
pTHINC: A Thin-Client Architecture
for Mobile Wireless Web

Joeng Kim, Ricardo A. Baratto, and Jason Nieh
Department of Computer Science

Columbia University, New York, NY, USA

{jk2438, ricardo, nieh}@cs.columbia.edu

ABSTRACT
Although web applications are gaining popularity on mo-
bile wireless PDAs, web browsers on these systems can be
quite slow and often lack adequate functionality to access
many web sites. We have developed pTHINC, a PDA thin-
client solution that leverages more powerful servers to run
full-function web browsers and other application logic, then
sends simple screen updates to the PDA for display. pTHINC
uses server-side screen scaling to provide high-fidelity dis-
play and seamless mobility across a broad range of different
clients and screen sizes, including both portrait and land-
scape viewing modes. pTHINC also leverages existing PDA
control buttons to improve system usability and maximize
available screen resolution for application display. We have
implemented pTHINC on Windows Mobile and evaluated
its performance on mobile wireless devices. Our results com-
pared to local PDA web browsers and other thin-client ap-
proaches demonstrate that pTHINC provides superior web
browsing performance and is the only PDA thin client that
effectively supports crucial browser helper applications such
as video playback.

Categories and Subject Descriptors: C.2.4 Computer-
Communication-Networks: Distributed Systems – client/
server

General Terms: Design, Experimentation, Performance

Keywords: thin-client computing, remote display, mobil-
ity, pervasive web

1. INTRODUCTION
The increasing ubiquity of wireless networks and decreas-

ing cost of hardware is fueling a proliferation of mobile wire-
less handheld devices, both as standalone wireless Personal
Digital Assistants (PDA) and popular integrated PDA/cell
phone devices. These devices are enabling new forms of mo-
bile computing and communication. Service providers are
leveraging these devices to deliver pervasive web access, and
mobile web users already often use these devices to access
web-enabled information such as news, email, and localized
travel guides and maps. It is likely that within a few years,
most of the devices accessing the web will be mobile.

Users typically access web content by running a web browser
and associated helper applications locally on the PDA. Al-
though native web browsers exist for PDAs, they deliver

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

subpar performance and have a much smaller feature set
and more limited functionality than their desktop comput-
ing counterparts [10]. As a result, PDA web browsers are of-
ten not able to display web content from web sites that lever-
age more advanced web technologies to deliver a richer web
experience. This fundamental problem arises for two rea-
sons. First, because PDAs have a completely different hard-
ware/software environment from traditional desktop com-
puters, web applications need to be rewritten and customized
for PDAs if at all possible, duplicating development costs.
Because the desktop application market is larger and more
mature, most development effort generally ends up being
spent on desktop applications, resulting in greater function-
ality and performance than their PDA counterparts. Sec-
ond, PDAs have a more resource constrained environment
than traditional desktop computers to provide a smaller
form factor and longer battery life. Desktop web browsers
are large, complex applications that are unable to run on a
PDA. Instead, developers are forced to significantly strip
down these web browsers to provide a usable PDA web
browser, thereby crippling PDA browser functionality.

Thin-client computing provides an alternative approach
for enabling pervasive web access from handheld devices.
A thin-client computing system consists of a server and a
client that communicate over a network using a remote dis-
play protocol. The protocol enables graphical displays to be
virtualized and served across a network to a client device,
while application logic is executed on the server. Using the
remote display protocol, the client transmits user input to
the server, and the server returns screen updates of the ap-
plications from the server to the client. Using a thin-client
model for mobile handheld devices, PDAs can become sim-
ple stateless clients that leverage the remote server capabil-
ities to execute web browsers and other helper applications.

The thin-client model provides several important bene-
fits for mobile wireless web. First, standard desktop web
applications can be used to deliver web content to PDAs
without rewriting or adapting applications to execute on
a PDA, reducing development costs and leveraging existing
software investments. Second, complex web applications can
be executed on powerful servers instead of running stripped
down versions on more resource constrained PDAs, provid-
ing greater functionality and better performance [10]. Third,
web applications can take advantage of servers with faster
networks and better connectivity, further boosting applica-
tion performance. Fourth, PDAs can be even simpler de-
vices since they do not need to perform complex application
logic, potentially reducing energy consumption and extend-

1



ing battery life. Finally, PDA thin clients can be essentially
stateless appliances that do not need to be backed up or re-
stored, require almost no maintenance or upgrades, and do
not store any sensitive data that can be lost or stolen. This
model provides a viable avenue for medical organizations to
comply with HIPAA regulations [6] while embracing mobile
handhelds in their day to day operations.

Despite these potential advantages, thin clients have been
unable to provide the full range of these benefits in delivering
web applications to mobile handheld devices. Existing thin
clients were not designed for PDAs and do not account for
important usability issues in the context of small form factor
devices, resulting in difficulty in navigating displayed web
content. Furthermore, existing thin clients are ineffective at
providing seamless mobility across the heterogeneous mix
of device display sizes and resolutions. While existing thin
clients can already provide faster performance than native
PDA web browsers in delivering HTML web content, they
do not effectively support more display-intensive web helper
applications such as multimedia video, which is increasingly
an integral part of available web content.

To harness the full potential of thin-client computing in
providing mobile wireless web on PDAs, we have developed
pTHINC (PDA THin-client InterNet Computing). pTHINC
builds on our previous work on THINC [1] to provide a thin-
client architecture for mobile handheld devices. pTHINC
virtualizes and resizes the display on the server to efficiently
deliver high-fidelity screen updates to a broad range of dif-
ferent clients, screen sizes, and screen orientations, including
both portrait and landscape viewing modes. This enables
pTHINC to provide the same persistent web session across
different client devices. For example, pTHINC can provide
the same web browsing session appropriately scaled for dis-
play on a desktop computer and a PDA so that the same
cookies, bookmarks, and other meta-data are continuously
available on both machines simultaneously. pTHINC’s vir-
tual display approach leverages semantic information avail-
able in display commands, and client-side video hardware to
provide more efficient remote display mechanisms that are
crucial for supporting more display-intensive web applica-
tions. Given limited display resolution on PDAs, pTHINC
maximizes the use of screen real estate for remote display
by moving control functionality from the screen to readily
available PDA control buttons, improving system usability.

