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Fail-slow hardware is an under-studied failure mode. We present a study of 114 reports of fail-slow hardware

incidents, collected from large-scale cluster deployments in 14 institutions. We show that all hardware types

such as disk, SSD, CPU, memory and network components can exhibit performance faults. We made several

important observations such as faults convert from one form to another, the cascading root causes and impacts

can be long, and fail-slow faults can have varying symptoms. From this study, we make suggestions to vendors,

operators, and systems designers.
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1 INTRODUCTION

Understanding fault models is an important criteria of building robust systems. Decades of research

has developed mature failure models such as fail-stop [4, 23, 31, 33, 36], fail-partial [7, 34, 35],

fail-transient [27], faults as well as corruption [8, 19, 21, 37] and byzantine failures [15].
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Important Findings and Observations

§3.1 Varying root causes: Fail-slow hardware can be induced by internal causes such as firmware

bugs or device errors/wear-outs as well as external factors such as configuration, environment,

temperature, and power issues.

§3.2 Faults convert from one form to another: Fail-stop, -partial, and -transient faults can

convert to fail-slow faults (e.g., the overhead of frequent error masking of corrupt data can lead

to performance degradation).

§3.3 Varying symptoms: Fail-slow behavior can exhibit a permanent slowdown, transient slow-

down (up-and-down performance), partial slowdown (degradation of sub-components), and tran-

sient stop (e.g., occasional reboots).

§3.4 A long chain of root causes: Fail-slow hardware can be induced by a long chain of causes

(e.g., a fan stopped working, making other fans run at maximal speeds, causing heavy vibration

that degraded the disk performance).

§3.4 Cascading impacts: A fail-slow hardware can collapse the entire cluster performance; for

example, a degraded NIC made many jobs lock task slots/containers in healthy machines, hence

new jobs cannot find enough free slots.

§3.5 Rare but deadly (long time to detect): It can take hours to months to pinpoint and isolate

a fail-slow hardware due to many reasons (e.g., no full-stack visibility, environment conditions,

cascading root causes and impacts).

Suggestions

§6.1 To vendors: When error masking becomes more frequent (e.g., due to increasing internal

faults), more explicit signals should be thrown, rather than running with a high overhead. Device-

level performance statistics should be collected and reported (e.g., via S.M.A.R.T) to facilitate

further studies.

§6.2 To operators: 32% root causes are external factors, thus troubleshooting fail-slow hardware

must be done online. Due to the cascading root causes and impacts, full-stack monitoring is

needed. Fail-slow root causes and impacts exhibit some correlation, thus statistical correlation

techniques may be useful (with full-stack monitoring).

§6.3 To systems designers: While software systems are effective in handling fail-stop (binary)

model, more research is needed to tolerate fail-slow (non-binary) behavior. System architects,

designers and developers can fault-inject their systems with all the root causes reported in this

paper to evaluate the robustness of their systems.

Table 1. Summary of our findings and suggestions. The findings and suggestions above are labeled with

numbers of sections in which they will be discussed.

This paper highlights an under-studied “new” failure type: fail-slow hardware, hardware that is

still running and functional but in a degraded mode, slower than its expected performance. We found

that all major hardware components can exhibit fail-slow faults. For example, disk throughput can

drop by three orders of magnitude to 100 KB/s due to vibration, SSD operations can stall for seconds

due to firmware bugs, memory cards can degrade to 25% of normal speed due to loose NVDIMM

connection, CPUs can unexpectedly run in 50% speed due to lack of power, and finally network

card performance can collapse to Kbps level due to buffer corruption and retransmission.

While fail-slow hardware arguably did not surface frequently in the past, today, as systems are

deployed at scale, along with many intricacies of large-scale operational conditions, the probability
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Institution #Nodes

Company 1 >10,000

Company 2 150

Company 3 100

Company 4 >1,000

Company 5 >10,000

Company 6 >10,000

Company 7 >10,000

Institution #Nodes

Univ. A 300

Univ. B >100

Univ. C >1,000

Univ. D 500

Nat’l Labs X >1,000

Nat’l Labs Y >10,000

Nat’l Labs Z >10,000

Table 2. Operational scale. The table above shows the operational scale of the clusters from which the fail-

slow reports originate across all the participating institutions. As the paper title suggests, the larger the operational

scale, the higher probability that fail-slow hardware would be observed.

that a fail-slow hardware incident can occur increases. Furthermore, as hardware technology con-

tinues to scale (smaller and more complex), today’s hardware development and manufacturing will

only exacerbate the problem.

