Networking Applications

Dr. Ayman A. Abdel-Hamid

College of Computing and Information Technology
Arab Academy for Science & Technology and Maritime Transport

Electronic Mail
Outline

• Introduction
• SMTP
• MIME
• Mail Access Protocols
Introduction

- Email from user to user (or a group of users)
- Email from user to a mailing list
- SMTP (Simple Mail Transfer Protocol) is the standard mechanism for email in the Internet
- Analogy to postal mail (envelope and message (header and body))
- Email addresses in the form \(<\text{local-part}@\text{domain-name}>\)
 - Local-part: address of user mailbox on local site
 - Domain-name: destination domain name

Recall MX resource record in DNS database
Architecture and Protocols

• A client-server architecture
 ➢ *Email client* accepts mail and delivers to *email server* in destination domain
 ➢ End-to-end delivery
 ➢ *Store and forward* mechanism

• Simple Mail Transfer Protocol (*SMTP*)
 ➢ TCP/IP
 ➢ Delivery of simple text messages (7-bit ASCII format)

• Multi-purpose Internet Mail Extension (*MIME*)
 ➢ An extension to SMTP ➞ Delivery of other types of data (e.g., languages not supported by 7-bit ASCII, Voice, images, or video clips)
Client-Server Architecture

User

SMTP client

Internet

SMTP server

User
User Agent and Mail Transfer Agent

Actual mail transfer through MTA

User A

UA

MTA client

Internet

User B

UA

MTA server
User Agent (UA)

• Software that does the following
 - *Composing messages*: provides a template to be filed
 - *Reading messages*: When UA is invoked, it checks for mail in the incoming mail box
 - *Replying to messages*
 - *Forwarding messages*
 - *Handles mailboxes*: Inbox, sent, and others

• Could be command-driven (pine or mail) or GUI-based (Eudora or Outlook)
Mail Transfer Phases

• Connection Establishment
 ➢ SMTP client makes a TCP connection to well-known port 25
 ➢ SMTP server starts the connection phase

• Message Transfer

• Connection Termination
Mail Delivery From Sender to Receiver 1/3

• Stage 1
 - Email goes from UA to local server (MTA client)
 - Mail stored in local server until it can be sent (spooled)
 - UA uses SMTP client software and local server uses SMTP server software
 - Why not deliver email directly to remote server?

• Stage 2
 - Local MTA performs a DNS lookup to obtain the mail exchange servers for the destination domain
Mail Delivery From Sender to Receiver 2/3

• Stage 3

 ➢ *Push Operation*: local MTA (SMTP client) relays email to remote server (SMTP server) Why not deliver to remote UA?

 ➢ Email received by mail server and stored in the user mailbox for later retrieval

• Stage 4

 ➢ Remote UA employs a *mail access protocol* to access the mailbox and obtain her/his email (pull protocols)

 ☐ Post Office Protocol: POP3

 ☐ Internet Mail Access Protocol: IMAPv4
Mail Delivery From Sender to Receiver

User A
Interface
UA
Spool
Mailboxes
Database
Client MTA Server

Internet

User B
Interface
UA
Spool
Mailboxes
Database
Server MTA Client

MTA
MTA
Alias exp.

MTA
Alias exp.
Relay MTA 1/2

User A

UA

MTA

Client

Internet

Relay MTA

MTA

Server

UA

User B
Relay MTA 2/2

The concept of an email hub
SMTP
SMTP Sequence of Events

- Source connects
- Target responds → 220 Ready for mail
- Source sends HELO
- Target responds with identification
- Source sends from and to fields
- Target accepts
- Source sends one or more messages
- Target closes connection when complete
Mail Message Contents

- Each queued message has:
 - Message text
 - header with message envelope and list of recipients
 - Message body, composed by user
 - A list of mail destinations
 - Derived by user agent from header
 - May be listed in header
 - May require expansion of mailing lists
 - May need replacement of mnemonic names with mailbox names
Mail Sending Optimization