We have implemented pTHINC on Windows Mobile and
demonstrated that it works transparently with existing ap-
plications, window systems, and operating systems, and does
not require modifying, recompiling, or relinking existing soft-
ware. We have quantitatively evaluated pTHINC against lo-
cal PDA web browsers and other thin-client approaches on
Pocket PC devices. Our experimental results demonstrate
that pTHINC provides superior web browsing performance
and is the only PDA thin client that effectively supports
crucial browser helper applications such as video playback.

This paper presents the design and implementation of
pTHINC. Section 2 describes the overall usage model and us-
ability characteristics of pTHINC. Section 3 presents the de-
sign and system architecture of pTHINC. Section 4 presents
experimental results measuring the performance of pTHINC
on web applications and comparing it against native PDA
browsers and other popular PDA thin-client systems. Sec-
tion 5 discusses related work. Finally, we present some con-
cluding remarks.

2. PTHINC USAGE MODEL
pTHINC is a thin-client system that consists of a simple

client viewer application that runs on the PDA and a server
that runs on a commodity PC. The server leverages more
powerful PCs to to run web browsers and other application
logic. The client takes user input from the PDA stylus and
virtual keyboard and sends them to the server to pass to
the applications. Screen updates are then sent back from
the server to the client for display to the user.

When the pTHINC PDA client is started, the user is pre-
sented with a simple graphical interface where information
such as server address and port, user authentication infor-
mation, and session settings can be provided. pTHINC first
attempts to connect to the server and perform the neces-
sary handshaking. Once this process has been completed,
pTHINC presents the user with the most recent display of
his session. If the session does not exist, a new session is cre-
ated. Existing sessions can be seamlessly continued without
changes in the session setting or server configuration.

Unlike other thin-client systems, pTHINC provides a user
with a persistent web session model in which a user can
launch a session running a web browser and associated ap-
plications at the server, then disconnect from that session
and reconnect to it again anytime. When a user reconnects
to the session, all of the applications continue running where
the user left off, so that the user can continue working as
though he or she never disconnected. The ability to discon-
nect and reconnect to a session at anytime is an important
benefit for mobile wireless PDA users which may have in-
termittent network connectivity.

pTHINC’s persistent web session model enables a user to
reconnect to a web session from devices other than the one
on which the web session was originally initiated. This pro-
vides users with seamless mobility across different devices.
If a user loses his PDA, he can easily use another PDA to
access his web session. Furthermore, pTHINC allows users
to use non-PDA devices to access web sessions as well. A
user can access the same persistent web session on a desk-
top PC as on a PDA, enabling a user to use the same web
session from any computer.

pTHINC’s persistent web session model addresses a key
problem encountered by mobile web users, the lack of a com-
mon web environment across computers. Web browsers of-
ten store important information such as bookmarks, cookies,
and history, which enable them to function in a much more
useful manner. The problem that occurs when a user moves
between computers is that this data, which is specific to a
web browser installation, cannot move with the user. Fur-
thermore, web browsers often need helper applications to
process different media content, and those applications may
not be consistently available across all computers. pTHINC
addresses this problem by enabling a user to remotely use
the exact same web browser environment and helper appli-
cations from any computer. As a result, pTHINC can pro-
vide a common, consistent web browsing environment for
mobile users across different devices without requiring them
to attempt to repeatedly synchronize different web browsing
environments across multiple machines.

To enable a user to access the same web session on dif-
ferent devices, pTHINC must provide mechanisms to sup-
port different display sizes and resolutions. Toward this end,
pTHINC provides a zoom feature that enables a user to
zoom in and out of a display and allows the display of a web

2



Figure 1: pTHINC shortcut keys

session to be resized to fit the screen of the device being
used. For example, if the server is running a web session at
1024×768 but the client is a PDA with a display resolution
of 640×480, pTHINC will resize the desktop display to fit
the full display in the smaller screen of the PDA. pTHINC
provides the PDA user with the option to increase the size
of the display by zooming in to different parts of the display.
Users are often familiar with the general layout of commonly
visited websites, and are able to leverage this resizing fea-
ture to better navigate through web pages. For example,
a user can zoom out of the display to view the entire page
content and navigate hyperlinks, then zoom in to a region
of interest for a better view.

To enable a user to access the same web session on dif-
ferent devices, pTHINC must also provide mechanisms to
support different display orientations. In a desktop envi-
ronment, users are typically accustomed to having displays
presented in landscape mode where the screen width is larger
than its height. However, in a PDA environment, the choice
is not always obvious. Some users may prefer having the
display in portrait mode, as it is easier to hold the device
in their hands, while others may prefer landscape mode in
order to minimize the amount of side-scrolling necessary
to view a web page. To accommodate PDA user prefer-
ences, pTHINC provides an orientation feature that enables
it to seamless rotate the display between landscape and por-
trait mode. The landscape mode is particularly useful for
pTHINC users who frequently access their web sessions on
both desktop and PDA devices, providing those users with
the same familiar landscape setting across different devices.

Because screen space is a relatively scarce resource on
PDAs, pTHINC runs in fullscreen mode to maximize the
screen area available to display the web session. To be able
to use all of the screen on the PDA and still allow the user
to control and interact with it, pTHINC reuses the typical
shortcut buttons found on PDAs to perform all the con-
trol functions available to the user. The buttons used by
pTHINC do not require any OS environment changes; they
are simply intercepted by the pTHINC client application
when they are pressed. Figure 1 shows how pTHINC uti-
lizes the shortcut buttons to provide easy navigation and
improve the overall user experience. These buttons are not
device specific, and the layout shown is common to widely-
used PocketPC devices. pTHINC provides six shortcuts to
support its usage model:

• Rotate Screen: The record button on the left edge is
used to rotate the screen between portrait and land-
scape mode each time the button is pressed.

