
Systematic CXL Memory Characterization and

Performance Analysis at Scale

Jinshu Liu
Virginia Tech

Blacksburg, USA

Hamid Hadian
Virginia Tech

Blacksburg, USA

Yuyue Wang
Virginia Tech

Blacksburg, USA

Daniel S. Berger
Microsoft and University of Washington

Redmond, USA

Marie Nguyen
Samsung

San Jose, USA

Xun Jian
Virginia Tech

Blacksburg, USA

Sam H. Noh
Virginia Tech

Blacksburg, USA

Huaicheng Li
Virginia Tech

Blacksburg, USA

Abstract

Compute Express Link (CXL) has emerged as a pivotal inter-

connect for memory expansion. Despite its potential, the per-

formance implications of CXL across devices, latency regimes,

processors, and workloads remain underexplored. We present

Melody, a framework for systematic characterization and

analysis of CXL memory performance. Melody builds on an

extensive evaluation spanning 265 workloads, 4 real CXL de-

vices, 7 latency levels, and 5 CPU platforms. Melody yields

many insights: workload sensitivity to sub-µs CXL latencies

(140-410ns), the first disclosure of CXL tail latencies, CPU toler-

ance to CXL latencies, a novel approach (Spa) for pinpointing

CXL bottlenecks, and CPU prefetcher inefficiencies under CXL.

CCS Concepts: • Hardware → Emerging technologies; •
Computer systems organization→ Architectures.

Keywords: Compute Express Link, CXL, Memory, Profiling

ACM Reference Format:

Jinshu Liu, Hamid Hadian, Yuyue Wang, Daniel S. Berger, Marie
Nguyen, Xun Jian, Sam H. Noh, and Huaicheng Li. 2025. System-
atic CXL Memory Characterization and Performance Analysis at
Scale. In Proceedings of the 30th ACM International Conference on

Architectural Support for Programming Languages and Operating

Systems, Volume 3 (ASPLOS ’25), March 30–April 3, 2025, Rotter-

dam, Netherlands. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3676641.3715987

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’25, Rotterdam, Netherlands.

© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1079-7/25/03
https://doi.org/10.1145/3676641.3715987

 0

 200

 400

 600

 800

 4  8  16  32  64  128  256  512

CXL + multi-hops

Socket-local DRAM

CXL+Switch

CXL+NUMA

CXL

A
v
g

 
L
a
te
n
c
y
 
(n
s
)

Memory Bandwidth (GB/s)

Figure 1. The spectrumof sub-µs CXL latency and bandwidth.

1 Introduction

Driven by the growing requirements of memory-intensive
applications, the demand for increased memory capacity
is rapidly rising [37]. The surge is further compounded by
DRAM scaling challenges [40]. Emerging interconnects like
Compute Express Link (CXL) hold the promise of both scale-
up and scale-out memory expansion at the server/rack levels
[34, 36, 44]. Various memory vendors have introduced CXL
memory expanders [3, 4, 8, 15], some of which are being
deployed in production systems, facilitating access to signif-
icantly larger amounts of DRAM than previously feasible.

Low memory access latency is key to system performance,
but CXLmemory expansion introduces higher latencies com-
pared to traditional socket-local DRAM [27, 34, 41]. Figure
1 illustrates the substantial heterogeneity in CXL latency
and bandwidth, as measured across 4 CXL devices within
our platform (Table 1) and 2 more data points from pub-
lic sources1[15, 17]. Furthermore, CXL devices can exhibit
varying performance characteristics. The variability in la-
tency and bandwidth arises from varying interconnection
topologies and vendor optimizations [27, 41]. For instance,
the latencies of locally-attached CXL range from ∼200-400ns,
slightly exceeding NUMA latency. Accessing CXL memory
from a remote socket results in increased latency and di-
minished bandwidth (CXL+NUMA). The use of CXL switch(es)
to extend connectivity will introduce additional latencies
(CXL+Switch), even elevating latency to approximately 600ns.
1CXL+Switch data is from [15], and bandwidth is averaged for 1 CXL device.

1

https://doi.org/10.1145/3676641.3715987
https://doi.org/10.1145/3676641.3715987
https://doi.org/10.1145/3676641.3715987


ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Jinshu Liu et al.

The current CPU architecture and memory hierarchy are
tailored for typical multi-socket systems, offering ∼100ns la-
tency and 100s of GB/s bandwidth. However, the performance

implications of CXL memory with sub-µs latencies remain

largely unclear. Currently, there is a significant gap in re-
search that explores detailed CXL characteristics and their
impact on memory-intensive workloads at scale, in depth,

and across the full spectrum of sub-µs latencies.
In particular, how do CXL devices differ in detailed per-

formance characteristics beyond average latency and band-
width metrics? How (much) does CXL’s long (and longer)
latency affect CPU efficiency and workload performance?
What are the underlying causes and how do we analyze it?

Simply treating CXL memory as slower DRAM is insuffi-
cient given the added complexity of the CXL protocol stack
over PCIe and variability introduced by third-party mem-
ory controller optimizations [27]. While previous studies
[28, 34, 38, 41–43] offer valuable insights into CXL perfor-
mance impact on a small set of cloud/HPC workloads, they
primarily focus on coarse-grained analysis and overlook sev-
eral critical aspects: (i) CXL performance stability (i.e., tail
latencies); (ii) CPU tolerance to prolonged CXL latencies
across various workloads, and the architectural implications
of CXL; and (iii) the lack of systematic approach to dissect
workload performance and CPU inefficiency under CXL.

To this end, we introduce Melody, a comprehensive
framework for detailed CXL performance characterization:
(a)Melody is the first to disclose, quantify, and analyze CXL
tail latencies, providing insights through both microbench-
marks and real-world applications. (b) Melody evaluates
265 workloads across 4 CXL devices under 7 memory la-
tency configurations (140-410ns) on 5 processor platforms.
This extensive characterization provides insights into CPU
and workload tolerance to CXL latencies. (c) Melody intro-
duces a novel approach to diagnose CXL performance issues,
utilizing only 9 CPU performance counters for lightweight,
accurate and granular workload behavior analysis.
(I) The first analysis of CXL characteristics beyond

average latency and bandwidth across 4 real CXL de-

vices. Conventionally, memory performance has been char-
acterized primarily by average latency and bandwidth. Most
CXL studies to date have adhered to this traditional approach,
implicitly assuming that CXL latencies would be as stable as
those of local or NUMA memory [27, 28, 34, 36, 38, 41–43].
We discover some CXL devices exhibit significant µs-level
tail latencies even under low device bandwidth utilization.
We argue that tail latencies offer a crucial additional dimen-
sion for fully understanding CXL’s characteristics, partic-
ularly given its PCIe-based, non-deterministic architecture
and reliance on external memory controllers. Unlike tightly
coupled integrated memory controllers (iMC) in CPUs, CXL
setup may introduce greater latency variability.
(II) An extensive evaluation of CXL’s performance

implications across diverse workloads. Workloads have

diverse memory demands and access patterns, resulting in
varied behavior on CXL. A deep understanding of workload
performance at scale is critical for informed deployment de-
cisions [34, 43], as CXL latency can potentially lead to signif-
icant CPU stalls [33]. The limited scope of current studies re-
stricts their broader applicability [41–43]. A large-scale study
is needed to examine a more comprehensive set of CXL la-
tencies and workloads. By providing extensive performance
data on a wide range of real CXL devices,Melody facilitates
cross-workload and cross-device analysis that were previ-
ously impossible. Furthermore, this large-scale evaluation
allows us to systematically identify common performance
patterns across workloads, which form the foundation of our
root-cause analysis approach.

(III) A systematic approach forworkload performance

analysis under CXL. The root causes of CXL-induced per-
formance slowdowns remain insufficiently understood. Exist-
ing research predominantly relies on heuristic-based, system-
level metrics for correlation analysis, which often fail to accu-
rately capture the underlying performance bottlenecks [26,
34, 39, 41, 45–47]. This is largely due to the opaque nature
of CXL memory controllers and the semantic gap between
architectural events and application behaviors. We introduce
Spa, a novel analytical approach that repurposes CPU stall-
related performance counters to pinpoint the sources of per-
formance degradation under CXL and correlate them directly
to workload behavior. Spa stands out due to its lightweight
design (relying solely on 9 CPU counters), high accuracy
(<5% inaccuracy for over 95% workloads), and robustness,
validated across multiple CXL and NUMA configurations.
The uniqueness of Spa lies in its ability to offer precise,
low-overhead analysis of complex performance interactions
under CXL, which is an important and powerful property
that previous methods have been unable to achieve.

In summary, our core contributions are:
• Melody, the largest-scale CXL performance characteri-
zation to date, analyzing 265 workloads across 4 real CXL
devices, 7 memory latency configurations, and 5 processor
platforms. This analysis yields many insights into work-
load performance under sub-µs (CXL) memory latencies.

• The first disclosure and in-depth study of CXL tail laten-
cies, assessing their impact on CPU efficiency and work-
load performance, and offering insights into CPU tolerance
to extended CXL latencies.

• Spa: A novel CXL performance root-cause analysis ap-
proach based on CPU stall cycles using only 9 CPU coun-
ters. Spa enables detailedworkload performance dissection
under CXL, accurately diagnosing and quantifying various
sources of CXL-induced performance degradations in the
CPU at both the workload and execution-phase levels.

• The first comprehensive analysis of CPU hardware prefet-
cher inefficiencies under CXL’s long latencies.

• Open-sourcedMelody artifacts including tools and datasets
at https://github.com/MoatLab/Melody.

2

https://github.com/MoatLab/Melody


Systematic CXL Memory Characterization and Performance Analysis at Scale ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

Write

DRAM
L3L2L1

CPU Backend
Core

Cache
Memory

Load Store

Store Buffer

Demand PrefetchCXL

L2
PF

[a] CPU Backend

LLC
LFB

L2
L1D

L1
PF

Co
re

Store Buffer
RFO

Demand

[b] CXL MC
Thermal Mgmt

Re
q

Sc
he

d

CX
L 

Ct
rl

DD
R 

cm
d

Sc
he

d

Write

Prefetch

Req Q

DR
AM

DR
AM RFO

[c]

Figure 2. CPU and CXL. CPU communicates with CXL controller

via various types of load (demand, prefetch) and store (RFO, write) re-

quests. “LFB” refers to Line Fill Buffer and “PF” denotes CPU prefetcher.

2 Background

CXL formemory expansion.CXL [2] is an emerging mem-
ory fabric built atop PCIe, with memory expansion via the
CXL.mem protocol being a key use case. At the microarchi-
tecture level, the CXL protocol stack features a customized
transaction layer responsible for queueing, processing, and
ordering transactions while the link layer ensures reliable
transmission through mechanisms like CRC and link-layer
retries, maintaining data integrity across the Flex Bus link
[2, 27]. CXL operates in full duplex, allowing simultaneous
read and write operations, similar to cross-socket communi-
cations, and unlike the unidirectional DDR bus [27].
CXL memory controller (MC). Figure 2b illustrates CXL
MC internals, which share many functional similarities with
conventional DRAM controllers [31]. Memory requests to
the CXL MC are encapsulated in a specific packet format,
known as Flits [27], for transmission over CXL/PCIe. Upon
arrival, the CXL controller (“CXL Ctrl”) parses the request
and places it in the request queue. The request scheduler then
selects the next request to process based on the scheduling
policy and other factors such as thermal management for low
latency, high bandwidth, and reliability. Requests are then
passed to the command scheduler, which issues appropriate
low-level DDR commands to the DRAM chips.
Load/Store via CXL. Figure 2a shows components in the
CPU backend [20] for DRAM/CXL request processing. If a
request misses the cache (L1–L3/LLC), it will be forwarded
to the CXL memory controller (MC). Caches are updated
upon data returning fromCXLMC. CPU’s request processing
flow remains the same for both local DRAM and CXL [27].
However, the use of different buses (DDR vs. CXL/PCIe) and
MCs (iMC vs. third-party) affects CPU efficiency. Figure 2c
classifies various request types. The CPU issues two types
of load requests: Demand and Prefetch. Demand loads are
memory reads that CPU requests from (CXL) MC only when
it is needed for computation. Prefetch reads are predictive
reads directed by prefetchers, e.g., “L1PF” and “L2PF” in
Figure 2a. Stores are first queued in the “store buffer.” Each
store request triggers a Read-for-ownership (RFO) for cache
coherence from CXL/DRAM, followed by aWrite upon cache
eviction. Understanding the request types and processing
flow are crucial for CXL performance analysis (§5).
In the rest of the paper, §3–§5 describe our CXL charac-

terization and analysis, and we conclude in §6.