Unfortunately, fail-slow hardware is under-studied. A handful of prior papers already hinted the

urgency of this problem; many different terms have been used such as “fail-stutter” [5], “gray failure”

[26], and “limp mode” [18, 22, 28]. However, the discussion was not solely focused on hardware

but mixed with software performance faults as well. We counted roughly only 8 stories per paper

of fail-slow hardware mentioned in these prior papers, which is probably not sufficient enough to

convince the systems community of this urgent problem.

To fill the void of strong evidence of hardware performance faults in the field, we, a group of

researchers, engineers, and operators of large-scale datacenter systems across 14 institutions decided

to write this “community paper.” More specifically, we have collected 114 detailed reports of fail-

slow hardware behaviors including the hardware types, root causes, symptoms, and impacts to high-

level software. To the best of our knowledge, this is the most complete account of fail-slow hardware

in production systems reported publicly.

Due to space constraints, we summarize our unique and important findings in Table 1 and do not

repeat them here. The table also depicts the organization of the paper. Specifically, we first provide

our high-level observations (§3), then detail the fail-slow incidents with internal root causes (§4)

as well as external factors (§5), and finally provide suggestions to vendors, operators, and systems

designers (§6). We hope that our paper will spur more studies and solutions to this problem.

2 METHODOLOGY

114 reports of fail-slow hardware were collected from large-scale cluster deployments in 14 insti-

tutions (Table 2). At such scales, it is more likely to witness fail-slow hardware occurrences. The

reports were all unformatted text, written by the engineers and operators who still vividly remem-

ber the incidents due to the severity of the impacts. The incidents were reported between 2000 and

2018, with only 30 reports predating 2010. Each institution reports a unique set of root causes. For

example, although an institution may have seen a corrupt buffer being the root cause that slows

down networking hardware (packet loss and retransmission) many times, it is only collected as one

report. Thus, a single report can represent multiple instances of the incident. If multiple different

institutions report the same root cause, it is counted multiple times. However, the majority of root

causes (56%) are unique and only 32% are duplicates More specifically, a duplicated incident is
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Hardware types

Root SSD Disk Mem Net CPU Total

ERR 11 10 11 10 3 45

FW 7 3 0 9 2 21

TEMP 1 3 0 2 6 12

PWR 1 0 1 0 6 8

ENV 3 5 2 5 5 20

CONF 1 1 0 5 3 10

UNK 0 4 1 2 2 9

Total 24 26 15 33 27 125

Table 3. Root causes across hardware types. The table shows the occurrences of the root causes across

hardware types. For example, in the 1st row and column number, there were 11 cases of fail-slow SSD due to

internal device errors or wearouts (ERR). The table is referenced in Section 3.1. The hardware types are SSD,

disk, memory (“Mem”), network (“Net”), and processors (“CPU”). The internal root causes are device errors (ERR)

and firmware issues (FW) and the external root causes are temperature (TEMP), power (PWR), environment (ENV),

and configuration (CONF). Issues that are marked unknown (UNK) implies that the operators cannot pinpoint the

root cause, but simply replaced the hardware. Note that a report can have multiple root causes (environment and

power/temperature issues), thus the total (125) is larger than the 114 reports.

reported on average by 2.6 institutions; for example, firmware bugs are reported from 5 institutions,

driver bugs from 4 institutions, and the remaining issues from 2 institutions.

12% of the reports did not pinpoint a root causes (labeled as “UNK” representing “unknown”).

In most of these cases, the operators had a full certainty that the performance of the hardware has

degraded (e.g., after some in-office, offline testing). In cases where the hardware warranty has not

expired, performing a replacement is easier and cheaper than the cost of debugging.

The raw (partial) dataset can be downloaded on our group website [3]. The dataset is partial as

not all institutions are permitted to release the raw data.

We note that there is no analyzable hardware-level performance logs (more in §6.1), which pre-

vents large-scale log studies. We strongly believe that there were many more cases that were slipped

and unnoticed. Some stories are also not passed around as operators change jobs. We do not include

known slowdowns (e.g., random IOs causing slow disks, or GC activities occasionally slowing

down SSDs). We only include reports of unexpected degradation. For example, unexpected hard-

ware faults that make GC activities work harder is reported.