• Zoom Out: The leftmost button on the bottom front
is used to zoom out the display of the web session
providing a bird’s eye view of the web session.

• Zoom In: The second leftmost button on the bottom
front is used to zoom in the display of the web session
to more clearly view content of interest.

• Directional Scroll: The middle button on the bottom
front is used to scroll around the display using a single
control button in a way that is already familiar to PDA
users. This feature is particularly useful when the user
has zoomed in to a region of the display such that only
part of the display is visible on the screen.

• Show/Hide Keyboard: The second rightmost button on
the bottom front is used to bring up a virtual keyboard
drawn on the screen for devices which have no physical
keyboard. The virtual keyboard uses standard PDA
OS mechanisms, providing portability across different
PDA environments.

• Close Session: The rightmost button on the bottom
front is used to disconnect from the pTHINC session.

pTHINC uses the PDA touch screen, stylus, and standard
user interface mechanisms to provide a user interface point-
and-click metaphor similar to that provided by the mouse
in a traditional desktop computing environment. pTHINC
does not use a cursor since PDA environments do not pro-
vide one. Instead, a user can use the stylus to tap on differ-
ent sections of the touch screen to indicate input focus. A
single tap on the touch screen generates a corresponding sin-
gle click mouse event. A double tap on the touch screen gen-
erates a corresponding double click mouse event. pTHINC
provides two-button mouse emulation by using the stylus to
press down on the screen for one second to generate a right
mouse click. All of these actions are identical to the way
users already interact with PDA applications in the common
PocketPC environment. In web browsing, users can click on
hyperlinks and focus on input boxes by simply tapping on
the desired screen area of interest. Unlike local PDA web
browsers and other PDA applications, pTHINC leverages
more powerful desktop user interface metaphors to enable
users to manipulate multiple open application windows in-
stead of being limited to a single application window at any
given moment. This provides increased browsing flexibility
beyond what is currently available on PDA devices. Similar
to a desktop environment, browser windows and other ap-
plication windows can be moved around by pressing down
and dragging the stylus similar to a mouse.

3. PTHINC SYSTEM ARCHITECTURE
pTHINC builds on the THINC [1] remote display archi-

tecture to provide a thin-client system for PDAs. pTHINC
virtualizes the display at the server by leveraging the video
device abstraction layer, which sits below the window server
and above the framebuffer. This is a well-defined, low-level,
device-dependent layer that exposes the video hardware to
the display system. pTHINC accomplishes this through a
simple virtual display driver that intercepts drawing com-
mands, packetizes, and sends them over the network.

3



While other thin-client approaches intercept display com-
mands at other layers of the display subsystem, pTHINC’s
display virtualization approach provides some key benefits
in efficiently supporting PDA clients. For example, inter-
cepting display commands at a higher layer between appli-
cations and the window system as is done by X [17] requires
replicating and running a great deal of functionality on the
PDA that is traditionally provided by the desktop window
system. Given both the size and complexity of traditional
window systems, attempting to replicate this functionality
in the restricted PDA environment would have proven to
be a daunting, and perhaps unfeasible task. Furthermore,
applications and the window system often require tight syn-
chronization in their operation and imposing a wireless net-
work between them by running the applications on the server
and the window system on the client would significantly de-
grade performance. On the other hand, intercepting at a
lower layer by extracting pixels out of the framebuffer as
they are rendered provides a simple solution that requires
very little functionality on the PDA client, but can also re-
sult in degraded performance. The reason is that by the
time the remote display server attempts to send screen up-
dates, it has lost all semantic information that may have
helped it encode efficiently, and it must resort to using a
generic and expensive encoding mechanism on the server,
as well as a potentially expensive decoding mechanism on
the limited PDA client. In contrast to both the high and
low level interception approaches, pTHINC’s approach of
intercepting at the device driver provides an effective bal-
ance between client and server simplicity, and the ability to
efficiently encode and decode screen updates.

By using a low-level virtual display approach, pTHINC
can efficiently encode application display commands using
only a small set of low-level commands. In a PDA environ-
ment, this set of commands provides a crucial component
in maintaining the simplicity of the client in the resource-
constrained PDA environment. The display commands are
shown in Table 1, and work as follows. COPY instructs the
client to copy a region of the screen from its local framebuffer
to another location. This command improves the user ex-
perience by accelerating scrolling and opaque window move-
ment without having to resend screen data from the server.
SFILL, PFILL, and BITMAP are commands that paint a
fixed-size region on the screen. They are useful for accel-
erating the display of solid window backgrounds, desktop
patterns, backgrounds of web pages, text drawing, and cer-
tain operations in graphics manipulation programs. SFILL
fills a sizable region on the screen with a single color. PFILL
replicates a tile over a screen region. BITMAP performs a
fill using a bitmap of ones and zeros as a stipple to apply
a foreground and background color. Finally, RAW is used
to transmit unencoded pixel data to be displayed verbatim
on a region of the screen. This command is invoked as a
last resort if the server is unable to employ any other com-
mand, and it is the only command that may be compressed
to mitigate its impact on network bandwidth.

pTHINC delivers its commands using a non-blocking, server-
push update mechanism, where as soon as display updates
are generated on the server, they are sent to the client.
Clients are not required to explicitly request display up-
dates, thus minimizing the impact that the typical vary-
ing network latency of wireless links may have on the re-
sponsiveness of the system. Keeping in mind that resource

Command Description

COPY Copy a frame buffer area to specified co-
ordinates

SFILL Fill an area with a given pixel color value
PFILL Tile an area with a given pixel pattern
BITMAP Fill a region using a bit pattern
RAW Display raw pixel data at a given location

Table 1: pTHINC Protocol Display Commands

constrained PDAs and wireless networks may not be able
to keep up with a fast server generating a large number of
updates, pTHINC is able to coalesce, clip, and discard up-
dates automatically if network loss or congestion occurs, or
the client cannot keep up with the rate of updates. This
type of behavior proves crucial in a web browsing environ-
ment, where for example, a page may be redrawn multiple
times as it is rendered on the fly by the browser. In this
case, the PDA will only receive and render the final result,
which clearly is all the user is interesting in seeing.