Table 1. Testbed. “Local” and “Remote” denote inter- and cross-

socket memory performance, respectively; #ch denotes the number of

memory channels of each CPU/CXL.

Local Remote Specification

Server

#ch Size Lat BW Lat BW
#cores (Freq), L1D-L2-L3DDR GB ns GB/s ns GB/s

SPR2S 8×DDR5 128 114 218 191 97 32 (2.1GHz), 48KB-2MB-60MB
EMR2S 8×DDR5 128 111 246 193 120 32 (2.1GHz), 48KB-2MB-160MB
EMR2S’ 8×DDR5 1.5T 117 236 212 119 52 (2.3GHz), 48KB-2MB-260MB
SKX2S 6×DDR4 96 90 52 140 32 10 (2.2GHz), 32KB-1MB-13.8MB
SKX8S 6×DDR4 48 81 109 410 7 28 (2.5GHz), 32KB-1MB-38.5MB

CXL

#ch Size Lat BW Lat BW Type, CXL-Spec, ServerDDR GB ns GB/s ns GB/s
CXL-A 2×DDR4 128 214 24 375 14 ASIC, CXL 1.1×8, SPR2S/EMR2S
CXL-B 1×DDR5 128 271 22 473 13 ASIC, CXL 1.1×8, SPR2S/EMR2S
CXL-C 2×DDR4 16 394 18 621 14 FPGA, CXL 1.1×8, SPR2S/EMR2S
CXL-D 2×DDR5 756 239 52 333 14 ASIC, CXL 1.1×16, EMR2S’

3 CXL Device Characterization

3.1 Testbed

Servers. Table 1 shows the details of our testbed. We use
five servers with Intel processors: one SPR (SPR2S), two EMR
(EMR2S/EMR2S’), and two SKX (SKX2S/SKX8S). The servers have
2 or 8 sockets (2S/8S) each with 6 or 8 memory channels.
We use NUMA to simulate 3 additional CXL latency con-
figurations of 140ns and 190ns on SKX2S (190ns achieved via
lowering uncore frequency, not shown in the table), and
410ns on SKX8S [32, 34]. These setups provide a total of 7
latency configurations (bold texts in “Lat” column, Table 1).
CXL devices.We use 4 CXL memory expanders from differ-
ent vendors (CXL-A, CXL-B, CXL-C, CXL-D). CXL devices
are hosted on SPR/EMR servers: CXL-A, CXL-B, and CXL-C
on SPR2S/EMR2S, and CXL-D on EMR2S’ (remote host). Our CXL
devices’ average latency and bandwidth are 214-394ns and
18-52GB/s (Table 1, column “Local"), respectively, measured
by Intel Memory Latency Checker (MLC, “–latency_matrix
and –bandwidth_matrix”) [6]. Since CXL links are full-duplex,
the maximum achievable bandwidth for each CXL device is
higher under read/write workloads. Our CXL devices (A-
D) support peak bandwidths of 32GB/s, 26GB/s, 21GB/s,
and 59GB/s, respectively (see Figure 5). All our CXL de-
vices operate in CXL 1.1 mode as type-3 memory expanders
(CXL.io+CXL.mem)2. CXL-C is FPGA-based (lowest performance)
while the rest are ASICs. CXL-D utilizes 16× PCIe 5 lanes and
2 memory channels, providing the highest CXL bandwidth
of 52GB/s. In contrast, the other devices use 8× lanes and
1 memory channel, resulting in nearly half the bandwidth
(18-24GB/s) of CXL-D. CXL-A and CXL-C use DDR4 mem-
ory, while CXL-B and CXL-D use DDR5. CXL-A exhibits the
lowest latency at 214ns, while DDR5-based CXL-B and CXL-
D have higher latencies of 271ns and 239ns, respectively.
The performance differences are due to vendor-specific opti-
mizations (e.g., scheduling policies, row buffer and thermal

2Our devices are CXL 2.0 capable but the CPUs only support CXL 1.1 mode.
3



ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Jinshu Liu et al.

 0

 200

 400

 600

 800

 0.5  1  2  4  8  16  32  64  128  256

CXL-A
CXL-B

CXL-C
CXL-D

Local
NUMA

A
v
e
ra
g
e

 
L
a
te
n
c
y
 
(n
s
)

Bandwidth (GB/s)

[a] CXL Average Latency vs. BW

0

.2

.4

.6

.8

1

 0  100  200  300  400  500  600  700

Local

CXL-A

CXL-B

CXL-C

CXL-D

#threads
1
2
4
8
16
32

Latency (ns)

NUMA

[b] CXL Latency CDF (Pointer Chase)

 0

 200

 400

 0  20  40  60  80  100

CXL-A
CXL-B

CXL-C
CXL-D

Local
NUMA

(p
9
9
.9
-p
5
0
) 
L
a
t 
(n
s
)

Bandwidth (%)

[c] Diff of 99.9th and 50th Latency vs. BW

Figure 3. CXL Latency CDF. Not all CXL are created equal. Unlike local/NUMA memory, CXL shows unstable and high tail latencies.

management) [31, 41]. Accessing CXL from a remote socket
(Remote) increases latency and reduces bandwidth. However,
the latency increase via one NUMA hop varies significantly
by device, i.e., increasing by 161ns, 202ns, 227ns, and 94ns,
for CXL A–D, respectively. Later, we show CXL+NUMA leads
to unexpected slowdowns for some workloads (§4) which
requires careful management.
Workloads. We use a diverse set of representative work-
loads for the characterization, covering cloud workloads
(in-memory caching and databases such as Redis [13] and
VoltDB [21], CloudSuite [1], and Phoronix [12]), graph pro-
cessing (GAPBS [22], PBBS [19]), data analytics (Spark [30]),
ML/AI (GPT-2 [5], MLPerf [14], Llama [9]), SPEC CPU 2017
[18], and PARSEC [24]. Some of the workloads are latency-
sensitive (e.g., many cloud workloads), approximately one
quarter are bandwidth-sensitive (e.g., HPC), while others
are a mix of both. We consider a large-scale study essential
to uncover key findings and insights (discussed later) that
would not have been achievable with a small-scale study.
Performancemetric.We runworkloads using local, NUMA
or CXL memory to focus on analyzing the “worst-case” CXL
setup, excluding more complex configurations like tiering or
interleaving. Local DRAMperformance serves as the baseline
for calculating CXL slowdowns (𝑆), represented as the per-
formance ratio between CXL and local DRAM that reflects
the combined impact from increased latency and reduced
bandwidth. i.e., 𝑆 = ( 𝑃DRAM

𝑃CXL
− 1) ∗ 100%, where 𝑃 represents

workload performance under either DRAM or CXL.

3.2 CXL (Tail) Latencies and Bandwidth

As prior works have already demystified CXL average la-
tency and bandwidth [41, 42], our focus is on CXL latency
stability and its relationship with bandwidth.
CXL loaded latencies. To understand the CXL device-level
performance characteristics, we first use Intel MLC [6] to
measure average loaded latencies when the foreground la-
tencymeasurement thread is under contention with 31 traffic
generating threads, each of which injects delays of 0-20K
cycles to simulate computation in between two adjacent
memory accesses. Loaded latency refers to memory access
latency under high utilization, in contrast to idle latency,
which occurs when the system experiences minimal load.
Figure 3a shows the latency-bandwidth curves. The average

memory latency remains relatively stable when bandwidth
utilization is low (e.g., <50%) for all the setups. However, as
utilization approaches the saturation point, latency begins
to rise, accelerating significantly due to queuing delays once
the bandwidth limit is exceeded (the vertical part at the right
end of each line). While this is expected behavior, the rate
of latency increase varies. In particular, some CXL devices

struggle to maintain stable latencies under load. Before
bandwidth saturation, CXL devices show significant latency
increases as load rises, with behavior varying across devices
compared to local/NUMA. For example, CXL-D manages
latency effectively near saturation, like local/NUMA. In con-
trast, CXL-A and CXL-B see latency spikes from ∼350ns to
∼1.2µs, and CXL-C reaches 3µs when injected delay drops
from 700 to 500 cycles. Notably, average latency increases by
at least 60ns at 50-86% bandwidth utilization for CXL, while
local/NUMA maintain stability at 90-95%, indicating CXL’s
higher sensitivity to bandwidth pressure.
CXL tail latencies. To investigate latency variability across
CXL devices, we measure cacheline-level latencies using a
custommicrobenchmark,MIO, as existing tools lack request-
level latency reporting. MIO, validated against Intel MLC for
accuracy, measures the average latency of every 𝑁 pointer-
chase operations (configurable to reduce rdtsc overhead) on
a working set larger than LLC. Latency logs are stored in a
buffer in an idle NUMAnode tominimize interference. Figure
3b displays the latency distributions for all 4 CXL devices and
local/NUMA memory under 1-32 co-located pointer-chase
threads. Pointer-chase is purely latency-sensitive and none
of the CXL devices exceed 50% bandwidth. We disable CPU
L1/L2 prefetchers to measure device-level latencies.
We find that CXL-B and CXL-C suffer from significantly

high tail latencies, while local and NUMA memory show
stable performance, with p99.9 and p50 latency differences
of only 45ns and 61ns, respectively. In contrast, CXL latency
stability varies significantly across vendors. The small varia-
tions in local and NUMA latencies likely stem from DRAM
chip-level factors (e.g., row buffer misses), as discussed in
prior DRAM studies [25, 26, 29, 39, 46]. CXL devices show
much larger latency variations. For instance, CXL-D demon-
strates the best latency stability among all the CXL devices,
with a p99.9-to-p50 difference of 75ns - just 30ns and 14ns
more than local and NUMA. In contrast, CXL-B and CXL-C

4



Systematic CXL Memory Characterization and Performance Analysis at Scale ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

.6

.8

1

 200  400  600  800

[a] Local [b] NUMA [c] CXL-A

[d] CXL-B [e] CXL-C [f] CXL-D

Latency CDF under Read/Write Noise

#threads
0
1
3
5
7

Latency (ns)

.6

.8

1

 200  400  600  800

[a] Local [b] NUMA [c] CXL-A

[d] CXL-B [e] CXL-C [f] CXL-D

Latency CDF under Read/Write Noise

Latency (ns)

.6

.8

1

 200  400  600  800

[a] Local [b] NUMA [c] CXL-A

[d] CXL-B [e] CXL-C [f] CXL-D

Latency CDF under Read/Write Noise

Latency (ns)

.6

.8

1

 200  400  600  800

[a] Local [b] NUMA [c] CXL-A

[d] CXL-B [e] CXL-C [f] CXL-D

Latency CDF under Read/Write Noise

Latency (ns)

.6

.8

1

 200  400  600  800

[a] Local [b] NUMA [c] CXL-A

[d] CXL-B [e] CXL-C [f] CXL-D

Latency CDF under Read/Write Noise

Latency (ns)

.6

.8

1

 200  400  600  800

[a] Local [b] NUMA [c] CXL-A

[d] CXL-B [e] CXL-C [f] CXL-D

Latency CDF under Read/Write Noise

Latency (ns)

Figure 4. CXL Latency under Noise. CXL latency is unstable un-

der read/write traffic; “#threads” denotes the # of background threads

generating traffic without saturating the device bandwidth; Three out

of four CXL devices exhibit unstable and high tail latencies.

show differences of up to ∼160ns, a 50% increase over the
median latency. At higher percentiles such as p99.99 and
p99.999, CXL-A and CXL-D exceed 700ns, while CXL-B and
CXL-C reach 1µs.
Figure 3c shows tail latency results at different levels of

device bandwidth utilization. Bandwidth pressure is applied
using multiple background read threads while a foreground
thread performs point-chase. The Y-axis represents the dif-
ference between p99.9 and p50 latencies to highlight tail
latency variation between CXL and local/NUMA memory.
Under local/NUMA, p99.9 and p50 latencies remain stable,
even at 90% bandwidth utilization. In contrast, CXL devices,
specifically CXL-A and CXL-D, exhibit an increasing gap
between p99.9 and p50 latencies, beginning at 30% and 70%
utilization, respectively. However, stable latencies for CXL-A
and CXL-D are seen in Figure 3b.

