage,

we observe a decrease of 32% in total and 25% in used JS heap memory. The total JS heap

size represents the entire memory allocation for JS execution, while the used portion reflects

the memory actively utilized by JS on the webpage. This decrease is primarily due to the

neutralization of tracking function calls, which return an empty response instead of executing

the original memory-consuming function. Furthermore, key events marking various stages



Metrics Normal Surrogate
(Mean, Median) (Mean, Median)

JavaScript Memory Usage
Heap Total Size 18.79 MB, 13.92 MB 12.86 MB, 9.18 MB
Heap Used Size 12.95 MB, 10.67 MB 9.74 MB, 7.39 MB

Performance Event Timing
DOM Content Loaded 1,402 ms, 1,136 ms 1,290 ms, 1,112 ms

DOM Interactive 1,067 ms, 931 ms 1,162 ms, 1,005 ms
Load Event 2,641 ms, 1,888 ms 2,562 ms, 1,804 ms

Table 5.6: Performance analysis for the post-surrogate replacement.
in the browser’s page load and rendering process, crucial benchmarks for user-perceived web

page performance [43], are completed on average 32 milliseconds earlier. These improve-

ments are seen across several metrics: DOM content load time, which indicates the time

from page load start to complete HTML parsing and initial interactivity. DOM interactive

time indicates the duration until the DOM is fully prepared for user interaction, and load

event time, indicates the total time from page load to the full loading of all resources, such

as images and CSS, signifying complete usability of the page. This overall improvement is

expected, as our neutralized tracking function calls avoid invoking the original functions,

performing less work by simply returning an empty response.

User-centric breakage analysis. We conduct a qualitative manual analysis of NoT.JS,

following methodologies from previous studies [89, 162]. We select 50 webpages from the

top-10K websites, specifically those hosting scripts mentioned in the exception rules of filter

lists3 and addressed with SugarCoat’s six mock API implementations4. These are mainly

mixed scripts; content blockers typically avoid blocking them to prevent website breakage,

even though allowing them may compromise user privacy.

We recruit ten independent evaluators for breakage assessments. Each independent

evaluator evaluates five distinct websites from our sample. Each webpage is evaluated by at

3The EasyList project tags git commit messages addressing compatibility fixes with “P:” - see https:
//github.com/easylist/easylist/commits.

4https://github.com/SugarCoatJS/sugarcoat-paper-dataset/tree/master/resources

https://github.com/easylist/easylist/commits.
https://github.com/easylist/easylist/commits.
https://github.com/SugarCoatJS/sugarcoat-paper-dataset/tree/master/resources


least two different reviewers to ensure a comprehensive analysis. The webpages are evalu-

ated in four different configurations: (1) Control, which displays the default webpage without

any blocking; (2) WebGraph, highlighting the limitations of advanced script-level blocking

in mixed script scenarios; (3) SugarCoat, highlighting its effectiveness, though it faces scal-

ability challenges, especially with limited mock API implementations5; (4) NoT.JS, showing

a reduced impact on website functionality compared to WebGraph, while being on par with

SugarCoat in terms of handling mixed scripts. This ultimately highlights that NoT.JS

significantly advances the handling of mixed scripts compared to current state-of-the-art

approaches. We present WebGraph, SugarCoat, and NoT.JS in a randomized sequence to

each evaluator, revealing only the control configuration.

We ask evaluators to classify breakage into four categories: navigation (moving between

pages), SSO (initiating and maintaining login state), appearance (visual consistency), and

miscellaneous (such as chats, search, shopping cart, etc.). Each evaluator labels breakage

as either major or minor for each category: Minor breakage occurs when it is difficult but

not impossible for the evaluator to use the functionality. Major breakage occurs when it is

impossible to use the functionality on a webpage.

