

The CASE of FEMU: Cheap, Accurate, Scalable and **Extensible Flash Emulator**

Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan Sundararaman, Matias Bjørling, Haryadi S. Gunawi

Why a new SSD Emulator?

FEMU Use Case

Platform	Pros	Cons
Simulator	Cheap; Easy; Time-saving	Trace-driven; Internal research only
Emulator	Cheap; Full-stack research support	Poor scalability; Poor accuracy
Hardware	Full-stack research support; Accurate	Expensive; Complex; Wear-out

Why Emulator?

- Get the benefits of both simulators and hardware platforms
- Enable wide range of SSD research, including SDF/Split-level Architecture and host-SSD co-designs, etc.

Why FEMU?

Bleak Status of Existing SSD Emulators

- FlashEmu: no longer maintained
- VSSIM: non-scalable; inaccurate app-level
- LightNVM's QEMU: only single-channel support; non-scalable

FEMU Scalability: QEMU Virtual IO Optimization

A high performance base environment is needed to: **NVMe Emulation** - Emulate NAND operations at ~100us level - Emulate tens of parallel NAND flash chips FEMU Heap Storage DMA Emulation

Average Latency 400 IO Latency (us) 300 200 100 FEMU is scalable

8 16 32 64

4 # of threads Figure 1: FEMU Scalability

2

Why bother optimizing QEMU?

FEMU Accuracy

Delay Emulation:

- Endio queue: requests sorted according to completion time
- Periodic polling for request completion time expiration

Figure 3: FEMU Accuracy on emulating OpenChannel-SSD

Filebench 60 Single Register Model Double Register Model Error (%) 40 20 File Network OLTP Varmail Video Server FS Server Proxy Latency Error: 11-47% 0.5-38%

Figure 4: FEMU v.s. OpenChannel-SSD on Filebench

Future Work

- ☐ Further QEMU optimizations to support more scalability
- ☐ Improve accuracy by integrating more detailed SSD information ☐ Integrate well-implemented FTLs in popular SSD Simulators
- ☐ Multi-core support