We further co-locate the foreground pointer-chase thread
with multiple bandwidth-intensive read/write traffic genera-
tors using AVX instructions. Despite the device bandwidth
not being fully saturated, we observe even worse tail laten-
cies. The results in Figure 4 reveal a similar trend: while local
and NUMA latencies remain stable, three out of four CXL
devices exhibit significant latency variations, particularly
at high percentiles (i.e., the tails). For instance, CXL-A and
CXL-B show a worsening trend in high-percentile latencies
as the number of background threads increases. Furthermore,
by reducing the number of server DIMMs per-socket from 8
to 2 to match that of CXL devices for a fair CXL/NUMA com-
parison as in [42], we consistently observe CXL tail latencies
while not in local/NUMA (results not shown).
CXL latency vs. bandwidth under various read/write

ratios. To thoroughly understand the latency-bandwidth
relationship, we measure memory latency and bandwidth
using 31 threads while varying the read/write ratios (1:0, 4:1,
3:1, 2:1, 3:2, and 1:1). Each thread generates read or write
memory traffic at different intensities by injecting delays

 0

 200

 400

 600

 800

 1000

 150  200  250

[a] Local [b] NUMA [c] CXL-A

[d] CXL-B [e] CXL-C [f] CXL-D

R:W
1:0
4:1
3:1
2:1
3:2
1:1

L
a
te
n
c
y
 
(n
s
)

Bandwidth (GB/s)

 0

 200

 400

 600

 800

 1000

 50  100  150

[a] Local [b] NUMA [c] CXL-A

[d] CXL-B [e] CXL-C [f] CXL-D

Bandwidth (GB/s)

 0

 200

 400

 600

 800

 1000

 15  20  25  30

[a] Local [b] NUMA [c] CXL-A

[d] CXL-B [e] CXL-C [f] CXL-D

Bandwidth (GB/s)

 0

 200

 400

 600

 800

 1000

 15  20  25  30

[a] Local [b] NUMA [c] CXL-A

[d] CXL-B [e] CXL-C [f] CXL-D

L
a
te
n
c
y
 
(n
s
)

Bandwidth (GB/s)

 0

 200

 400

 600

 800

 1000

 10  15  20

[a] Local [b] NUMA [c] CXL-A

[d] CXL-B [e] CXL-C [f] CXL-D

Bandwidth (GB/s)

 0

 200

 400

 600

 800

 1000

 40  45  50  55  60

[a] Local [b] NUMA [c] CXL-A

[d] CXL-B [e] CXL-C [f] CXL-D

Bandwidth (GB/s)

Figure 5. Latency-BW curves under various read/write ra-

tios. The performance patterns under various read/write ratios vary

significantly across Local-DRAM, NUMA, and CXL.

ranging from 0 to 40K cycles. Figure 5 presents the detailed
latency-bandwidth results. We make the following key obser-
vations: (1) As expected, local DRAM achieves the highest
bandwidth under a read-only workload, whereas NUMA and
all CXL devices (except CXL-C) achieve minimal bandwidth
in read-only scenarios. This is because NUMA and CXL links
are bidirectional, allowing them to sustain higher bandwidth
under mixed read/write workloads [41, 42]. (2) The FPGA-
based CXL-C device cannot exploit CXL’s bidirectional data
transfer, achieving its highest bandwidth under a read-only
workload, while increasing write ratios degrade its perfor-
mance. We speculate that this is due to the unoptimized CXL
IP on the FPGA being unable to utilize both CXL data trans-
mission links, leading to behavior similar to local DRAM.
(3) Unlike local DRAM and NUMA, which exhibit consis-
tent performance trends as read/write ratios increase, CXL
devices demonstrate significant variability. The peak band-
width differs across CXL devices, occurring at 3:1/4:1 for
CXL-D and 2:1 for CXL-A. Additionally, CXL devices exhibit
more bandwidth fluctuations across different read/write ra-
tios, underscoring the heterogeneity of CXL memory. These
variations highlight the importance of careful tuning and
workload-aware optimizations when deploying CXL-based
memory solutions, especially for write-intensive workloads.
Later in §4, we will show how the device-level heterogeneity
manifest at the workload level.
Impact of CPU prefetchers on (tail) latency. Figure 6
demonstrates how enabling CPU prefetchers affects latency,
revealing that prefetching does not fullymitigate CXL-induced
tail latencies. Similarly, the results reveal significant perfor-
mance disparities among local DRAM, NUMA, and CXL de-
vices. Local DRAM and NUMA exhibit the lowest and most
stable latencies, showing minimal variance even as thread
counts increase, indicated by the sharp CDF curves. NUMA
memory shows slightly higher latency than local DRAM due
to the added cross-socket access overhead, but it remains
relatively stable (i.e., p99 < 50ns). In contrast, CXL devices

5



ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Jinshu Liu et al.

.6

.8

1

 0  50  100  150  200

[a] Local [b] NUMA [c] CXL-A

[d] CXL-B [e] CXL-C [f] CXL-D

CXL Latency CDF (Pointer Chase, Prefetcher=On)

#threads
1
2
4
8
16
32

Latency (ns)

.6

.8

1

 0  50  100  150  200

[a] Local [b] NUMA [c] CXL-A

[d] CXL-B [e] CXL-C [f] CXL-D

CXL Latency CDF (Pointer Chase, Prefetcher=On)

Latency (ns)

.6

.8

1

 0  50  100  150  200

[a] Local [b] NUMA [c] CXL-A

[d] CXL-B [e] CXL-C [f] CXL-D

CXL Latency CDF (Pointer Chase, Prefetcher=On)

Latency (ns)

.6

.8

1

 0  50  100  150  200

[a] Local [b] NUMA [c] CXL-A

[d] CXL-B [e] CXL-C [f] CXL-D

CXL Latency CDF (Pointer Chase, Prefetcher=On)

Latency (ns)

.6

.8

1

 0  50  100  150  200

[a] Local [b] NUMA [c] CXL-A

[d] CXL-B [e] CXL-C [f] CXL-D

CXL Latency CDF (Pointer Chase, Prefetcher=On)

Latency (ns)

.6

.8

1

 0  50  100  150  200

[a] Local [b] NUMA [c] CXL-A

[d] CXL-B [e] CXL-C [f] CXL-D

CXL Latency CDF (Pointer Chase, Prefetcher=On)

Latency (ns)

Figure 6. CXL latency under prefetchers. Prefetching is insuffi-

cient to hide CXL-induced latencies.

show considerably higher and more variable latencies, with
CXL-A, CXL-B, and CXL-C displaying particularly long tail
latencies. As the number of threads increases, CXL memory
latencies further diverge, highlighting increased queuing
effects and contention, whereas local and NUMA memory
remain stable. Moreover, despite enabling hardware prefetch-
ing, CXL devices continue to experience significant tail laten-
cies, suggesting that prefetchers are ineffective in mitigating
CXL-induced delays for latency-sensitive workloads. These
findings underscore the need for improved memory man-
agement strategies to address CXL’s high latency variability
and tail latency issues, particularly for latency-sensitive ap-
plications. In §5, we will formally quantify and reason about
prefetcher inefficiencies under CXL using a novel root-cause
analysis approach.
CXL tail latencies in real workloads.We sample memory
latencies every 1ms across 112 workloads. Similarly, we find
unpredictable CXL latencies for many workloads. In Figure
7a&b, workload 508.namd_r bandwidth is mostly <500MB/s
with a few spikes up to 3.4GB/s, yet, CXL-C still exhibits
spiky latencies up to 1µs, indicating CXL MC’s inability to
maintain stable latencies. Note only 2s of data is shown for
brevity. Figure 7c shows the tail latencies of the YCSB-C
workload on Redis. The results reveal high tail latencies on
CXL-C, while local/NUMA and CXL-B exhibit much lower
tail latencies. YCSB-C, being a memory latency-sensitive
read-only workload, suffers from elevated tail latencies on
CXL-C because device-level latencies propagate to the appli-
cation level, adversely impacting workload performance.
Reasoning. Understanding the source of CXL tail latencies
is challenging due to the black-box nature of CXL devices.
We first identify possible causes based on publicly available
CXL and JEDEC specifications, and then design experiments
to validate or rule out certain factors. CXL’s unpredictable
latencies can be attributed to several key issues: (1) CXL’s
non-deterministic nature: The CXL architecture inher-
ently exhibits latency variability due to its customized trans-

0
.5
1

La
t (

µs
) [a] Memory Latency (508.namd_r)

Local NUMA CXL-C

0.0 0.5 1.0 1.5 2.0
Time (s)

0

.5

1

BW
 (G

B/
s) [b] Read Bandwdith (508.namd_r)

 0

 50

 100

 150

50 75 90 95 99 99.9

Local
NUMA
CXL-B
CXL-C

L
a
te
n
c
y
 
(µ
s
)

Percentiles

[c] Redis/YCSB-C (8 threads)

Figure 7. Latency of real workloads. (a) CXL tail latencies can

be observed even under low memory bandwidth utilization; (b) CXL

device-level tail latency can propogate to application level (e.g., Redis).

action and link layers. For instance, according to the CXL
specification, CXL link congestion (e.g., due to flow control
back-pressure) can lead to performance fluctuations, even
under consistent, light loads [2]. While the transaction and
link layers only take single-digit ns to process [27], the con-
gestion effect might accumulate and lead to high queueing
delays. Furthermore, mechanisms like transaction layer queu-
ing delays add to this unpredictability [2]. This could help
explain the latency unpredictability observed in CXL-C. We
find that CXL-C was unable to fully utilize the bidirectional
CXL link, unlike the other CXL devices by measuring max-
imum bandwidth under different read/write ratios (Figure
5). (2) Unpredictability induced by CXL MCs (e.g., ther-
mal management): According to the CXL specification and
JEDEC CXL standard [7], CXL MCs can experience tempo-
rary performance issues due to power/thermal constraints.
or DRAM refresh operations. These MC-level factors, com-
bined with CXL protocol-level non-determinism, can amplify
latency variability and result in severe performance degra-
dation. We stress tested the CXL devices to investigate the
impact of thermal and power constraints on latency but we
did not observe a significant increase in tail latencies when
repeating experiments from Figure 3c under 70◦𝐶 . We did
not further stress the temperature to avoid damaging the
devices. Nonetheless, we believe thermal throttling could
still be a potential cause of tail latencies as future PCIe 6.0
devices are expected to have higher power consumption
[10, 11]. (3) Suboptimal optimizations of existing CXL

