
1

TCP Review © Dr. Ayman Abdel-Hamid, CS6504
Spring 2007

1

CS6504

Mobile Computing

Dr. Ayman Abdel-Hamid
Computer Science Department

Virginia Tech

TCP Review

TCP Review © Dr. Ayman Abdel-Hamid, CS6504
Spring 2007

2

Outline
•Review Transmission Control Protocol (TCP)

Based on

Behrouz Forouzan, Data Communications and Networking, 3rd Ed,
McGraw-Hill, 2004

W. Richard Stevens, Unix Network Programming, Networking APIs:
Sockets and XTI, Vol.1, 3rd Ed, Prentice Hall, 2004

TCP Review © Dr. Ayman Abdel-Hamid, CS6504
Spring 2007

3

TCP
•TCP is a transport-layer protocol offering stream connection-
oriented and reliable transport protocol

•Stream Delivery Service
stream of bytes (in UDP, every datagram is independent from the other)

Sending process produces a stream of bytes and receiving process consumes
(production and consumption have different speeds buffers for storage)

Sending buffer

Empty locations that can be filled by sending process

Bytes that have been sent but not yet acknowledged

Bytes to be sent by sending TCP

Receiving buffer

Empty locations to be filled with bytes received from the network

Bytes that can be consumed by the receiving process
TCP Review © Dr. Ayman Abdel-Hamid, CS6504

Spring 2007
4

Bytes and Segments
•IP layer sends data in packets, not as stream of bytes

•TCP groups a number of bytes together into a packet called a
segment

•TCP adds a header and delivers segment to IP layer for
transmission

•Segments encapsulated in an IP datagram and transmitted

•Segments may be received out of order, lost, or corrupted and
resent

•Segments are not necessarily the same size

2

TCP Review © Dr. Ayman Abdel-Hamid, CS6504
Spring 2007

5

TCP Services
•Full-duplex service

Data can flow in both directions at the same time

Each TCP has a sending and receiving buffer

•Connection-oriented service
When process at site A wants to send and receive data from another

process at site B

A’s TCP informs B’s TCP and gets approval from B’s TCP

A’s TCP and B’s TCP exchange data in both directions

After both processes have no data left to send and the buffers are empty, two
TCPs destroy their buffers

A virtual connection is created

•Reliable service
TCP uses an ACK mechanism to ensure arrival of data

TCP Review © Dr. Ayman Abdel-Hamid, CS6504
Spring 2007

6

Numbering

•Numbering Bytes
Two fields are used sequence number and acknowledgment

number. Both refer to byte number and not segment number
All data bytes transmitted are numbered (independent in each

direction)
Numbering does not necessarily start from zero

•Sequence number

Sequence number for each segment is the number of the first byte
carried in that segment

•Acknowledgment number

The ACK number denotes the number of the next byte that this
party expects to receive (cumulative)

TCP Review © Dr. Ayman Abdel-Hamid, CS6504
Spring 2007

7

TCP Segment

TCP Review © Dr. Ayman Abdel-Hamid, CS6504
Spring 2007

8

Connection Establishment

3

TCP Review © Dr. Ayman Abdel-Hamid, CS6504
Spring 2007

9

Connection Termination

TCP Review © Dr. Ayman Abdel-Hamid, CS6504
Spring 2007

10

State Transition Diagram

TCP Review © Dr. Ayman Abdel-Hamid, CS6504
Spring 2007

11

Flow Control
•Sliding window protocol

Maintain a window for each connection

Window spans a portion of the buffer containing bytes that a host can send
before worrying about an ACK from other host

•Receiver window (number of empty locations in receiver buffer)

•Sender window <= receiver window (flow control)
Sender window includes bytes sent but not acknowledged and those can be

sent

Sliding sender window (without a change in receiver’s advertised window)

Expanding sender window (receiving process consumes data faster than it
receives)

Shrinking sender window (receiving process consumes data more slowly
than it receives)

TCP Review © Dr. Ayman Abdel-Hamid, CS6504
Spring 2007

12

Error Control
•Mechanisms for detecting corrupted segments, lost segments, out-of-order
segments, and duplicated segments

•Tools: checksum, ACK, and time-out

Checksum corrupted at destination

ACK confirm receipt of segments arriving uncorrupted

Time-out one time-out counter per segment

•Lost segment or corrupted segment are the same situation: segment will
be retransmitted after time-out

•Duplicate segment (destination discards)

•Out-of-order segment (destination does not acknowledge, until it receives
all segments that precede it)

•Lost ACK (loss of an ACK is irrelevant, since ACK mechanism is
cumulative)

4

TCP Review © Dr. Ayman Abdel-Hamid, CS6504
Spring 2007

13

TCP Timers 1/3

•Retransmission timer

Retransmission time based on RTT

Most common, Retransmission time = 2* RTT

RTT calculated dynamically as

RTT = α * old RTT + (1- α)* new RTT where α usually 90%

Karn’s Algorithm

A segment not ACKed and retransmitted

later, an ACK is received is ACK for original segment or
retransmitted?