pTHINC prioritizes the delivery of updates to the PDA us-
ing a Shortest-Remaining-Size-First (SRSF) preemptive up-
date scheduler. SRSF is analogous to Shortest-Remaining-
Processing-Time scheduling, which is known to be optimal
for minimizing mean response time in an interactive system.
In a web browsing environment, short jobs are associated
with text and basic page layout components such as the
page’s background, which are critical web content for the
user. On the other hand, large jobs are often lower priority
“beautifying” elements, or, even worse, web page banners
and advertisements, which are of questionable value to the
user as he or she is browsing the page. Using SRSF, pTHINC
is able to maximize the utilization of the relatively scarce
bandwidth available on the wireless connection between the
PDA and the server.

3.1 Display Management
To enable users to just as easily access their web browser

and helper applications from a desktop computer at home
as from a PDA while on the road, pTHINC provides a re-
size mechanism to zoom in and out of the display of a web
session. pTHINC resizing is completely supported by the
server, not the client. The server resamples updates to fit
within the PDAs viewport before they are transmitted over
the network. pTHINC uses Fant’s resampling algorithm to
resize pixel updates. This provides smooth, visually pleas-
ing updates with properly antialiasing and has only modest
computational requirements.

pTHINC’s resizing approach has a number of advantages.
First, it allows the PDA to leverage the vastly superior com-
putational power of the server to use high quality resampling
algorithms and produce higher quality updates for the PDA
to display. Second, resizing the screen does not translate into
additional resource requirements for the PDA, since it does
not need to perform any additional work. Finally, better
utilization of the wireless network is attained since rescaling
the updates reduces their bandwidth requirements.

To enable users to orient their displays on a PDA to
provide a viewing experience that best accommodates user
preferences and the layout of web pages or applications,
pTHINC provides a display rotation mechanism to switch
between landscape and portrait viewing modes. pTHINC
display rotation is completely supported by the client, not
the server. pTHINC does not explicitly recalculate the ge-

4



ometry of display updates to perform rotation, which would
be computationally expensive. Instead, pTHINC simply
changes the way data is copied into the framebuffer to switch
between display modes. When in portrait mode, data is
copied along the rows of the framebuffer from left to right.
When in landscape mode, data is copied along the columns
of the framebuffer from top to bottom. These very fast and
simple techniques replace one set of copy operations with an-
other and impose no performance overhead. pTHINC pro-
vides its own rotation mechanism to support a wide range of
devices without imposing additional feature requirements on
the PDA. Although some newer PDA devices provide native
support for different orientations, this mechanism is not dy-
namic and requires the user to rotate the PDA’s entire user
interface before starting the pTHINC client. Windows Mo-
bile provides native API mechanisms for PDA applications
to rotate their UI on the fly, but these mechanisms deliver
poor performance and display quality as the rotation is per-
formed naively and is not completely accurate.

3.2 Video Playback
Video has gradually become an integral part of the World

Wide Web, and its presence will only continue to increase.
Web sites today not only use animated graphics and flash
to deliver web content in an attractive manner, but also uti-
lize streaming video to enrich the web interface. Users are
able to view pre-recorded and live newscasts on CNN, watch
sports highlights on ESPN, and even search through large
collection of videos on Google Video. To allow applications
to provide efficient video playback, interfaces have been cre-
ated in display systems that allow video device drivers to
expose their hardware capabilities back to the applications.
pTHINC takes advantage of these interfaces and its virtual
device driver approach to provide a virtual bridge between
the remote client and its hardware and the applications, and
transparently support video playback.

On top of this architecture, pTHINC uses the YUV col-
orspace to encode the video content, which provides a num-
ber of benefits. First, it has become increasingly common
for PDA video hardware to natively support YUV and be
able to perform the colorspace conversion and scaling auto-
matically. As a result, pTHINC is able to provide fullscreen
video playback without any performance hits. Second, the
use of YUV allows for a more efficient representation of RGB
data without loss of quality, by taking advantage of the hu-
man eye’s ability to better distinguish differences in bright-
ness than in color. In particular, pTHINC uses the YV12
format, which allows full color RGB data to be encoded us-
ing just 12 bits per pixel. Third, YUV data is produced
as one of the last steps of the decoding process of most
video codecs, allowing pTHINC to provide video playback
in a manner that is format independent. Finally, even if the
PDA’s video hardware is unable to accelerate playback, the
colorspace conversion process is simple enough that it does
not impose unreasonable requirements on the PDA.

A more concrete example of how pTHINC leverages the
PDA video hardware to support video playback can be seen
in our prototype implementation on the popular Dell Axim
X51v PDA, which is equipped with the Intel 2700G mul-
timedia accelerator. In this case, pTHINC creates an off-
screen buffer in video memory and writes and reads from
this memory region data on the YV12 format. When a new
video frame arrives, video data is copied from the buffer to

Figure 2: Experimental Testbed

an overlay surface in video memory, which is independent
of the normal surface used for traditional drawing. As the
YV12 data is put onto the overlay, the Intel accelerator auto-
matically performs both colorspace conversion and scaling.
By using the overlay surface, pTHINC has no need to redraw
the screen once video playback is over since the overlapped
surface is unaffected. In addition, specific overlay regions
can be manipulated by leveraging the video hardware, for
example to perform hardware linear interpolation to smooth
out the frame and display it fullscreen, and to do automatic
rotation when the client runs in landscape mode.