MCs: Our results in Figure 3 show CXL MCs may not yet
match the maturity and optimization level of iMCs, which
have been fine-tuned over years for maximizing bandwidth
and minimizing latency. High CXL tail latencies could be
from suboptimal optimizations in the CXL MC (§2), for ex-
ample, memory request scheduling could lead to temporary
queuing delays. Currently, no tools exist to pinpoint tail
latencies. A future approach could involve a white-box anal-
ysis, breaking down the latency of each memory request
across components such as the CXL link, MC, and DRAM
chips. This would require the CXL MC to expose detailed
performance counters, potentially through the upcoming
CXL Performance Monitoring Unit (CPMU) introduced in
CXL 3.0 [2]. As an initial step, we demonstrate and quantify
the impact of CXL tail latency to raise awareness within

6



Systematic CXL Memory Characterization and Performance Analysis at Scale ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

0

.2

.4

.6

.8

1

0 50 100

Slowdown (%)

NUMA
CXL-A
CXL-B
CXL-C
CXL-D

[a] Slowdown CDF
 (265 Workloads)

.90

.92

.94

.96

.98

1

0 200 400 600

NUMA
CXL-A
CXL-B
CXL-C
CXL-D

Slowdown (%)

[b] Slowdown CDF
 (p90 and above)

0

.2

.4

.6

.8

1

0 100 200 300 400 500 600

CXL-A
SKX8S-410ns
CXL-A+NUMA

Slowdown (%)

[c] CXL+NUMA vs. 2-hop-NUMA
 (121 Workloads)

.97

.98

.99

1

 0  200  400  600  800

1/2 load

1/4 load

Local
CXL-A

CXL-A+NUMA

Latency (ns)

[d] Latency CDF
 520.omnetpp

.4

.6

.8

1

0 50 100

SPR:CXL-A
SPR:CXL-B
EMR:CXL-A
EMR:CXL-B

Slowdown (%)

[e] EMR vs. SPR
 (265 Workloads)

.4

.6

.8

1

0 20 40 60 80

NUMA*
CXL-D x2
CXL-D x1

Slowdown (%)

[f] NUMA vs. CXL-D
 SPEC CPU 2017

Figure 8. CXL workload slowdowns. (a&b) CDFs of 265 workloads on 4 CXL devices; (c&d) shows tail latency impact under CXL+NUMA; (e)

SPR vs. EMR performance comparison under CXL-A and CXL-B; (f) comparison of NUMA, CXL-D, and hardware interleaving of two CXL-Ds.

the systems community. In sum, the key takeaways of CXL
device characterization are:
Finding #1: (a) Not all CXL devices are created equal; each
comes with unique performance characteristics not only in
terms of average latency and bandwidth, but also in latency
stability and the latency-bandwidth relationships. (b) More
importantly, CXL devices exhibit unstable and higher tail
latency compared to local/NUMAmemory. Average latency
and bandwidth do not fully capture the performance im-
plications of CXL devices. CXL MCs fail to mitigate tail
latencies under light load, and high memory utilizations
will further exacerbate CXL tail latencies, while local mem-
ory and NUMA maintain stable latencies. (c) Concurrent
reads/writes affect CXL latency differently, with tail latency
worsening in mixed workloads. (d)While CPU hardware
prefetchers can improve average memory access latencies,
they fail to eliminate tail latencies. CXL tail latencies neg-
atively impact application performance. (e) FPGA-based
CXL device fails to fully leverage CXL’s bidirectional data
transfer capabilities, resulting in performance characteris-
tics that differ significantly from ASIC-based devices under
mixed read/write workloads. The peak bandwidth of CXL
devices varies across different read/write ratios.
Implication #1: From software/hardware design perspec-
tives, there is a need to address CXL tail latencies. (a) Future
CPUs need to be improved to tolerate CXL’s unpredictable
latencies as they could stall the CPU longer, possibly leading
to cascading performance degradations under dependent
data access. (b) CXL MC designs need to prioritize latency
predictability alongside average bandwidth and latency. (c)
System designers need to account for tail latency impact
when developing and deploying software on CXL.
Recommendation #1: Tail latency should be used as a key
metric for evaluating CXL devices, as predictable latency is
crucial for quality of service (QoS) in the cloud.

4 Workload Characterization

CXL slowdowns across devices. Figure 8a presents the
CDFs of CXL slowdown across all workloads for 4 CXL
devices and NUMA on EMR.3 Overall, CXL devices exhibit

slower performance than NUMA due to higher latencies and

3CXL-C only has 16GB DRAM, limiting evaluations to 60 workloads on it.

lower bandwidths; however, the highest-performance CXL de-

vice (CXL-D) performs almost as well as with NUMA. As CXL
latency increases (D→A→B→C), slowdowns consistently
worsen across all workloads. Under NUMA (193ns, 120GB/s),
98% of the workloads experience less than 50% slowdowns,
compared to 94%, 87%, and 80% for CXL-D, CXL-A, and CXL-
B, respectively. Many workloads can tolerate CXL latencies.

For example, 60%, 54%, 32% of the workloads on CXL-D,
CXL-A, and CXL-B experience less than 10% slowdowns.
Correspondingly, 43%, 35%, 22% of the workloads see less
than 5% slowdowns. Note that the maximum CXL latency
observed is 271ns (CXL-B, excluding CXL-C), demonstrating
that many workloads can tolerate CXL access latencies with
minimal slowdowns. This category includes certain cloud,
HPC, and graph workloads. Consequently, CXL memory can
act as a viable drop-in replacement for local DRAM in many
real-world applications, with little impact on performance.
The “tail” of CXL slowdowns. The slowdown CDFs in
Figure 8b reveal a clear “tail,” with 7% of the workloads suf-
fering from significant slowdowns of 1.5-5.8× for CXL-A and
CXL-B, primarily due to bandwidth limitations. Interestingly,
workloads with high bandwidth requirements do not neces-
sarily experience high slowdowns. In contrast, setups with
higher bandwidth capabilities, such as NUMA and CXL-D,
exhibit no such tail, with worst case slowdowns limited to 80-
90%. For example, in SPEC CPU 2017, four bandwidth-bound
workloads – 603.bwaves, 619.lbm, 649.fotonik3d, 654.roms – re-
quire over 24GB/s, exceeding the capacities of CXL-{A, B, C}.
As a result, these workloads suffer significant slowdowns
(over 50%) compared to NUMA/CXL-D, due to significant
device-side queueing delays as the CXL devices become sat-
urated. These four workloads see worse slowdowns under
CXL-B and CXL-C because both the latency and bandwidth
deteriorate compared to CXL-A.
CXL+NUMA performance. Figure 8c shows workload per-
formance under CXL+NUMA is worse than that of 2-hop-NUMA
despite the inferior latency and bandwidth of 2-hop-NUMA
(SKX8S-410ns in Table 1), indicating issues when CXL and
NUMA are used together. For example, 520.omnetpp sees <5%
slowdowns under all CXL devices, but experiences an aston-
ishingly high slowdown of 2.9× under CXL+NUMA. However, this
workload consumes <1GB/s bandwidth (read+write), and is

7



ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Jinshu Liu et al.

All {SKX,SPR,EMR} x {NUMA,CXL} Setups
0

50

100
200
400

Sl
ow

do
wn

s (
%

)

Y above 100% is in log2 scale

SK
X-

14
0n

s

SK
X-

19
0n

s
SP

R-
NU

M
A

SP
R-

CX
L-

A
SP

R-
CX

L-
B

EM
R-

NU
M

A

EM
R-

CX
L-

A

EM
R-

CX
L-

B
EM

R-
CX

L-
D

EM
R-

CX
L-

C

SK
X-

41
0n

s

[a] Violin Plots of Workload Slowdowns

 0

 10

 20

 30

 40

A B C D E F A B C D E F

Redis VoltDB

NUMA CXL-A CXL-B

S
lo
w
d
o
w
n

 
(%
)

Workloads

[b] YCSB Slowdowns

Figure 9. Slowdowns under various setups. The figure shows

the workloads slowdowns in violin plots of all our latency setups.

neither latency-sensitive nor bandwidth-bound. We confirm
the significant slowdown is due to much worse tail latencies
under CXL+NUMA, explained next.
Tail-latency impact. 520.omnetpp performs discrete event
simulation of a large Ethernet network. Figure 8d shows
the CDFs of sampled memory latencies for it. There is little
difference between Local and CXL-A, explaining the small
slowdown under CXL-A. However, CXL+NUMA (brown line) ex-
hibits a long tail latency starting around p98 up to 800ns.
When we reduce the workload’s intensity (by decreasing
the number of simulated LANs on backbone switches) to 1/2
and 1/4, the tail latencies consistently improve (two dotted
brown lines). The slowdown on CXL+NUMA also significantly
decreases from ∼290% to ∼65% and 58%. This provides di-
rect evidence that tail latencies are the primary cause of the

performance slowdowns. Similarly, 10 other workloads show
negligible slowdowns under CXL but experience slowdowns
of 33%-283% under CXL+NUMA.
The closing gap between CXL and NUMA.While current
CXL devices do not yet match the performance of NUMA,
the gap is narrowing. For example, CXL-D’s performance is
already close to that of NUMA (Figure 8a, black and green
lines). We also test workloads on two CXL-D devices with
hardware interleaving, effectively doubling the bandwidth
to 104GB/s. As shown in Figure 8f, when CXL bandwidth
matches NUMA, performance slowdowns are notably re-
duced, particularly for workloads that experience high slow-
downs with a single CXL-D. Note that the NUMA line in Figure
8f differs from Figure 8a, EMR2S’ and CXL-D are a remote host.
Figure 8e contrasts workload performance under SPR and
EMR. Despite EMR’s higher LLC size, slowdown patterns are
similar to that of SPR, indicating larger cache is not enough
to address CXL-induced latency and bandwidth challenges.
Full latency spectrum (140-410ns). Figure 9a presents vio-
lin plots of slowdown for 265 workloads all our setups which
consist of different CPU and CXL latency setting combina-
tions. In particular, when latency increases to 410ns (right
most plot), the overall slowdowns will be significantly worse
than other setups with smaller latencies. However, 16% of the
workloads still experience less than 10% slowdowns while
30% less than 50% slowdowns. The rest of the workloads are
heavily impacted by both the long latency and limited band-
width, which is the main reason for the slowdowns. Simply
deploying workloads on such (future) CXL setups will be

challenging and require careful data placement to curtail the
overall performance overhead. Cloud workloads are more
sensitive to latencies, Figure 9b shows the slowdown of YCSB
workloads measured against Redis and VoltDB, demonstrat-
ing the super-linear increasing trend when latency increases.

In summary, the takeaways from our workload study are:
Finding #2:

• Workload performance deteriorates super-linearly with
increasing CXL latency; more importantly, the relative
slowdowns exceed the rate of the latency increases.

• CXL deviceswith longer latencies generally achieve lower
peak bandwidth (CXL A→B→C), which has a more pro-
nounced impact on bandwidth-bound workloads due to
the combined effects of latency and bandwidth.

• CXL devices with worse tail latencies (e.g., CXL-B and
CXL-C) experience more significant slowdowns across
all evaluated workloads and tail latencies under CXL+NUMA
can lead to surprisingly high slowdowns for workloads.