Do not consider the RTT of a retransmitted segment in
calculation

TCP Review © Dr. Ayman Abdel-Hamid, CS6504
Spring 2007

14

TCP Timers 2/3

•Persistence timer
Sending TCP stops transmitting segments upon receiving a zero window-

advertisement from receiver

Later, receiving TCP sends an ACK announcing a non-zero window size
this ACK is lost?

Start a persistence timer when receive zero window advertisement

After time-out, send a special segment called a probe (1 byte of data, which
is not ACKed)

Value of persistence time set equal to retransmission timer

If no response from receiver, another probe sent and value of timer doubled
and reset

Repeat until value reaches a threshold (usually 60 seconds)

Send 1 probe every threshold until window is reopened

TCP Review © Dr. Ayman Abdel-Hamid, CS6504
Spring 2007

15

TCP Timers 3/3

•Keep-Alive timer

Prevent long idle connection between 2 TCPs

Time-out usually around 2 hours

If does not hear after time-out, send a probe

If no response after 10 probes (each of which is 75 seconds apart),
assume other party is down and terminate connection

•Time-waited timer

Used during connection termination

Deal with old duplicates in case of incarnation of previous
connection, or to resend final ACK if necessary

Usually 2 times the expected lifetime of a segment

TCP Review © Dr. Ayman Abdel-Hamid, CS6504
Spring 2007

16

Congestion Control 1/4

•TCP assumes the cause of a lost segment is due to congestion in
the network

•If the cause of the lost segment is congestion, retransmission of the
segment does not remove the problem, it actually aggravates it

•The network needs to tell the sender to slow down (affects the
sender window size in TCP)

•Actual window size = Min (receiver window size, congestion
window size)

The congestion window is flow control imposed by the sender

The advertised window is flow control imposed by the receiver

5

TCP Review © Dr. Ayman Abdel-Hamid, CS6504
Spring 2007

17

Congestion Control 2/4

•Slow start

At start of connection, set congestion window size to
maximum segment size

For each segment ACKed, increase congestion window size
by 1 maximum segment size until it reaches a threshold of one-
half allowable window size

Exponential increase in size

Send 1 segment, receive 1 ACK, increase size to 2 segments

Send 2 segments, receive 2 ACKs, increase size to 4 segments

Send 4 segments, receives 4 ACKs, increase size to 8 segments

TCP Review © Dr. Ayman Abdel-Hamid, CS6504
Spring 2007

18

Congestion Control 3/4

•Additive Increase (Congestion Avoidance phase)
After size reaches threshold, size is increased one segment for each

ACK, even if ACK is for several segments (this continues as long as
ACKs arrive before time-outs, or congestion window reaches the
receiver window value)

•Multiplicative Decrease
If a time-out occurs, threshold set to one-half of last congestion

window size, and congestion window size starts from 1 (return to
slow start)

Threshold reduced to one-half current congestion window size
every time a time-out occurs (exponential reduction)

Exponential growth stops when the threshold is hit
Afterwards, successful transmissions grow congestion window

linearly
•Such congestion control often referred to as TCP Tahoe

TCP Review © Dr. Ayman Abdel-Hamid, CS6504
Spring 2007

19

Congestion Control 4/4

0
4
8

12
16
20
24
28
32
36
40
44

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Transmission number

co
ng

es
tio

n
w

in
do

w
 s

iz
e

in
 K

by
te

s

Series1

Timeout

TCP Review © Dr. Ayman Abdel-Hamid, CS6504
Spring 2007

20

TCP Variants 1/3

•TCP Tahoe (first implemented in 4.3 BSD, 1988)

Slow start + Congestion avoidance and fast retransmit

Fast Retransmit

Triggers the transmission of a dropped segment if three
dup ACKs for a segment are received before the occurrence
of the segment's timeout

TCP required to immediately generate a dup ACK if an
out-of-order segment is received (on receiving a dup ACK,
cant tell if the reason is a reorder of segments or a lost
segment, hence the wait to receive a number of dup ACKs)

Fast Retransmit was incorrectly followed by slow start

6

TCP Review © Dr. Ayman Abdel-Hamid, CS6504
Spring 2007

21

TCP Variants 2/3

•TCP Reno
The above algorithms + fast recovery
Fast Recovery

Cancel the slow start phase after a fast retransmission
Motive: network was able to deliver the 3 dup ACKs
Sender window = min (receiver window, congestion window

+ndup)
ndup is the number of duplicates, maintained at 0 until the # of

ACKs reaches the threshold (3) and then tracks the number of
duplicate ACKs

Sender waits until half a window of dup ACKs have been
received, and then sends a new packet for each additional dup
ACK it receives

Upon receive of an ACK for new data (a recovery ACK), sender
exits fast recovery by setting ndup = 0

TCP Review © Dr. Ayman Abdel-Hamid, CS6504
Spring 2007

22

TCP Variants 3/3

•TCP New-Reno
Enhancements to fast recovery in case multiple packets are lost from same

window
TCP Reno will be taken out of fast recovery (deflate usable window size) if

partial ACKs are received (ACK some but not all of the packets outstanding
at start of fast recovery)