Table 5.7 summarizes the results in each category. The inter-evaluator agreement was

95.5%, suggesting substantial agreement and conflicts are resolved by one of the authors

revisiting those websites. Conflicts mainly stem from ambiguity between appearance and

miscellaneous categories, such as the interchangeable reporting of a missing ad overlay in

both. Our analysis shows that WebGraph causes major breakage on 6% and minor breakage

on 10% of the webpages. On the other hand, NoT.JS, only causes minor breakage on

8% of the webpages, without any major breakage. NoT.JS matches SugarCoat in terms

of breakage but excels in mixed script handling, given SugarCoat’s reliance on just six

5https://github.com/SugarCoatJS/sugarcoat/tree/master/mocks

https://github.com/SugarCoatJS/sugarcoat/tree/master/mocks


manually crafted mock implementations. Specifically, NoT.JS significantly improves the

major breakage in the navigation category. For example, on the webpage bbc.com, the

search bar in the navigation menu disappears with WebGraph, resulting in major breakage.

This major breakage stemming from the blocking of the mixed script _app-*.js hosted by

bbc.com, is effectively mitigated when using NoT.JS, which employs a surrogate replacement

for _app-*.js. Overall, NoT.JS significantly improves upon WebGraph’s breakage and

SugarCoat’s scalability challenges by adeptly identifying and replacing tracking function

calls in mixed scripts.

Category WebGraph SugarCoat NoT.JS

Minor Major Minor Major Minor Major

Navigation 0% 6% 0% 0% 0% 0%

SSO 2% 2% 2% 0% 2% 0%

Appearance 4% 0% 0% 0% 4% 0%

Miscellaneous 4% 4% 4% 0% 4% 0%

Table 5.7: Qualitative manual analysis for 50 webpages using NoT.JS, SugarCoat, and WebGraph,
showing % of No , Minor , and Major breakages in navigation, SSO, appearance, and miscella-
neous categories.

5.5 Deployment

We deploy NoT.JS to classify all JS functions in our crawl of the top 10K websites, including

both known functions (previously labeled in our ground truth) and unknown functions (not

previously labeled in our ground truth).

Prevalence of tracking functions. NoT.JS classifies 32.1% of the 2,088K JS functions

in our dataset as tracking. We find that these tracking functions are most prevalent in the

scripts served by 8,587 unique domains. Among these tracking function, 8.2% are anonymous



functions, 18.3% are part of inline scripts, and 1.5% are part of eval scripts. For instance, the

function "Z.D" from the script analytics.js hosted by google-analytics.com appears

on 56% of the websites. This function, on average, invokes cookie setter 3.3 times and

cookie getter 20 times. Similarly, the "c" function from the script fbevents.js, hosted

by connect.facebook.net, appears on 21.5% of the websites. Its typical calling context

encompasses 3.9 closures and involves 6.6 get attribute (getAttribute) calls, along with 2.5

cookie accesses.

Characteristics of tracking functions in mixed scripts.

We find that 13.4% of all scripts are mixed, aligning with previous studies [87, 89],

while a substantial 62.3% of websites incorporate at least one mixed script. On average,

a website contains around 2.42 mixed scripts. Notably, a significant majority (70.6%) of

the mixed scripts are served from third-party domain 6, whereas the remaining (29.4%) are

served from first-party domains.

Our sampled analysis of the top-100 mixed scripts reveals widespread usage in a first-

party context, enabling the setting of ghost first-party cookies [175]. These scripts set

14,867 ghost first-party cookies, out of which 150 ghost first-party cookies are found to

be tracking after running CookieGraph [162], a tool designed to detect first-party tracking

cookies. NoT.JS classified83% of JS functions as tracking functions that are either setting or

getting these ghost first-party tracking cookies. For instance, NoT.JS detected the tracking

function "a" within the script launch-*.min.js which is accessing the ghost first-party

tracking cookie mbox on adobe.com. Similarly, NoT.JS detected the tracking function "o"

within the script opus.js which is accessing the ghost first-party tracking cookie A1S on

yahoo.com.