4. EXPERIMENTAL RESULTS
We have implemented a pTHINC prototype that runs the

client on widely-used Windows Mobile-based Pocket PC de-
vices and the server on both Windows and Linux operating
systems. To demonstrate its effectiveness in supporting mo-
bile wireless web applications, we have measured its perfor-
mance on web applications. We present experimental results
on different PDA devices for two popular web applications,
browsing web pages and playing video content from the web.
We compared pTHINC against native web applications run-
ning locally on the PDA to demonstrate the improvement
that pTHINC can provide over the traditional fat-client ap-
proach. We also compared pTHINC against three of the
most widely used thin clients that can run on PDAs, Citrix
Meta-FrameXP [2], Microsoft Remote Desktop [3] and VNC
(Virtual Network Computing) [16]. We follow common prac-
tice and refer to Citrix MetaFrameXP and Microsoft Remote
Desktop by their respective remote display protocols, ICA
(Independent Computing Architecture) and RDP (Remote
Desktop Protocol).

4.1 Experimental Testbed
We conducted our web experiments using two different

wireless Pocket PC PDAs in an isolated Wi-Fi network test-
bed, as shown in Figure 2. The testbed consisted of two
PDA client devices, a packet monitor, a thin-client server,
and a web server. Except for the PDAs, all of the other ma-
chines were IBM Netfinity 4500R servers with dual 933 MHz
Intel PIII CPUs and 512 MB RAM and were connected on
a switched 100 Mbps FastEthernet network. The web server
used was Apache 1.3.27, the network emulator was NIST-
Net 2.0.12, and the packet monitor was Ethereal 0.10.9. The
PDA clients connected to the testbed through a 802.11b Lu-
cent Orinoco AP-2000 wireless access point. All experiments
using the wireless network were conducted within ten feet
of the access point, so we considered the amount of packet
loss to be negligible in our experiments.

Two Pocket PC PDAs were used to provide results across
both older, less powerful models and newer higher perfor-
mance models. The older model was a Dell Axim X5 with

5



Client 1024×768 640×480 Depth Resize Clip
RDP no yes 8-bit no yes
VNC yes yes 16-bit no no
ICA yes yes 16-bit yes no

pTHINC yes yes 24-bit yes no

Table 2: Thin-client Testbed Configuration Setting

a 400 MHz Intel XScale PXA255 CPU and 64 MB RAM
running Windows Mobile 2003 and a Dell TrueMobile 1180
2.4Ghz CompactFlash card for wireless networking. The
newer model was a Dell Axim X51v with a 624 MHz Intel
XScale XPA270 CPU and 64 MB RAM running Windows
Mobile 5.0 and integrated 802.11b wireless networking. The
X51v has an Intel 2700G multimedia accelerator with 16MB
video memory. Both PDAs are capable of 16-bit color but
have different screen sizes and display resolutions. The X5
has a 3.5 inch diagonal screen with 240×320 resolution. The
X51v has a 3.7 inch diagonal screen with 480×640.

The four thin clients that we used support different lev-
els of display quality as summarized in Table 2. The RDP
client only supports a fixed 640×480 display resolution on
the server with 8-bit color depth, while other platforms pro-
vide higher levels of display quality. To provide a fair com-
parison across all platforms, we conducted our experiments
with thin-client sessions configured for two possible resolu-
tions, 1024×768 and 640×480. Both ICA and VNC were
configured to use the native PDA resolution of 16-bit color
depth. The current pTHINC prototype uses 24-bit color di-
rectly and the client downsamples updates to the 16-bit color
depth available on the PDA. RDP was configured using only
8-bit color depth since it does not support any better color
depth. Since both pTHINC and ICA provide the ability to
view the display resized to fit the screen, we measured both
clients with and without the display resized to fit the PDA
screen. Each thin client was tested using landscape rather
than portrait mode when available. All systems run on the
X51v could run in landscape mode because the hardware
provides a landscape mode feature. However, the X5 does
not provide this functionality. Only pTHINC directly sup-
ports landscape mode, so it was the only system that could
run in landscape mode on both the X5 and X51v.

To provide a fair comparison, we also standardized on
common hardware and operating systems whenever possible.
All of the systems used the Netfinity server as the thin-client
server. For the two systems designed for Windows servers,
ICA and RDP, we ran Windows 2003 Server on the server.
For the other systems which support X-based servers, VNC
and pTHINC, we ran the Debian Linux Unstable distribu-
tion with the Linux 2.6.10 kernel on the server. We used the
latest thin-client server versions available on each platform
at the time of our experiments, namely Citrix MetaFrame
XP Server for Windows Feature Release 3, Microsoft Re-
mote Desktop built into Windows XP and Windows 2003
using RDP 5.2, and VNC 4.0.

4.2 Application Benchmarks
We used two web application benchmarks for our experi-

ments based on two common application scenarios, browsing
web pages and playing video content from the web. Since
many thin-client systems including two of the ones tested
are closed and proprietary, we measured their performance
in a noninvasive manner by capturing network traffic with
a packet monitor and using a variant of slow-motion bench-
marking [13] previously developed to measure thin-client

performance in PDA environments [10]. This measurement
methodology accounts for both the display decoupling that
can occur between client and server in thin-client systems
as well as client processing time, which may be significant
in the case of PDAs.

To measure web browsing performance, we used a web
browsing benchmark based on the Web Text Page Load Test
from the Ziff-Davis i-Bench benchmark suite [7]. The bench-
mark consists of JavaScript controlled load of 55 pages from
the web server. The pages contain both text and graph-
ics with pages varying in size. The graphics are embedded
images in GIF and JPEG formats. The original i-Bench
benchmark was modified for slow-motion benchmarking by
introducing delays of several seconds between the pages us-
ing JavaScript. Then two tests were run, one where de-
lays where added between each page, and one where pages
where loaded continuously without waiting for them to be
displayed on the client. In the first test, delays were suffi-
ciently adjusted in each case to ensure that each page could
be received and displayed on the client completely without
temporal overlap in transferring the data belonging to two
consecutive pages. We used the packet monitor to record
the packet traffic for each run of the benchmark, then used
the timestamps of the first and last packet in the trace to
obtain our latency measures [10]. The packet monitor also
recorded the amount of data transmitted between the client
and the server. The ratio between the data traffic in the two
tests yields a scale factor. This scale factor shows the loss
of data between the server and the client due to inability of
the client to process the data quickly enough. The product
of the scale factor with the latency measurement produces
the true latency accounting for client processing time.