• On a positive note, many workloads can tolerate long
CXL latencies (up to 410ns) and thus experience mini-
mal slowdowns, suggesting that CXL could be useful for
certain real-world applications, e.g., in pooling scenarios.

• The performance gap between CXL and NUMA dimin-
ishes under similar bandwidth capacities, making CXL
memory a viable alternative to local/NUMA memory.
However, the latency gap remains a challenge for latency-
sensitive workloads.

Implication #2: (a) Higher CXL bandwidth will benefit
bandwidth-bound workloads, potentially alleviating the 2-
6× slowdowns in Figure 8b. Lower latency will enhance the
performance of latency-sensitive workloads, such as cloud
applications, bringing it closer to NUMA performance. (b)
When bandwidth is no longer a bottleneck, CXL latency be-
comes a critical factor for performance, warranting further
attention in future CPU/CXL designs and software opti-
mizations. (c) However, for bandwidth-bound workloads
to fully utilize the combined bandwidth of local and CXL
memory, improved software solutions are still required.
Recommendation #2: Workload bandwidth requirements
must be carefully assessed when deploying them on CXL de-
vices, as the limited bandwidth of current CXL devices can
lead to significant slowdowns under bandwidth pressure.

5 Spa for CXL Slowdown Analysis

5.1 Overview

While quantitative workload characterizations shed light on
CXL performance, the root causes of slowdowns remain un-
clear. We propose Spa4, a novel root-cause analysis method
that uses only 9 CPU counters (Table 2) to model CXL per-
formance with high accuracy (95%) and minimal error (5%)
across all workloads (Figure 11a).

4Spa stands for Stall-based CXL performance analysis.
8



Systematic CXL Memory Characterization and Performance Analysis at Scale ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

Table 2. CPU counters for Spa. #𝑐 : number of cycles; µops:

internal representation of x86 instructions; STALLS.SCOREBD (𝑃9) refers

to RESOURCE_STALLS.SCOREBOARD; 𝑃1–𝑃6 measure stall cycles and 𝑃1–

𝑃9 are available in most Intel processors (SKX, SPR, EMR, GNR, etc.).

# Name Brief Description

𝑃1 BOUND_ON_LOADS #𝑐 while mem subsys has 1 outstanding load
𝑃2 BOUND_ON_STORES #𝑐 where the Store Buffer was full
𝑃3 STALLS_L1D_MISS #𝑐 while L1 miss demand load is outstanding
𝑃4 STALLS_L2_MISS #𝑐 while L2 miss demand load is outstanding
𝑃5 STALLS_L3_MISS #𝑐 while L3 miss demand load is outstanding
𝑃6 RETIRED.STALLS #𝑐 without actually retired µops
𝑃7 1_PORTS_UTIL #𝑐 when 1 µops was executed on all ports
𝑃8 2_PORTS_UTIL #𝑐 when 2 µops was executed on all ports
𝑃9 STALLS.SCOREBD #𝑐 stalled due to serializing operations

The key advantage of Spa lies in its ability to attribute
CXL performance slowdowns to specific “sources,” such as
the CPU cache hierarchy and CXL memory, facilitating a
more granular and precise analysis of CXL-induced perfor-
mance bottlenecks. By isolating the contributions of these
components, Spa enables a comprehensive breakdown of
workload slowdowns and quantifies their individual impacts
on overall performance degradation. Spa can be applied at
both the workload level and in a period-based (i.e., time-
window) analysis. It tracks CXL performance as workloads
progress over time. This dual capability enables CXL slow-
down analysis not only for specific workloads but also across
temporal phases of workload execution.

5.2 Challenges and Limitations of State-of-the-Art

We aim to quantify the impact of each component to better
understand how CXL affects CPU efficiency. For example, in-
stead of the general notion that CPU prefetchers become less
effective under CXL’s longer latencies [33], we will measure

CXL’s impact on prefetcher performance and disclose why it
happens. For fine-grained analysis, we need an approach to
capture the events in the CPU pipeline that lead to perfor-
mance slowdowns under CXL. While workload slowdowns
can be directly measured using application-level metrics,
(a) identifying the underlying CPU events/metrics that can

correlate to the slowdowns is challenging. (b) It is even more

challenging to establish a precise correlation between workload

performance and architecture-level performance metrics, due
to the complexity of the CPU pipeline and workload/CPU
interactions. In other words, there is no reliable method to ac-
curately map application slowdowns to system/architecture
events, making it an infeasible task with existing approaches.
The Intel Top-down Microarchitecture Analysis (TMA)

method [20, 45] is a popular approach that relies on extensive
information offered by CPU counters/events to profile code
efficiency. It helps identify dominant performance bottle-
necks in an application (e.g., whether it’s memory-bound) by
analyzing execution inefficiencies within the CPU pipeline.
However, TMA is insufficient for CXL slowdown analysis
for the following reasons.

RETIRED.STALLSRETIRED.
CYCLES

BOUND_ON_LOADS
BOUND
_ON_

STORES
STALLS_L1D_MISS

STALLS_L2_MISS
STALLS_L3_MISS

CYCLES

sL3 sL2 sL1
sDRAM sCache sStore

BOUND
_ON_

CORES

sCoresMemory

s  : #stall-cycles, i where i ∈ {DRAM, L3, L2, L1, Store, Core}

Figure 10. CPU stalls (§5.3). The figure shows the relationship of

various stall-related CPU counters and the originating CPU backend

component. Spa relies on differential stalls (Δ) for workload slowdown

breakdown. For example, Δ𝑠𝐿1 is the additional stall cycles on L1

cache (i.e., stalls caused by direct or delayed L1 hits) induced by CXL.

• TMA does not provide a differential analysis to inter-
pret pipeline differences resulting from varying backend
memory (i.e., CXL vs. local DRAM).

• TMA is unable to precisely correlate architecture level met-
rics with workload slowdowns. Its metrics are designed
to capture the performance or contention of specific hard-
ware components rather than overall workload behavior.

Consequently, past research heavily relies on simple archi-
tectural events/metrics (e.g., LLC miss rate), heuristics or
learning methods based on a combination of multiple met-
rics for performance estimation [34, 41, 47], which suffer
from low accuracy, complexity, and lack of interpretability.

5.3 Spa: A Bottom-Up Approach

The key insight of Spa is that drilling down the differential

CPU stalls between CXL and local memory can yield accurate

CXL slowdown analysis whereas standalone setup (either lo-

cal or CXL) cannot. Spa aims to pinpoint the specific stall
sources that contribute to CXL-induced slowdowns, bridg-
ing the gap between architectural level and workload-level
performance. Spa is built on the 9 CPU counters shown in
Table 2. Spa sets out to examine the CPU pipeline compo-
nents involved in memory request processing and analyze
the changes induced by CXL on those components during
instruction execution. Figure 10 shows an overview of the
“sources” of CPU stalls that Spa focuses on. As discussed in
§2, processing CXL memory requests requires traversing the
memory hierarchy, including L1, L2, LLC, and CXL memory.
By evaluating the CPU’s efficiency at these key points, we
can identify the corresponding slowdowns caused by CXL
across workloads. Through detailed offline analysis, wemake
a few key observations that lead to an accurate slowdown
breakdown method that we describe below.

In detail, workload performance slowdowns can be repre-
sented using microarchitecture-level performance counters
and reasoned about by checking where “stalls” happen in
the CPU pipeline. For example, if a workload takes 𝑐 cycles
to complete on local memory and 𝑐′ on CXL, the slowdown
can be denoted as 𝑆 = 𝑐′−𝑐

𝑐
=

Δ𝑐

𝑐
.

9

https://perfmon-events.intel.com/index.html?pltfrm=spxeon.html&evnt=EXE_ACTIVITY.BOUND_ON_LOADS
https://perfmon-events.intel.com/index.html?pltfrm=spxeon.html&evnt=EXE_ACTIVITY.BOUND_ON_STORES
https://perfmon-events.intel.com/index.html?pltfrm=spxeon.html&evnt=CYCLE_ACTIVITY.STALLS_L1D_MISS
https://perfmon-events.intel.com/index.html?pltfrm=spxeon.html&evnt=CYCLE_ACTIVITY.STALLS_L2_MISS
https://perfmon-events.intel.com/index.html?pltfrm=spxeon.html&evnt=CYCLE_ACTIVITY.STALLS_L3_MISS
https://perfmon-events.intel.com/index.html?pltfrm=spxeon.html&evnt=UOPS_RETIRED.STALLS
https://perfmon-events.intel.com/index.html?pltfrm=spxeon.html&evnt=EXE_ACTIVITY.1_PORTS_UTIL
https://perfmon-events.intel.com/index.html?pltfrm=spxeon.html&evnt=EXE_ACTIVITY.2_PORTS_UTIL
https://perfmon-events.intel.com/index.html?pltfrm=spxeon.html&evnt=RESOURCE_STALLS.SCOREBOARD


ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Jinshu Liu et al.

.7

.8

.9

1

 0  2  4  6  8  10

NUMA
CXL-A
CXL-B

Abs. Slowdown Diff (%)

[a] CDF of Slowdown Diff 
(Actual vs. Δs)

.7

.8

.9

1

 0  2  4  6  8  10

NUMA
CXL-A
CXL-B

Abs. Slowdown Diff (%)

[b] CDF of Slowdown Diff 
(Actual vs. ΔsBackend)

.7

.8

.9

1

 0  2  4  6  8  10

NUMA
CXL-A
CXL-B

Abs. Slowdown Diff (%)

[c] CDF of Slowdown Diff
(Actual vs. ΔsMemory)

Figure 11. Spa accuracy (§5.3). The X-axis represents the absolute

difference between estimated slowdowns using different kinds of stalls

and the actual measured slowdowns for each workload.

Finding #3: The variance in cycle counts between CXL
and local DRAM (i.e., slowdown) primarily stems from stall

cycles difference (Δ𝑠), which mainly arises from the memory
subsystem (Δ𝑠𝑀𝑒𝑚𝑜𝑟𝑦) in the CPU backend (Δ𝑠𝐵𝑎𝑐𝑘𝑒𝑛𝑑 ).
Based on Figure 10, we can divide the stall cycles into

different components, such as core and memory, where each
component can be further broken down according to the
load/store types as shown in Figure 2c. We calculate the
difference (Δ) of a counter between local (𝑃𝑖 ) and CXL (𝑃 ′

𝑖 )
as Δ𝑃𝑖 = 𝑃 ′

𝑖 − 𝑃𝑖 . Thus,

Δ𝑠 = Δ𝑃6 (total # of additional stalls on CXL) (1)

Δ𝑠𝐵𝑎𝑐𝑘𝑒𝑛𝑑 = Δ𝑠𝐶𝑜𝑟𝑒 + Δ𝑠𝑀𝑒𝑚𝑜𝑟𝑦 where, (2)
Δ𝑠𝐶𝑜𝑟𝑒 = Δ𝑃7 + Δ𝑃8 + Δ𝑃9 (3)
Δ𝑠𝑀𝑒𝑚𝑜𝑟𝑦 = Δ𝑃1 + Δ𝑃2 (4)

For load operations, CPU counter BOUND_ON_LOADS (𝑃1) de-
notes the number of stalled cycles while there is at least
one demand load in the memory subsystem, including CPU
cache and (CXL) DRAM. For stores/writes, BOUND_ON_STORES
(𝑃2) represents the number of stalled cycles when the Store
Buffer is full and there is no outstanding loads. Thereby, the
differential Backend stalls are Δ𝑃1 + Δ𝑃2 (Equation (4)).
As such, CXL slowdowns can be estimated as:

𝑆 =
Δ𝑐

𝑐
≈ Δ𝑠

𝑐
≈ Δ𝑠𝐵𝑎𝑐𝑘𝑒𝑛𝑑

𝑐
≈

Δ𝑠𝑀𝑒𝑚𝑜𝑟𝑦

𝑐
(5)

Purely CPU or frontend-boundworkloads are not sensitive
to CXL latency due to few CXL accesses, thus experiencing
minimal slowdowns (true for our evaluated workloads).
Accuracy. To validate Equation (5), we profile Spa coun-
ters in Table 2 for each workload and use them to estimate
the workload slowdowns. We compare them with the actu-
ally observed workload slowdowns using application-level
metrics (e.g., time, throughput). Figure 11 presents the CDF
plots of the absolute difference between the actual slowdown
and differential-stall based slowdown estimations, which in-
dicates the inaccuracies. We show the results for NUMA,
CXL-A, and CXL-B. Figure 11a shows that stall cycles dif-
ference can accurately represent the slowdowns for 100%
of workloads, with the absolute difference within 5% (and
98% accuracy under 2% difference). Figure 11b shows that
backend-stall-based slowdowns can accurately represent the

slowdowns for 96% of workloads, with the absolute differ-
ence within 5%, because CXL introduces minimal frontend
stalls differences. In Figure 11c, by comparing the slowdown
estimation based on thememory subsystem stalls (Δ𝑠𝑀𝑒𝑚𝑜𝑟𝑦),
we observe very low inaccuracies – within 5% for over 95%
of workloads. Therefore, CXL-induced stall cycle difference
(Δ𝑠𝑀𝑒𝑚𝑜𝑟𝑦) can effectively represent the slowdown.
Reasoning. The CPU pipeline is divided into two parts: the
frontend and the backend. In the frontend, instructions are
fetched and decoded, while in the backend, they are executed
out-of-order (OoO), through the Scoreboard scheduling via
Reorder Buffer [16]. Stalled cycles can occur due to stalls in
either the frontend, the backend, or both. In our analysis, we
only consider the difference of stalls between local and CXL
memory, rather than looking at the absolute number of stalls
in either setup (local or CXL) because the absolute stalls
cannot be used for CXL slowdown analysis. Throughout our
evaluations of all the workloads, we find that delta of fron-
tend stalls are negligible because modern CPU instruction
caches are efficient and large enough to fetch and decode
instructions without being affected by CXL delays. Note that
many of the tested workloads are indeed frontend-bound
(>30%). Therefore, it is primarily stalls in the CPU backend
that are impacted by CXL, as shown in Figure 11b.

5.4 Spa-based Slowdown Breakdown

Additional stalls on Core (Δ𝑠𝐶𝑜𝑟𝑒 ) under CXL. Non-load/
store instructions executed on the cores are not affected by
CXL’s longer latency. The main pressure caused by CXL
latency on the CPU cores is mostly from handling data de-
pendency for OoO executions. 𝑃8 and 𝑃9 collect the number
of cycles when only 1 and 2 µops are executed on all execu-
tion ports (e.g., ALU). Meanwhile, CXL’s longer latency can
cause more stalls on the scoreboard when the scoreboard
deals with intensive data serializing operations. However,
all the impact from the longer memory latency on Core is
relatively small, when comparing Figure 11b with Figure 11c.
Breaking down the slowdown. On Intel platforms, the
stalls on the store buffer, L1, L2, LLC, and (CXL) DRAM
represent exclusive events that sum up to the total backend-
memory stall cycles as shown in Figure 10 (also see Figure 4
in [45]). Let 𝑠 be the number of stall cycles, we have:

𝑠 = 𝑠𝑠𝑡𝑜𝑟𝑒 + 𝑠𝐿1 + 𝑠𝐿2 + 𝑠𝐿3 + 𝑠𝐷𝑅𝐴𝑀 (6)

where, sstore=P2, sL1=P1-P3, sL2=P3-P4, sL3=P4-P5. With this,
when calculating the difference of above stall cycles between
local DRAM and CXL, we have:

Δ𝑠 = Δ𝑠𝑠𝑡𝑜𝑟𝑒 + Δ𝑠𝐿1 + Δ𝑠𝐿2 + Δ𝑠𝐿3 + Δ𝑠𝐷𝑅𝐴𝑀 (7)

Here, Δ𝑠𝐿1 denotes the difference (Δ) of stall cycles on L1
on local and CXL DRAM. Correspondingly, by dividing each
item with total cycle-count (𝑐), the overall slowdown (𝑆) can
be represented as the combined slowdowns from the five
sources as follows:

10



Systematic CXL Memory Characterization and Performance Analysis at Scale ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

106

107

108

109

1010

106 107 108 109 1010In
c
re
a
s
e

 
o
f 
L
1
P
F
-L
3
-m
is
s

Decrease of L2PF-L3-miss

[a] L1PF vs L2PF

0

10

20

50
3
54
9
55
4
60
2
60
3
60
7
61
9
64
9
65
4

bc
-w
eb

bfs
-tw
itte
r

bfs
-ur
an
d

bfs
-w
eb

cc
-tw
itte
r

cc
-w
eb

pr-
we
b

ss
sp
-w
eb

tc-
kro
n

tc-
tw
itte
r

L2 Slowdown
L2PF Coverage ↓

S
lo
w
d
o
w
n

 
&

 
C
o
v
e
ra
g
e

 
(%
)

SPEC CPU 2017 Workloads

[b] SL2 vs. L2PF Coverage ↓

Figure 12. Cache slowdown vs. L2PF coverage decrease. Cache

slowdown is correlated with L2 prefetcher coverage decrease.

𝑆 ≈ 𝑆𝑠𝑡𝑜𝑟𝑒 + 𝑆𝐿1 + 𝑆𝐿2 + 𝑆𝐿3 + 𝑆𝐷𝑅𝐴𝑀 (8)
Above, each component-wise slowdown is calculated as

the delta of stall cycles on the specific component, e.g., slow-
down due to L1 cache access is Δ of stalled cycles on L1,
denominated by the total cycle count (𝑐), i.e., 𝑆𝐿1 = Δ𝑠𝐿1/𝑐 .
DRAM (Demand Load) Slowdown (𝑆𝐷𝑅𝐴𝑀 ).We use the
increase in LLC stall cycles, as a primary indicator of CXL
slowdown from DRAM. These misses denote demand read

misses, excluding RFO and prefetch requests. On Intel plat-
forms, they are characterized as cycles stalled while LLC
demand read misses are unresolved. Hence, their change
suggests performance deterioration originating from DRAM,
including the (CXL) memory controller.
Store Slowdown (𝑆𝑠𝑡𝑜𝑟𝑒 ). We use the increase of cycles
bound on full store buffer to gauge store operation slow-
down. Incoming store requests queued in the store buffer are
dequeued upon completion. Some writes issue RFO requests
before execution. If the store buffer fills up, these RFOs would
hinder load efficiency, causing CPU stalls.
Cache Slowdown (𝑆𝑐𝑎𝑐ℎ𝑒 ). While DRAM and store slow-
downs are relatively straightforward to understand, cache
slowdowns are more complex. In this section, we discuss
our key findings on how CXL can degrade CPU cache effi-
ciency. Cache slowdown (𝑆𝐿1+𝑆𝐿2+𝑆𝐿3) indicates stall cycle
increase on various cache levels (L1, L2, and LLC), as it takes
longer to prefetch from CXL memory. Similarly, they can be
measured using the corresponding stall cycles counters in
Figure 10. Below we describe our findings to reason about
cache slowdowns on CXL through offline analysis. On SKX,
most cache slowdown occurs in L2 due to a significant rise
in stall cycles for L1 load misses with CXL. Conversely, on
SPR/EMR, LLC experiences the bulk of slowdown, with a
notable increase in stall cycles for L2 load misses with CXL.
Finding #4:

• Cache slowdown under CXL is due to reduced prefetch
efficiency. To validate this, we disable all the hardware
prefetchers (L1 and L2) and measure workload slow-
downs. With prefetchers off, we found virtually no stall
cycles on cache (i.e., 𝑆𝐿1 = 𝑆𝐿2 = 𝑆𝐿3 = 0).

• Through our extensive offline analysis, we find CXL’s rel-
atively longer latency negatively impacts L2 prefetcher’s
timeliness (i.e., L2 prefetches are delayed and take longer

1 20 3

CXL’s longer 
access latency

Increasing # of 
delayed L1 hits

Reduced L2PF 
timeliness and coverage

More aggressive 
L1PF prefetch

Figure 13. Cache slowdown flow under CXL. Illustration of

CXL cache slowdowns based on our offline analysis.

to arrive). This reduces L2 prefetcher’s coverage of both
demand reads and L1 prefetch. L1 prefetches would either
miss entirely in L2 or at best, they would hit on a pending
L2 prefetch in L2. Consequently, CXL also negatively
impacts L1 prefetcher’s timeliness. Loads that would
have otherwise hit in the cache if L1 prefetches were
timely, now are delayed. Consequently, overall prefetch
efficiency suffers and stalls on caches increase.
Figure 13 summarizes the cache slowdowns under CXL.

The increased latency of CXL initially reduces the efficiency
of L2 prefetchers, resulting in less useful data being available
in the L2 cache. Consequently, L1 prefetchers must retrieve
more data from the LLC or CXL DRAM due to L2 misses. Ad-
ditionally, CXL impacts L1 prefetch efficiency, as the delayed
data retrieval leads to delayed L1 hits, further contributing
to L1 cache slowdowns.
Reasoning. L1 prefetchers retrieve data from L2, LLC, or
DRAM into the line-fill buffer (LFB, Figure 2a). If the re-
quested data is absent in L2, the request is forwarded to off-
core resources (LLC or DRAM/CXL). Ideally, breaking down
L1/L2 prefetch requests would enable a more comprehen-
sive analysis to fully understand cache slowdowns. However,
Intel CPUs lack the necessary performance counters to cap-
ture all L1/L2 prefetcher interactions with CXL, such as the
number of L1 prefetch requests that hit L2 (L1PF-L2-hit).
This limitation makes it difficult to precisely examine hard-
ware prefetcher behaviors. Instead, we leverage the avail-
able performance counters that measure L1PF-L3-miss and
L2PF-L3-miss to evaluate L1/L2 prefetcher performance,
particularly under CXL’s longer memory latencies, where
cache misses are more pronounced. Both L1PF-L3-miss and
L2PF-L3-miss are derived from raw counters. Specifically, In-
tel provides performance counters that track the number of
prefetch requests issued by L1/L2 prefetchers that miss in L2
(fetching from either LLC or DRAM) and separate counters
for prefetch requests that hit in L3/LLC. Overall, we observe
a 2-38% reduction in L2PF-L3-miss for CXL compared to
local DRAM, aligning with the L2 cache slowdown results
presented in Figure 12b.

In particular, we found a decrease in L2 prefetch requests
that miss the L3/LLC cache (L2PF-L3-miss) under CXL, while
L1 prefetch misses (L1PF-L3-miss) increase. Notably, the in-
crease in L1PF-L3-miss nearly matches the decrease in L2PF-
L3-miss, as shown in Figure 12a, with no change in L2PF-
L3-hit. This suggests that the L2 prefetcher is less efficient
in fetching data from CXL compared to local DRAM, result-
ing in more L1 prefetches bypassing L2 and fetching data
directly from CXL. The strong linear relationship between

11



ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Jinshu Liu et al.