To illustrate how NoT.JS tackles our threat model, consider these two types of mixed
6The domain of the script’s URL differs from the top-level URL of the page.



scripts. The script named webpack-*.js is served by the domain cloudfront.net. NoT.JS

detects tracking and non-tracking functions within this mixed script. Specifically, the func-

tion "t" accesses local storage four times, sets it six times, and attaches event listeners to

244 different DOM elements, detected as tracking. In contrast, the "a" function in the same

script avoids interactions with both local storage and the DOM, detected as non-tracking.

Another scenario involves the script app.js from the domain acsbapp.com, which contains

the function "_e". The behavior of this function depends on its dynamic execution context,

detected by NoT.JS. In a non-tracking calling context, the number of closures and local vari-

ables for the function are 3 and 1, respectively. However, in a tracking calling context, these

values are 0, emphasizing the importance of context in distinguishing between tracking and

non-tracking behaviors. In summary, NoT.JS adeptly handles the intricacies of mixed scripts

by distinguishing between tracking and non-tracking functions, whether they are inherently

mixed or influenced by dynamic execution contexts.

5.6 Summary

NoT.JS advances the state-of-the-art by detecting tracking at the JS function-level granu-

larity. To this end, NoT.JS captures the dynamic execution context and then encodes this

context to build a rich graph representation that captures individual JavaScript functions.

Our evaluation showed that a machine learning classifier based on this graph representation

achieves high precision (94%) and recall (98%) in detecting tracking JS functions, outper-

forming the state-of-the-art in terms of accuracy, robustness, and breakage. We also showed

that NoT.JS is able to automatically generate privacy-safe surrogates of mixed scripts that

combine tracking and functionality.



Chapter 6

Discussion and Future Work

In this chapter, we discuss some opportunities for future work and limitations.

User interaction limitations.The level of interactions that can be captured by NoT.JS

is dependent on the diversity and intensity of user activity, such as scrolling or clicking on

internal pages. Consequently, NoT.JS may miss certain tracking functions due to limited

user interactions. To mitigate this, we propose to use forced execution [138, 170, 189] in the

future to improve the completeness of the page graph.

Browser-specific deployment. NoT.JS uses the Chrome browser and Chrome-based ex-

tensions to collect data due to its popularity. Extensions on other browsers (Firefox [33],

Safari [42], Edge [37]) have different permissions and access to varying sets of information

about a webpage’s activity. Porting NoT.JS on other browsers may require additional engi-

neering.

Expanding beyond main thread execution. NoT.JS presently captures only the dy-

namic execution context of the main thread, leaving out service workers that operate in a

separate execution context. Enhancing NoT.JS to include these workers is a targeted area

for future work, which will enable a more holistic capture of a webpage’s activity.

Resource-constrained environments.While NoT.JS is adept at generating surrogate

scripts at a large scale, its deployment on devices with limited storage presents a chal-

lenge. These devices cannot store the replacement surrogate scripts. To enhance NoT.JS
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in resource-constrained environments, strategies like selectively pre-fetching popular site re-

placements and using private information retrieval for centralized repository access can be

employed to balance efficiency and privacy.

Mixed function analysis. In our ground-truth only 3.9% of the functions are mixed,

i.e., involved in both tracking and non-tracking activities. Among these, a mere 0.8% are

integral in contexts requiring the blocking of tracking activity, while the remainder can be

left unblocked by targeting other tracking functions in the activity’s execution chain. Future

work will focus on a more detailed analysis of these mixed functions, examining individual

statements within the functions rather than considering the entire function block.

Usage of bundlers. To reason out mixing, we identify bundled scripts within mixed

scripts by adopting a high-precision heuristic from the Web Almanac [19], which involves

searching for the keyword webpackJsonp in a script 1. By default, the JSONP function begins

with the keyword webpackJsonp, which asynchronously loads bundled scripts. However, the

keyword webpackJsonp can be modified via Webpack’s configuration settings, leading to

the potential imperfect recall. Moreover, this heuristics only accounts for the scripts that

are bundled using Webpack, excluding those bundled with other tools such as Parcel [40],

Rollup [41], and Browserify [49]. Thus, the fraction of mixed scripts we identify as bundled

is a lower bound. We find that 20.2% of the mixed scripts are bundled using Webpack [73], a

rate comparable to that of functional scripts (20%) but higher than that of tracking scripts

(10%). In the future, we can investigate whether the mixing of scripts is a result of using

such bundlers.