To run the web browsing benchmark, we used Mozilla
Firefox 1.0.4 running on the thin-client server for the thin
clients, and Windows Internet Explorer (IE) Mobile for 2003
and Mobile for 5.0 for the native browsers on the X5 and
X51v PDAs, respectively. In all cases, the web browser used
was sized to fill the entire display region available.

To measure video playback performance, we used a video
benchmark that consisted of playing a 34.75s MPEG-1 video
clip containing a mix of news and entertainment program-
ming at full-screen resolution. The video clip is 5.11 MB and
consists of 834 352x240 pixel frames with an ideal frame rate
of 24 frames/sec. We measured video performance using
slow-motion benchmarking by monitoring resulting packet
traffic at two playback rates, 1 frames/second (fps) and 24
fps, and comparing the results to determine playback de-
lays and frame drops that occur at 24 fps to measure overall
video quality [13]. For example, 100% quality means that all
video frames were played at real-time speed. On the other
hand, 50% quality could mean that half the video data was
dropped, or that the clip took twice as long to play even
though all of the video data was displayed.

To run the video benchmark, we used Windows Media
Player 9 for Windows-based thin-client servers, MPlayer 1.0
pre 6 for X-based thin-client servers, and Windows Media
Player 9 Mobile and 10 Mobile for the native video players
running locally on the X5 and X51v PDAs, respectively. In
all cases, the video player used was sized to fill the entire
display region available.

4.3 Measurements
Figures 3 and 4 show the results of running the web brows-

6



0

1

10

100

pTHINC
Resized

pTHINCICA
Resized

ICAVNCRDPLOCAL

La
te

nc
y 

(s
)

Platform

Axim X5 (640x480 or less)
Axim X51v (640x480)
Axim X5 (1024x768)

Axim X51v (1024x768)

Figure 3: Browsing Benchmark: Average Page Latency

ing benchmark. For each platform, we show results for up to
four different configurations, two on the X5 and two on the
X51v, depending on whether each configuration was sup-
ported. However, not all platforms could support all con-
figurations. The local browser only runs at the display res-
olution of the PDA, 480×680 or less for the X51v and the
X5. RDP only runs at 640×480. Neither platform could
support 1024×768 display resolution. ICA only ran on the
X5 and could not run on the X51v because it did not work
on Windows Mobile 5.

Figure 3 shows the average latency per web page for each
platform. pTHINC provides the lowest average web brows-
ing latency on both PDAs. On the X5, pTHINC performs
up to 70 times better than other thin-client systems and 8
times better than the local browser. On the X51v, pTHINC
performs up to 80 times better than other thin-client sys-
tems and 7 times better than the native browser. In fact,
all of the thin clients except VNC outperform the local
PDA browser, demonstrating the performance benefits of
the thin-client approach. Usability studies have shown that
web pages should take less than one second to download
for the user to experience an uninterrupted web browsing
experience [14]. The measurements show that only the thin
clients deliver subsecond web page latencies. In contrast, the
local browser requires more than 3 seconds on average per
web page. The local browser performs worse since it needs
to run a more limited web browser to process the HTML,
JavaScript, and do all the rendering using the limited capa-
bilities of the PDA. The thin clients can take advantage of
faster server hardware and a highly tuned web browser to
process the web content much faster.

Figure 3 shows that RDP is the next fastest platform after
pTHINC. However, RDP is only able to run at a fixed reso-
lution of 640×480 and 8-bit color depth. Furthermore, RDP
also clips the display to the size of the PDA screen so that
it does not need to send updates that are not visible on the
PDA screen. This provides a performance benefit assum-
ing the remaining web content is not viewed, but degrades
performance when a user scrolls around the display to view
other web content. RDP achieves its performance with sig-
nificantly lower display quality compared to the other thin
clients and with additional display clipping not used by other
systems. As a result, RDP performance alone does not pro-
vide a complete comparison with the other platforms. In
contrast, pTHINC provides the fastest performance while
at the same time providing equal or better display quality
than the other systems.

0

1

10

100

1000

pTHINC
Resized

pTHINCICA
Resized

ICAVNCRDPLOCAL

D
at

a 
S

iz
e 

(K
B

)

Platform

Axim X5 (640x480 or less)
Axim X51v (640x480)
Axim X5 (1024x768)

Axim X51v (1024x768)

Figure 4: Browsing Benchmark: Average Page Data

Transferred

Since VNC and ICA provide similar display quality to
pTHINC, these systems provide a more fair comparison of
different thin-client approaches. ICA performs worse in part
because it uses higher-level display primitives that require
additional client processing costs. VNC performs worse in
part because it loses display data due to its client-pull de-
livery mechanism and because of the client processing costs
in decompressing raw pixel primitives. In both cases, their
performance was limited in part because their PDA clients
were unable to keep up with the rate at which web pages
were being displayed.

Figure 3 also shows measurements for those thin clients
that support resizing the display to fit the PDA screen,
namely ICA and pTHINC. Resizing requires additional pro-
cessing, which results in slower average web page latencies.
The measurements show that the additional delay incurred
by ICA when resizing versus not resizing is much more sub-
stantial than for pTHINC. ICA performs resizing on the
slower PDA client. In contrast, pTHINC leverage the more
powerful server to do resizing, reducing the performance
difference between resizing and not resizing. Unlike ICA,
pTHINC is able to provide subsecond web page download
latencies in both cases.

Figure 4 shows the data transferred in KB per page when
running the slow-motion version of the tests. All of the plat-
forms have modest data transfer requirements of roughly
100 KB per page or less. This is well within the band-
width capacity of Wi-Fi networks. The measurements show
that the local browser does not transfer the least amount of
data. This is surprising as HTML is often considered to be
a very compact representation of content. Instead, RDP is
the most bandwidth efficient platform, largely as a result of
using only 8-bit color depth and screen clipping so that it
does not transfer the entire web page to the client. pTHINC
overall has the largest data requirements, slightly more than
VNC. This is largely a result of the current pTHINC proto-
type’s lack of native support for 16-bit color data in the wire
protocol. However, this result also highlights pTHINC’s per-
formance as it is faster than all other systems even while
transferring more data. Furthermore, as newer PDA models
support full 24-bit color, these results indicate that pTHINC
will continue to provide good web browsing performance.