0

20

40

60
[a] CXL Slowdown Breakdown (NUMA)

S
lo
w
d
o
w
n

 
(%
)

DRAM L3 L2 L1 Store Core Other

0

40

80

120
[b] CXL Slowdown Breakdown (CXL-A)

S
lo
w
d
o
w
n

 
(%
)

0

40

80

120

CPU 2017 GAPBS PARSEC PBBS GPT2 Llama-7B Redis VoltDB

[c] CXL Slowdown Breakdown (CXL-B)

S
lo
w
d
o
w
n

 
(%
)

Figure 14. CXL breakdown (§5.5). This figure shows Spa-based CXL slowdown breakdown for NUMA and CXL-A on EMR, attributing the

slowdowns to various sources (DRAM, L1–LLC, Store, Core). CXL-C and CXL-D results exhibit similar patterns (not shown).

L2PF-L3-miss decrease and L1PF-L3-miss increase (almost
𝑦 = 𝑥 , Pearson coefficient 0.99) confirms this. Further analy-
sis shows that workloads experiencing cache slowdowns on
CXL consistently exhibit reduced L2 prefetch coverage, as
demonstrated in Figure 12b.

Disabling L1 and L2 prefetchers results in data that would
otherwise be prefetched being retrieved as LLC misses. Con-
sequently, the slowdown initially seen in the caches is trans-
ferred to DRAM slowdowns. Enabling prefetchers signifi-
cantly improves workload performance under both local and
CXL setups. For example, we observed a 50% performance
drop in workload 603.bwaves and a 10% drop for bc-kron graph
workload when L1 and L2 prefetchers are disabled. While
prefetchers alleviate long memory latencies by reducing on-
demand LLC misses, they are less effective under CXL, as
captured by the cache slowdown.
5.5 Workload Slowdown Diversity

Figure 14 shows the overall and detailed breakdown of CXL
slowdowns for each workload. The “Other” category repre-
sents slowdown contributions not captured by Spa.
The sources of CXL slowdown vary significantly across

workloads. For instance, in SPEC workloads like 519.lbm, the
majority of the slowdown is due to stalls in the CPU’s store
buffer, suggesting a high volume of RFO requests and in-
sufficient store buffer entries. These findings are supported
by high UPI non-data traffic and high write bandwidth. In
contrast, workloads like 649.fotonik3d experience significant
slowdown from cache-related issues.
For GAPBS workloads, the primary source of slowdown

stems from DRAM, specifically stalls by demand reads. Only
a few, such as pr-kron and pr-twitter, experience cache-related
slowdowns. Many Llama workloads exhibit slowdowns origi-
nating fromLLC. Similarly, cloudworkloads like Redis/VoltDB
are predominantly impacted by DRAM slowdowns. In ML
workloads such as DLRM and GPT-2, DRAM slowdowns

account for 90% of the overall slowdown. Figure 15 shows
the CDFs of slowdowns caused by various components for
all workloads. Notably, at least 15% of workloads experience
5% or more cache slowdown under CXL, indicating reduced
prefetcher efficiency. Additionally, at least 40% of workloads
see 5% or more slowdown due to demand reads.

Reasons behind workload

0

.2

.4

.6

.8

1

 0  5  10  15  20  25  30

Slowdown (%)

Store
L1
L2
L3

DRAM

Slowdown Breakdown CDF

Figure 15. Slowdown.

slowdowns vary significantly.
For instance, 503.bwaves and
605.mcf demonstrate similar
slowdowns. However, almost
all slowdown in 605.mcf is from
LLCmisses, while for 503.bwaves,
prefetching dominate the per-
formance slowdown. This un-
derscores one of the advan-
tages of the breakdownmethod.
To sum up, Spa can capture, explain, and dissect slowdowns.
5.6 Period-based Slowdown Analysis

Spa at the workload level falls short of capturing workload
dynamism and the associated CXL impact over time. Modern
memory-intensive workloads often exhibit bursty behavior
and experience periodic performance fluctuations. Therefore,
it is essential to analyze workload slowdowns over various
time periods during execution to understand the evolving
causes. To this end, we enhance Spa to support period-based
slowdown analysis throughout the workload’s lifetime, e.g.,
every 1 billion (B) instruction “period.”

Challenges: Measuring period-based slowdowns is non-
trivial as the same set of instructions will take different
amount of time to execute in local DRAM and CXL memory
while existing profiling tools only support time-based sam-
pling (e.g., measuring performance counters every 1ms), but
cannot deal with the issue of runtime scaling.

Our solution:We introduce an approach to convert time-
12



Systematic CXL Memory Characterization and Performance Analysis at Scale ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e12

0
40
80

[a] 602.gcc_s slowdown over time
Store
DRAM

L3
L2

L1
Other

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
1e12

0
20
40
60

Sl
ow

do
wn

 (%
) [b] 605.mcf_s slowdown over time

0.0 0.5 1.0 1.5 2.0
Instructions 1e12

0

20

[c] 631.deepsjeng_s slowdown over time

Figure 16. Period-based slowdown breakdown. This figure

shows the time-series CXL slowdown for workload 602, 605 and 631.

based sampling data into a period-based slowdown analysis.
Since the total number of (retired) instructions for a work-
load remains constant whether running on DRAM or CXL
memory, our method aggregates multiple time-based sam-
ples (i.e., counters in Table 2) over 1ms intervals and then
align them with the target analysis period that lasts much
longer (e.g., every 1B instructions, seconds). Partial time-
based sampling results are proportionally adjusted, assum-
ing smooth counter progression within the 1ms sampling
interval. As the time-based sampling intervals are signif-
icantly shorter than the target analysis period, errors are
minimized by proportional offsets during the final interval.
We apply this approach to time-series performance counter
data collected periodically from both DRAM and CXL se-
tups, yielding instruction-interval-based breakdowns. Using
this method, we perform fine-grained workload analysis and
present example findings in Figure 16.
For instance, consider workload (602.gcc), which experi-

ences significant CXL slowdowns during the first two-thirds
of its execution. The average slowdownwithin this period ex-
ceeds 30%, whereas the overall average slowdown across the
workload hovers around 20%. While the average slowdown
for the entire workload fails to pinpoint critical time periods
with high slowdown, our method enables the presentation of
slowdown for each time period, thereby revealing critical seg-
ments affected by substantial performance degradation. Con-
currently, the time series analysis highlights the fluctuation
of various slowdown components. Workloads 605.mcf and
631.deepsjeng exhibit comparable intensity in overall slow-
down, yet their respective contributions to slowdown during
execution fluctuate differently.
Finding #5: Temporal slowdown variation: Different
workloads may exhibit distinct CXL slowdown fluctuations
over time, even if their average slowdowns are similar at
workload-level. Period-based slowdown analysis helps un-
cover these runtime performance variations. By identifying
less-affected periods, resource utilizations could be opti-

mized, benefiting other workloads under co-location.
Recommendation #3: Period-based slowdown analysis
offers valuable insights for program optimization by helping
programmers identify which instruction periods are most
susceptible to CXL slowdowns, enabling more precise and
targeted optimization.

5.7 Spa Use Cases

Performance debugging. As shown in previous sections,
Spa serves as a valuable complement to existing profilers,
offering deeper insights into CXL performance profiling and
debugging. By identifying root causes of performance slow-
downs and visualizing their impact (as in Figure 16), Spa
enables users to analyze workload behavior under CXL and
optimize application performance accordingly.
Performance tuning. Spa facilitates workload optimiza-
tion by enabling informed memory placement based on slow-
down analysis. For example, to mitigate the slowdown bursts
observed in 605.mcf (Figure 16b), we first identify memory
accesses during bursty periods (e.g., exceeding 10%) using
binary instrumentation via Intel Pin. Next, we pinpoint the
source code responsible for high slowdowns using addr2line.
Our analysis reveals that two performance-critical objects,
each 2GB in size, are contributing to the slowdown. By relo-
cating these objects to local DRAM, we successfully reduce
the overall slowdown from 13% to 2%. This approach demon-
strates how Spa can effectively guide memory placement
between local DRAM and CXL, making it a valuable tool
for resource provisioning in memory pooling and tiering
systems without violating SLOs [23, 34].
Performance prediction and metric. Spa serves as a foun-
dation for accurate predictive models applicable across vari-
ous scenarios, as detailed in our technical report [35]. Spa-
based models provide a powerful framework for analyzing
and predicting workload performance in complex memory
configurations, such as tiered memory in both online and
offline settings. As a performance metric, Spa offers a more
effective alternative to conventional metrics like LLC misses.
By directly measuring performance losses through stall cy-
cles, Spa enables smarter tiering policy designs that improve
both system performance and memory utilization.

6 Conclusion

As CXL remains a relatively new technology, the research
community has yet to fully understand its performance im-
plications. Our systematic, large-scale characterization and
analysis provide key findings and actionable insights. By
leveraging unique analytical perspectives – including tail
latencies, CPU tolerance to CXL latencies, and benchmark-
ing many real-world workloads –Melody offers a compre-
hensive understanding of CXL performance. We hope that
Melody findings, tools, datasets, and Spa will spur further
research to fully comprehend and effectively manage the
complexities of CXL-induced performance dynamics.

13



ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Jinshu Liu et al.

7 Acknowledgments

We thank Nicolai Oswald (our shepherd) and the anonymous
reviewers for their constructive feedback, which enhanced
this paper. We also thank Brian Hirano and Ming Liu for
their input on an early draft, as well as Shoaib A. Qazi and
Hansen Idden for their assistance. This research was partially
supported by an NSF CAREER Award (CNS-2339901), NSF
grant CNS-2312785, and funding and equipment support
from Microsoft, Samsung, Intel, and 4-VA.

References

[1] A Benchmark Suite for Cloud Services. https://github.com/parsa-
epfl/cloudsuite.

[2] Compute Express Link. https://www.computeexpresslink.org.
[3] CXL Memory eXpander Controller (MXC). https://www.montage-

tech.com/MXC.
[4] CZ120 Memory Expansion Module. https://www.micron.com/product

s/memory/cxl-memory.
[5] GPT-2. https://en.wikipedia.org/wiki/GPT-2.
[6] Intel Memory Latency Checker (Intel MLC). https://www.intel.co

m/content/www/us/en/download/736633/intel-memory-latency-
checker-intel-mlc.html.

[7] JEDEC Memory Module Reference Base Standard - for Compute Ex-
press Link (CXL). https://www.jedec.org/standards-documents/docs
/jesd319.

[8] Leo CXL Smart Memory Controllers. https://www.asteralabs.com/pro
ducts/leo/leo-cxl-memory-connectivity-controllers/.

[9] LLM Inference in C/C++. https://github.com/ggerganov/llama.cpp.
[10] PCIe 6.0 Will Run So Hot That It Needs Thermal Throttling. https:

//tinyurl.com/pciegen6-2.
[11] PCIe 6.0’s Thermal Throttling Plans Could Slam Brakes on Perfor-

mance. https://tinyurl.com/pciegen6-1.
[12] Phoronix. https://www.phoronix.com/.
[13] Redis. https://redis.io.
[14] Reference Implementations of MLPerf Inference Benchmarks. https:

//github.com/mlperf.
[15] Samsung Unveils CXL Memory Module Box: Up to 16 TB at 60 GB/s.

https://www.anandtech.com/show/21333/samsung-unveils-cxl-
memory-module-box-up-to-16-tb-at-60-gbs.

[16] Scoreboarding. https://en.wikipedia.org/wiki/Scoreboarding.
[17] SK hynix CXL 2.0 Memory Expansion Modules Launched with 96GB

of DDR5. https://www.servethehome.com/sk-hynix-cxl-2-0-memory-
expansion-modules-launched-with-96gb-of-ddr5/.