• If message destined for multiple users on a given host, it is sent only once
 ➢ Delivery to users handled at destination host

• If multiple messages ready for given host, a single TCP connection can be used
 ➢ Saves overhead of setting up and dropping connection
Possible Errors

- Host unreachable
- Host out of operation
- TCP connection fail during transfer
- Sender can re-queue mail
 - Give up after a period
- Faulty destination address
 - User error
SMTP Receiver

• Accepts arriving message

• Places in user mailbox or copies to outgoing queue for forwarding

• Receiver must:
 ➢ Verify local mail destinations
 ➢ Deal with errors
 ✔ Transmission
 ✔ Lack of disk space

• Sender responsible for message until receiver confirm complete transfer
 ➢ Indicates mail has arrived at host, not user
E-mail Headers

- Lines of text in format *keyword: information*

- *keyword* identifies information; information can appear in any order

- Essential information:
 - To: list of recipients
 - From: sender
 - Cc: list of copy recipients

- Useful information
 - Reply-to: different address than From:
 - Received-by: for debugging
Data in Email

• Original Internet mail carried only 7-bit ASCII data
 ➢ Couldn’t contain arbitrary binary values; e.g., executable program
 ➢ Can not be used for languages that are not supported by 7-bit ASCII (e.g., French, German, Chinese, and Japanese)

MIME
(Multipurpose Internet Mail Extensions)
MIME Introduction

- Transforms non-ASCII data at sender site to ASCII data and delivers to client SMTP
- Server SMTP at receiving side receives ASCII data and delivers to MIME
- MIME at receiver transforms to original data
MIME: From Non-ASCII to ASCII

NVT is Network Virtual terminal

User

Non-ASCII code

MIME

7-bit NVT ASCII

SMTP

User

Non-ASCII code

MIME

7-bit NVT ASCII

SMTP
MIME Headers 1/3

- 5 headers can be added to original SMTP header to define transformation parameters

 - **MIME-version**: 1.0 or 1.1

 - **Content-Type**

 - Type of data used in body of message

 - **Content-Type**: `<type/subtype/parameters>`

 - **Text (plain)**, **Multipart**, **Message**, **Image**, **Video**, **Audio**, and **Application**
MIME Headers 2/3

• 5 headers can be added to original SMTP header to define transformation parameters
 ➢ Content-Transfer Encoding
 □ 7bit, 8bit, Binary, Base64 (6-bit blocks encoded into 8-bit ASCII characters), and Quoted-printable (Non-ASCII characters encoded as an equal sign followed by an ASCII code. ASCII is sent as is)
 ➢ Content-Id
 □ Identify whole message in a multiple message environment
 ➢ Content-Description
MIME Headers 3/3

Binary data into Radix-64 format
A Base 64 encoding table is used to interpret 6-bit into one char
Mail Access Protocols

- POP3
- IMAPv4
- Web-based email
POP3

- Client POP3 installed on recipient computer
- Server POP3 installed on main server
- User needs to download email from mailbox on the mail server
- UA opens a connection with server on TCP port 110
- Sends user name and password
- User can list and retrieve messages
- Delete and keep mode
IMAP4

- POP3 does not allow user to organize mail on server (user cannot have different folders on server)
- POP3 does not allow user to partially check the contents of the mail before downloading
- IMAP offers the following
 - User checks email header prior to downloading
 - User can search contents of email for a search string before downloading
 - User can create, delete, or rename mailboxes on mail server
 - User can create folders for email storage
Web-based Email

- Mail transfer from User browser to mail server performed through HTTP
- Transfer of message from sending mail server to receiving mail server through SMTP
- Message from receiving server to recipient’s browser performed through HTTP
- Need for Webmail software
Further Information

• RFC 821: Simple Mail Transfer Protocol, August 1982
• RFC 822, ARPA Internet Text Messages, August 1982
• RFC 1521: MIME – Part 1, September 1993
• RFC 1522: MIME-Part 2, September 1993
• RFC 1939: POP3, May 1996
• RFC 3501, IMAP4, March 2003