Since display usability and quality are as important as
performance, Figures 5 to 8 compare screenshots of the dif-
ferent thin clients when displaying a web page, in this case
from the popular BBC news website. Except for ICA, all of
the screenshots were taken on the X51v in landscape mode

7



Figure 5: Browser Screenshot: RDP 640x480 Figure 6: Browser Screenshot: VNC 1024x768

Figure 7: Browser Screenshot: ICA Resized 1024x768 Figure 8: Browser Screenshot: pTHINC Resized 1024x768

using the maximum display resolution settings for each plat-
form given in Table 2. The ICA screenshot was taken on the
X5 since ICA does not run on the X51v. While the screen-
shots lack the visual fidelity of the actual device display, sev-
eral observations can be made. Figure 5 shows that RDP
does not support fullscreen mode and wastes lots of screen
space for controls and UI elements, requiring the user to
scroll around in order to access the full contents of the web
browsing session. Figure 6 shows that VNC makes better
use of the screen space and provides better display quality,
but still forces the user to scroll around to view the web
page due to its lack of resizing support. Figure 7 shows
ICA’s ability to display the full web page given its resizing
support, but that its lack of landscape capability and poorer
resize algorithm significantly compromise display quality. In
contrast, Figure 8 shows pTHINC using resizing to provide
a high quality fullscreen display of the full width of the web
page. pTHINC maximizes the entire viewing region by mov-
ing all controls to the PDA buttons. In addition, pTHINC
leverages the server computational power to use a high qual-
ity resizing algorithm to resize the display to fit the PDA
screen without significant overhead.

Figures 9 and 10 show the results of running the video
playback benchmark. For each platform except ICA, we
show results for an X5 and X51v configuration. ICA could
not run on the X51v as noted earlier. The measurements
were done using settings that reflected the environment a

user would have to access a web session from both a desk-
top computer and a PDA. As such, a 1024×768 server dis-
play resolution was used whenever possible and the video
was shown at fullscreen. RDP was limited to 640×480 dis-
play resolution as noted earlier. Since viewing the entire
video display is the only really usable option, we resized
the display to fit the PDA screen for those platforms that
supported this feature, namely ICA and pTHINC.

Figure 9 shows the video quality for each platform. pTHINC
is the only thin client able to provide perfect video playback
quality, similar to the native PDA video player. All of the
other thin clients deliver very poor video quality. With the
exception of RDP on the X51v which provided unacceptable
35% video quality, none of the other systems were even able
to achieve 10% video quality. VNC and ICA have the worst
quality at 8% on the X5 device.

pTHINC’s native video support enables superior video
performance, while other thin clients suffer from their in-
ability to distinguish video from normal display updates.
They attempt to apply ineffective and expensive compres-
sion algorithms on the video data and are unable to keep up
with the stream of updates generated, resulting in dropped
frames or long playback times. VNC suffers further from
its client-pull update model because video frames are gen-
erated faster than the rate at which the client can process
and send requests to the server to obtain the next display
update. Figure 10 shows the total data transferred during

8



0%

20%

40%

60%

80%

100%

pTHINCICAVNCRDPLOCAL

V
id

eo
 Q

ua
lit

y

Platform

Axim X5
Axim X51v

Figure 9: Video Benchmark: Fullscreen Video Quality

0

1

10

100

pTHINCICAVNCRDPLOCAL

V
id

eo
 D

at
a 

S
iz

e 
(M

B
)

Platform

Axim X5
Axim X51v

Figure 10: Video Benchmark: Fullscreen Video Data

video playback for each system. The native player is the
most bandwidth efficient platform, sending less than 6 MB
of data, which corresponds to about 1.2 Mbps of bandwidth.
pTHINC’s 100% video quality requires about 25 MB of data
which corresponds to a bandwidth usage of less than 6 Mbps.
While the other thin clients send less data than THINC,
they do so because they are dropping video data, resulting
in degraded video quality.

Figures 11 to 14 compare screenshots of the different thin
clients when displaying the video clip. Except for ICA, all of
the screenshots were taken on the X51v in landscape mode
using the maximum display resolution settings for each plat-
form given in Table 2. The ICA screenshot was taken on the
X5 since ICA does not run on the X51v. Figures 11 and 12
show that RDP and VNC are unable to display the entire
video frame on the PDA screen. RDP wastes screen space
for UI elements and VNC only shows the top corner of the
video frame on the screen. Figure 13 shows that ICA pro-
vides resizing to display the entire video frame, but did not
proportionally resize the video data, resulting in strange dis-
play artifacts. In contrast, Figure 14 shows pTHINC using
resizing to provide a high quality fullscreen display of the en-
tire video frame. pTHINC provides visually more appealing
video display than RDP, VNC, or ICA.

5. RELATED WORK
Several studies have examined the web browsing perfor-

mance of thin-client computing [13, 19, 10]. The ability for
thin clients to improve web browsing performance on wire-
less PDAs was first quantitatively demonstrated in a previ-
ous study by one of the authors [10]. This study demon-
strated that thin clients can provide both faster web brows-
ing performance and greater web browsing functionality.
The study considered a wide range of web content including
content from medical information systems. Our work builds
on this previous study and consider important issues such as
how usable existing thin clients are in PDA environments,
the trade-offs between thin-client usability and performance,
performance across different PDA devices, and the perfor-
mance of thin clients on common web-related applications
such as video.

Many thin clients have been developed and some have
PDA clients, including Microsoft’s Remote Desktop [3], Cit-
rix MetraFrame XP [2], Virtual Network Computing [16,
12], GoToMyPC [5], and Tarantella [18]. These systems
were first designed for desktop computing and retrofitted
for PDAs. Unlike pTHINC, they do not address key sys-
tem architecture and usability issues important for PDAs.