New-Reno is not taken out of fast recovery and will retransmit the packet
following the partial ACK without the wait for the retransmission timer
(effectively retransmitting one lost packet per RTT until all lost packets are
retransmitted)

•TCP Vegas
Attempt to detect congestion in routers between source and destination

before packet loss occurs (detected by observing RTT, longer RTT greater
congestion

Lower rate linearly when imminent packet loss occurs

•TCP with Selective Acknowledgment (SACK)

TCP Review © Dr. Ayman Abdel-Hamid, CS6504
Spring 2007

23

TCP Selective Acknowledgment
•Due to use of cumulative ACK

TCP does not provide sender with sufficient information to
recover quickly from multiple packet losses within a single
transmission window

•SACK added as an option to TCP

•Each ACK contains information about up to three noncontiguous
blocks of data that have been received successfully by receiver

•Each block of data is described by its starting and ending sequence
number

•Due to limited number of blocks, inform sender about most recent
blocks received

TCP Review © Dr. Ayman Abdel-Hamid, CS6504
Spring 2007

24

An example of generating SACK options 1/3

•Assume the left window edge is 5000 and that the data transmitter sends a burst
of 8 segments, each containing 500 data bytes

•Case 1: The first 4 segments are received but the last 4 are dropped.

The data receiver will return a normal TCP ACK segment acknowledging sequence
number 7000, with no SACK option.

•Case 2: The first segment is dropped but the remaining 7 are received.

Upon receiving each of the last seven packets, the data receiver will return a TCP
ACK segment that acknowledges sequence number 5000 and contains a SACK option
specifying one block of queued data:

Triggering Segment ACK Left Edge Right Edge

5000 (lost)

5500 5000 5500 6000

6000 5000 5500 6500

6500 5000 5500 7000

7000 5000 5500 7500

7500 5000 5500 8000

8000 5000 5500 8500

8500 5000 5500 9000

7

TCP Review © Dr. Ayman Abdel-Hamid, CS6504
Spring 2007

25

An example of generating SACK options 2/3

•Case 3: The 2nd, 4th, 6th, and 8th (last) segments are dropped.

The data receiver ACKs the first packet normally. The third, fifth, and
seventh packets trigger SACK options as follows:

6000/65007000/75008000/850055008000

(lost)8500

(lost)7500

6000/65007000/750055007000

(lost)6500

6000/650055006000

(lost)5500

55005000

Third
Block

Second
Block

First
Block

ACKTriggering
Segment

TCP Review © Dr. Ayman Abdel-Hamid, CS6504
Spring 2007

26

An example of generating SACK options 3/3

•Case 3: The 2nd, 4th, 6th, and 8th (last) segments are dropped (cont.)

Suppose at this point, the 4th packet is received out of order. At this point
the data receiver has only two SACK blocks to report. The data receiver
replies with the following Selective Acknowledgment:

8000/85006000/750055006500

Third
Block

Second
Block

First
Block

ACKTriggering
Segment

Suppose at this point, the 2nd segment is received. The data receiver then
replies with the following Selective Acknowledgment:

8000/850075005500

Third
Block

Second
Block

First
Block

ACKTriggering
Segment

TCP Review © Dr. Ayman Abdel-Hamid, CS6504
Spring 2007

27

An example SACK Implementation (FF96) 1/3

•First block in a SACK option required to report data receiver’s most
recently received segment

•Additional SACK blocks repeat most recently reported SACK
blocks

•Each SACK option has room for 3 SACK blocks

•Congestion control algorithm is a conservative extension of TCP
Reno

Main difference is when multiple packets are dropped from one
window of data

SACK TCP enters fast recovery when data sender receives 3
duplicate ACKs

Sender retransmits a packet and cuts congestion window in half
TCP Review © Dr. Ayman Abdel-Hamid, CS6504

Spring 2007
28

An example SACK Implementation (FF96) 2/3

•During fast recovery

SACK maintains a variable called pipe (estimated number of
packets outstanding in the path)

Sender only sends new or retransmitted data when estimated
number of packets in path less than congestion window

•pipe++ when sender sends a new packet or retransmits an old
packet

•pipe-- when sender receives a duplicate ACK with a SACK option
reporting new data has been received at receiver

•Keep a scoreboard that remembers ACKs from previous SACK
options (infer which segment needs to be retransmitted)

8

TCP Review © Dr. Ayman Abdel-Hamid, CS6504
Spring 2007

29

An example SACK Implementation (FF96) 3/3

•When a retransmitted segment is itself dropped, a retransmission
timeout takes effect and slow start is entered

•Sender exists fast recover when a recovery ACK is received
(ACKing all data that was outstanding when fast recovery was
entered)

•How to handle partial ACKs

Partial ACKs are ACKs received during fast recovery that
advance the ACK number of TCP header, but do not take sender
out of fast recovery

For partial ACKs, sender decrements pipe by 2 packets rather
than one