[18] SPEC CPU 2017. https://www.spec.org/cpu2017.
[19] The PBBS Benchmark Suite (V2). https://cmuparlay.github.io/pbbsbe

nch/.
[20] Top-down Microarchitecture Analysis Method. https://www.intel.co

m/content/www/us/en/docs/vtune-profiler/cookbook/2023-0/top-
down-microarchitecture-analysis-method.html.

[21] VoltDB. https://www.voltdb.com.
[22] GAP Benchmark Suite. https://github.com/sbeamer/gapbs.git, 2021.
[23] Daniel S. Berger, Daniel Ernst, Huaicheng Li, Pantea Zardoshti, Monish

Shah, Samir Rajadnya, Scott Lee, Lisa Hsu, Ishwar Agarwal, Mark D.
Hill, and Ricardo Bianchini. Design Tradeoffs in CXL-Based Memory
Pools for Cloud Platforms. IEEE Micro Special Issue on Emerging System

Interconnects, 43(2), 2023.
[24] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.

The PARSEC Benchmark Suite: Characterization and Architectural
Implications. In IEEE International Conference on Parallel Architectures

and Compilation Techniques (PACT), 2008.
[25] Kevin K. Chang, Abhijith Kashyap, Hasan Hassan, Saugata Ghose,

Kevin Hsieh, Donghyuk Lee, Tianshi Li, Gennady Pekhimenko, Samira
Khan, and Onur Mutlu. Understanding Latency Variation in Modern

DRAM Chips: Experimental Characterization, Analysis, Optimization.
In Proceedings of the 2016 ACM International Conference on Measure-

ment and Modeling of Computer Systems (SIGMETRICS), 2016.
[26] Russell Clapp,Martin Dimitrov, Karthik Kumar, Vish Viswanathan, and

Thomas Willhalm. Quantifying the Performance Impact of Memory
Latency and Bandwidth for Big Data Workloads. In IEEE International

Symposium on Workload Characterization (IISWC), 2015.
[27] Debendra Das Sharma, Robert Blankenship, and Daniel Berger. An

Introduction to the Compute Express Link (CXL) Interconnect. ACM
Comput. Surv., 56(11), July 2024.

[28] Pouya Esmaili-Dokht, Francesco Sgherzi, Valeria Soldera Girelli, Isaac
Boixaderas, Mariana Carmin, Alireza Momeni, Adria Armejach, Es-
tanislao Mercadal, German Llort, Petar Radojkovic, Miquel Moreto,
Judit Gimenez, Xavier Martorell, Eduard Ayguade, Jesus Labarta,
Emanuele Confalonieri, Rishabh Dubey, and Jason Adlard. A Mess of
Memory System Benchmarking, Simulation and Application Profiling.
In 57th Annual IEEE/ACM International Symposium on Microarchitec-

ture (MICRO-57), 2024.
[29] Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and

Onur Mutlu. Demystifying Complex Workload-DRAM Interactions:
An Experimental Study. In Proceedings of the 2019 ACM International

Conference on Measurement and Modeling of Computer Systems (SIG-

METRICS), 2019.
[30] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang.

The HiBench Benchmark Suite: Characterization of the MapReduce-
Based Data Analysis. In Proceedings of the 26th International Conference
on Data Engineering (ICDE), 2010.

[31] Bruce Jacob, Spencer Ng, and David Wang. Memory Systems: Cache,

DRAM, Disk. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2007.

[32] Taehyung Lee, Sumit Kumar Monga, Changwoo Min, and Young Ik
Eom. Memtis: Efficient Memory Tiering with Dynamic Page Classifi-
cation and Page Size Determination. In Proceedings of the 29th ACM

Symposium on Operating Systems Principles (SOSP), 2023.
[33] Philip Levis, Kun Lin, and Amy Tai. A Case Against CXL Memory

Pooling. In The 22nd ACMWorkshop on Hot Topics in Networks (HotNets

’23), 2023.
[34] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zar-

doshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee,
Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and Ricardo Bianchini.
Pond: CXL-Based Memory Pooling Systems for Cloud Platforms. In
Proceedings of the 28th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS),
2023.

[35] Jinshu Liu, Hamid Hadian, Hanchen Xu, Daniel S. Berger, and
Huaicheng Li. Dissecting CXL Memory Performance at Scale: Anal-
ysis, Modeling, and Optimization. https://arxiv.org/abs/2409.14317,
2024.

[36] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,
Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowd-
hury, Shobhit Kanaujia, and Prakash Chauhan. TPP: Transparent
Page Placement for CXL-Enabled Tiered Memory. In Proceedings of

the 28th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), 2023.
[37] Vinicius Petrucci, Eishan Mirakhur, Nikesh Agarwal, Su Wei Lim,

Vishal Tanna, Rita Gupta, and MaheshWagh. CXLMemory Expansion:
A Closer Look on Actual Platform. https://www.micron.com/conte
nt/dam/micron/global/public/products/white-paper/cxl-memory-
expansion-a-close-look-on-actual-platform.pdf.

[38] Christian Pinto, Dimitris Syrivelis, Michele Gazzetti, Panos Koutso-
vasilis, Andrea Reale, Kostas Katrinis, and Peter Hofstee. Thymesis-
Flow: A Software-Defined, HW/SW Co-Designed Interconnect Stack
for Rack-Scale Memory Disaggregation. In 53rd Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO-53), 2020.
14

https://github.com/parsa-epfl/cloudsuite
https://github.com/parsa-epfl/cloudsuite
https://www.computeexpresslink.org
https://www.montage-tech.com/MXC
https://www.montage-tech.com/MXC
https://www.micron.com/products/memory/cxl-memory
https://www.micron.com/products/memory/cxl-memory
https://en.wikipedia.org/wiki/GPT-2
https://www.intel.com/content/www/us/en/download/736633/intel-memory-latency-checker-intel-mlc.html
https://www.intel.com/content/www/us/en/download/736633/intel-memory-latency-checker-intel-mlc.html
https://www.intel.com/content/www/us/en/download/736633/intel-memory-latency-checker-intel-mlc.html
https://www.jedec.org/standards-documents/docs/jesd319
https://www.jedec.org/standards-documents/docs/jesd319
https://www.asteralabs.com/products/leo/leo-cxl-memory-connectivity-controllers/
https://www.asteralabs.com/products/leo/leo-cxl-memory-connectivity-controllers/
https://github.com/ggerganov/llama.cpp
https://tinyurl.com/pciegen6-2
https://tinyurl.com/pciegen6-2
https://tinyurl.com/pciegen6-1
https://www.phoronix.com/
https://redis.io
https://github.com/mlperf
https://github.com/mlperf
https://www.anandtech.com/show/21333/samsung-unveils-cxl-memory-module-box-up-to-16-tb-at-60-gbs
https://www.anandtech.com/show/21333/samsung-unveils-cxl-memory-module-box-up-to-16-tb-at-60-gbs
https://en.wikipedia.org/wiki/Scoreboarding
https://www.servethehome.com/sk-hynix-cxl-2-0-memory-expansion-modules-launched-with-96gb-of-ddr5/
https://www.servethehome.com/sk-hynix-cxl-2-0-memory-expansion-modules-launched-with-96gb-of-ddr5/
https://www.spec.org/cpu2017
https://cmuparlay.github.io/pbbsbench/
https://cmuparlay.github.io/pbbsbench/
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/2023-0/top-down-microarchitecture-analysis-method.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/2023-0/top-down-microarchitecture-analysis-method.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/2023-0/top-down-microarchitecture-analysis-method.html
https://www.voltdb.com
https://github.com/sbeamer/gapbs.git
https://arxiv.org/abs/2409.14317
https://www.micron.com/content/dam/micron/global/public/products/white-paper/cxl-memory-expansion-a-close-look-on-actual-platform.pdf
https://www.micron.com/content/dam/micron/global/public/products/white-paper/cxl-memory-expansion-a-close-look-on-actual-platform.pdf
https://www.micron.com/content/dam/micron/global/public/products/white-paper/cxl-memory-expansion-a-close-look-on-actual-platform.pdf


Systematic CXL Memory Characterization and Performance Analysis at Scale ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

[39] Huanxing Shen and Cong Li. Runtime Estimation of Application
Memory Latency for Performance Analysis and Optimization. In The

International Symposium on Memory Systems (MEMSYS), 2020.
[40] Shigeru Shiratake. Scaling and Performance Challenges of Future

DRAM. In IEEE International Memory Workshop (IMW), 2020.
[41] Yan Sun, Yifan Yuan, Zeduo Yu, Zeduo Yu, Reese Kuper, Chihun Song,

Jinghan Huang, Houxiang Ji, Siddharth Agarwal, Jiaqi Lou, Ipoom
Jeong, Ren Wang, Jung Ho Ahn, Tianyin Xu, and Nam Sung Kim.
Demystifying CXL Memory with Genuine CXL-Ready Systems and
Devices. In 56th Annual IEEE/ACM International Symposium on Mi-

croarchitecture (MICRO-56), 2023.
[42] Yupeng Tang, Ping Zhou, Wenhui Zhang, Henry Hu, Qirui Yang, Hao

Xiang, Tongping Liu, Jiaxin Shan, Ruoyun Huang, Cheng Zhao, Cheng
Chen, Hui Zhang, Fei Liu, Shuai Zhang, Xiaoning Ding, and Jianjun
Chen. Exploring Performance and Cost Optimization with ASIC-Based
CXL Memory. In Proceedings of the 2024 EuroSys Conference (EuroSys),
2024.

[43] Jacob Wahlgren, Gabin Schieffer, Maya Gokhale, and Ivy Peng. A
Quantitative Approach for Adopting Disaggregated Memory in HPC
Systems. In Proceedings of International Conference on High Perfor-

mance Computing, Networking, Storage and Analysis (SC), 2023.
[44] Jaylen Wang, Daniel S. Berger, Fiodar Kazhamiaka, Celine Irvene,

Chaojie Zhang, Esha Choukse, Kali Frost, Rodrigo Fonseca, Brijesh
Warrier, Chetan Bansal, Jonathan Stern, Ricardo Bianchini, and Ak-
shitha Sriraman. Designing Cloud Servers for Lower Carbon. In
Proceedings of the 51st Annual International Symposium on Computer

Architecture (ISCA), 2024.
[45] Ahmad Yasin. A Top-Down Method for Performance Analysis and

Counters Architecture. In IEEE International Symposium on Perfor-

mance Analysis of Systems and Software (ISPASS), 2014.
[46] Li Yi, Cong Li, and Jianmei Guo. CPI for Runtime Performance Mea-

surement: The Good, the Bad, and the Ugly. In IEEE International

Symposium on Workload Characterization (IISWC), 2020.
[47] Yuhong Zhong, Daniel S. Berger, Carl Waldspurger, Ryan Wee, Ishwar

Agarwal, Rajat Agarwal, Frank Hady, Karthik Kumar, Mark D. Hill,
Mosharaf Chowdhury, and Asaf Cidon. Managing Memory Tiers with
CXL in Virtualized Environments. In Proceedings of the 18th USENIX

Symposium on Operating Systems Design and Implementation (OSDI),
2024.

15


	Abstract
	1 Introduction
	2 Background
	3 CXL Device Characterization
	3.1 Testbed
	3.2 CXL (Tail) Latencies and Bandwidth

	4 Workload Characterization
	5 Spa for CXL Slowdown Analysis
	5.1 Overview
	5.2 Challenges and Limitations of State-of-the-Art
	5.3 Spa: A Bottom-Up Approach
	5.4 Spa-based Slowdown Breakdown
	5.5 Workload Slowdown Diversity
	5.6 Period-based Slowdown Analysis
	5.7 Spa Use Cases

	6 Conclusion
	7 Acknowledgments
	References