This limits their display quality, system performance, avail-
able screen space, and overall usability on PDAs. pTHINC
builds on previous work by two of the authors on THINC [1],
extending the server architecture and introducing a client in-
terface and usage model to efficiently support PDA devices
for mobile web applications.

Other approaches to improve the performance of mobile
wireless web browsing have focused on using transcoding
and caching proxies in conjunction with the fat client model
[11, 9, 4, 8]. They work by pushing functionality to external
proxies, and using specialized browsing applications on the
PDA device that communicate with the proxy. Our thin-
client approach differs fundamentally from these fat-client
approaches by pushing all web browser logic to the server,
leveraging existing investments in desktop web browsers and
helper applications to work seamlessly with production sys-
tems without any additional proxy configuration or web
browser modifications.

With the emergence of web browsing on small display de-
vices, web sites have been redesigned using mechanisms like
WAP and specialized native web browsers have been devel-
oped to tailor the needs of these devices. Recently, Opera
has developed the Opera Mini [15] web browser, which uses
an approach similar to the thin-client model to provide ac-
cess across a number of mobile devices that would normally
be incapable of running a web browser. Instead of requiring
the device to process web pages, it uses a remote server to
pre-process the page before sending it to the phone.

6. CONCLUSIONS
We have introduced pTHINC, a thin-client architecture

for wireless PDAs. pTHINC provides key architectural and
usability mechanisms such as server-side screen resizing, client-
side screen rotation using simple copy techniques, YUV video
support, and maximizing screen space for display updates
and leveraging existing PDA control buttons for UI ele-
ments. pTHINC transparently supports traditional desk-
top browsers and their helper applications on PDA devices
and desktop machines, providing mobile users with ubiqui-
tous access to a consistent, personalized, and full-featured
web environment across heterogeneous devices. We have
implemented pTHINC and measured its performance on
web applications compared to existing thin-client systems
and native web applications. Our results on multiple mo-
bile wireless devices demonstrate that pTHINC delivers web
browsing performance up to 80 times better than existing
thin-client systems, and 8 times better than a native PDA
browser. In addition, pTHINC is the only PDA thin client

9



Figure 11: Video Screenshot: RDP 640x480 Figure 12: Video Screenshot: VNC 1024x768

Figure 13: Video Screenshot: ICA Resized 1024x768
Figure 14: Video Screenshot: pTHINC Resized 1024x768

that transparently provides full-screen, full frame rate video
playback, making web sites with multimedia content acces-
sible to mobile web users.

7. ACKNOWLEDGEMENTS
This work was supported in part by NSF ITR grants CCR-

0219943 and CNS-0426623, and an IBM SUR Award.

8. REFERENCES
[1] R. Baratto, L. Kim, and J. Nieh. THINC: A Virtual

Display Architecture for Thin-Client Computing. In
Proceedings of the 20th ACM Symposium on Operating
Systems Principles (SOSP), Oct. 2005.

[2] Citrix Metaframe. http://www.citrix.com.
[3] B. C. Cumberland, G. Carius, and A. Muir. Microsoft

Windows NT Server 4.0, Terminal Server Edition:
Technical Reference. Microsoft Press, Redmond, WA, 1999.

[4] A. Fox, I. Goldberg, S. D. Gribble, and D. C. Lee.
Experience With Top Gun Wingman: A Proxy-Based
Graphical Web Browser for the 3Com PalmPilot. In
Proceedings of Middleware ’98, Lake District, England,
September 1998, 1998.

[5] GoToMyPC. http://www.gotomypc.com/.
[6] Health Insurance Portability and Accountability Act.

http://www.hhs.gov/ocr/hipaa/.
[7] i-Bench version 1.5. http:

//etestinglabs.com/benchmarks/i-bench/i-bench.asp.
[8] A. Joshi. On proxy agents, mobility, and web access.

Mobile Networks and Applications, 5(4):233–241, 2000.
[9] J. Kangasharju, Y. G. Kwon, and A. Ortega. Design and

Implementation of a Soft Caching Proxy. Computer

Networks and ISDN Systems, 30(22–23):2113–2121, 1998.
[10] A. Lai, J. Nieh, B. Bohra, V. Nandikonda, A. P. Surana,

and S. Varshneya. Improving Web Browsing on Wireless
PDAs Using Thin-Client Computing. In Proceedings of the
13th International World Wide Web Conference (WWW),
May 2004.

[11] A. Maheshwari, A. Sharma, K. Ramamritham, and
P. Shenoy. TranSquid: Transcoding and caching proxy for
heterogenous ecommerce environments. In Proceedings of
the 12th IEEE Workshop on Research Issues in Data
Engineering (RIDE ’02), Feb. 2002.

[12] .NET VNC Viewer for PocketPC.
http://dotnetvnc.sourceforge.net/.

[13] J. Nieh, S. J. Yang, and N. Novik. Measuring Thin-Client
Performance Using Slow-Motion Benchmarking. ACM
Trans. Computer Systems, 21(1):87–115, Feb. 2003.

[14] J. Nielsen. Designing Web Usability. New Riders
Publishing, Indianapolis, IN, 2000.

[15] Opera Mini Browser.
http://www.opera.com/products/mobile/operamini/.

[16] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and
A. Hopper. Virtual Network Computing. IEEE Internet
Computing, 2(1), Jan./Feb. 1998.

[17] R. W. Scheifler and J. Gettys. The X Window System.
ACM Trans. Gr., 5(2):79–106, Apr. 1986.

[18] Sun Secure Global Desktop.
http://www.sun.com/software/products/sgd/.

[19] S. J. Yang, J. Nieh, S. Krishnappa, A. Mohla, and
M. Sajjadpour. Web Browsing Performance of Wireless
Thin-Client Computing. In Proceedings of the 12th
International World Wide Web Conference (WWW), May
2003.

10