1https://v4.webpack.js.org/configuration/output/#outputjsonpfunction

https://v4.webpack.js.org/configuration/output/#outputjsonpfunction


Figure 6.1: Gant chart for V8-based tracking function identification and blocking.

6.1 Chrome V8 Parser-Based Replacement for Track-

ing JavaScript Functions

In this section, we plan to explore an alternative solution to block mixed resources with-

out disrupting legitimate functionality, while also addressing the key limitations of NoT.JS.

NoT.JS has three notable shortcomings. Firstly, its surrogate script generation is an offline

process, which is then used to create filter rules for replacing mixed scripts. This approach

is vulnerable to evasion strategies like rotating domains. Secondly, while NoT.JS effectively

generates surrogate scripts at scale, its deployment is challenging on devices with limited

storage, which cannot accommodate these scripts. Thirdly, NoT.JS is currently limited to

capturing the dynamic execution context of the main thread, excluding service workers op-

erating in separate contexts. To remedy these issues, our focus shifts to identifying and

replacing tracking functions at the V8 engine level, specifically at the AST (Abstract Syntax

Tree). This strategy aims to address all three of NoT.JS’s limitations. We have two main

contributions: developing features for tracking detection at the AST level and implementing

AST-level replacements to block calls to privacy-invading JavaScript APIs, thereby disrupt-

ing data collection at its source. This project is a collaborative effort with Brave [12], seeking

to enhance web browsing privacy by improving NoT.JS’s capabilities.



Figure 6.2: Gant chart for API-patching.

6.2 API Patching for Mixed Resources: Evaluating Vi-

ability and Challenges

In this section, we plan to investigate potential challenges associated with API patching,

a common solution employed in current practices like scriptlets [71] and SuugarCoat [185].

We hypothesize that race conditions in API patching could pose significant issues. This

is because any third-party script or even a Chrome extension has the potential to override

these APIs, potentially leading to race conditions and subsequent disruption of intended

functionalities. The primary objective of this project is twofold. Firstly, we aim to identify

whether there are scripts or extensions that override privacy-invasive APIs and, if so, to

understand the underlying reasons, whether they are performance-related or have other,

possibly malicious, intentions. Secondly, we examine whether these race conditions could

interfere with the existing solutions for handling mixed resources, potentially complicating

their effectiveness. Ultimately, this research seeks to determine if there is a need to refine

our techniques in the future to either address or avoid such race conditions, ensuring that

current solutions continue to function effectively without unintended consequences.



Chapter 7

Conclusion

In conclusion, this thesis effectively confronts the widespread issue of advertising and track-

ing on the internet, particularly the recent strategy of mixing tracking with functional re-

sources, which challenges the efficacy of content-blockers. Our approach, grounded in code-

aware techniques like localization and refactoring strategies, presents a robust solution to

this problem. The development of TrackerSift has been instrumental in revealing the extent

of mixed resources and underscores the effectiveness of targeting JavaScript code for block-

ing. Our investigations have identified function-level granularity as the optimal level for

JavaScript code blocking, successfully balancing the need to block intrusive trackers while

maintaining essential website functionality. The introduction of NoT.JS, a machine learning-

based classifier functioning at this granularity, marks a significant advancement. It skillfully

identifies tracking functions and creates surrogate scripts that selectively eliminate tracking

code while preserving functional code within mixed scripts. Overall, this thesis enhances the

capabilities of content-blockers, significantly improving their ability to manage mixed scripts

and, consequently, enhancing user privacy on the internet.
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