3 OBSERVATIONS (TAKE-AWAY POINTS)

From this study, we made five important high-level findings as summarized in Table 1.

3.1 Varying Root Causes

Pinpointing the root cause of a fail-slow hardware is a daunting task as it can be induced by a

variety of root causes, as shown in Table 3. Hardware performance fault can be caused by internal

root causes from within the device such as firmware issues (FW) or device errors/wear-outs (ERR),

which will be discussed in Section 4. However, a perfectly working device can also be degraded

by many external root causes such as configuration (CONF), environment (ENV), temperature (TEMP),

and power (PWR) related issues, which will be presented in Section §5. Note that a report can have
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multiple root causes (environment and power/temperature issues), thus the total in Table 3 (112) is

larger than the 114 reports.

3.2 Fault Conversions to Fail-Slow

Different types of faults such as fail-stop, -partial, and -transient can convert to fail-slow faults.

• Fail-stop to fail-slow: As many hardware pieces are connected together, a fail-stop component

can make other components exhibit a fail-slow behavior. For example, a dead power supply throttled

the CPUs by 50% as the backup supply did not deliver enough power; a single bad disk exhausted

the entire RAID card’s performance; and a vendor’s buggy firmware made a batch of SSDs stop

for seconds, disabling the flash cache layer and making the entire storage stack slow. These ex-

amples suggest that fail-slow occurrences can be correlated to other fail-stop faults in the system.

Furthermore, a robust fail-stop tolerant system should ensure that fail-stop fault does not convert to

fail-slow.

• Fail-transient to fail-slow: Besides fail-stop, many kinds of hardware can exhibit fail-transient

errors, for example, disks occasionally return IO errors, processors sometimes produce a wrong

result, and from time to time memory bits get corrupted. Due to their transient and “rare” nature,

firmware/software typically masks these errors from users. A simple mechanism is to retry the

operation or repair the error (e.g., with ECC or parity). However, when the transient failures are

recurring much more frequently, error masking can be a “double-edged sword.” That is, because

error masking is not a free operation (e.g., retry delays, repair costs), when the errors are not rare,

the masking overhead becomes the common case performance.

We observed many cases of fail-transient to fail-slow conversion. For example, a disk firmware

triggered frequent “read-after-write” checks in a degraded disk; a machine was deemed nonfunc-

tional due to heavy ECC correction of many DRAM bit-flips we received many reports of DRAM

in the field that exhibits high error rates such that the ECC repair latency becomes the common case);

a loose PCIe connection made the driver retry IOs multiple times; and many cases of loss/corrupt

network packets (between 1-50% rate in our reports) triggered heavy retries that collapsed the net-

work throughput by orders of magnitude.

From the stories above, it is clear that there must be a distinction between rare and frequent fail-

transient faults. While it is acceptable to mask the former, the latter should be exposed to and not

hidden from high-level software stack and monitoring tools.

• Fail-partial to fail-slow: Some hardware can also exhibit fail-partial fault where only some part

of the device is unusable (i.e., a partial fail-stop). This kind of failure is typically masked by the

firmware/software layer (e.g., with remapping). However, when the scale of partial failure grows,

the fault masking brings a negative impact to performance. For example, in one deployment, the

available memory size decreased over time increasing the cache miss rate, but did not cause the

system to crash; bad chips in SSDs decrease the size of over-provisioned space, triggering more

frequent garbage collection; and a more known problem, remapping of a large number of bad sectors

can induce more disk seeks. Similar to the fail-transient case above, there must be a distinction of

small- vs. large-scale partial faults.

3.3 Varying Fail-Slow Symptoms

We observed the “many faces” of fail-slow symptoms: permanent, transient, and partial fail-slow

and transient fail-stop, as illustrated in Figure 1. Table 4 shows the breakdown of these failure

modes across different hardware types. Table 5 shows the breakdown of these failure modes across

different root causes.
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Fig. 1. Fail-slow symptoms. The figure shows four types of fail-slow symptom, as discussed in Section 3.3.

The x-axis represents time and the y-axis represents performance of the device.

• Permanent slowdown: The first symptom (Figure 1a) is a permanent slowdown, wherein the

device initially worked normally but then its performance drops and does not return to the normal

condition (until the problem is manually fixed). This mode is the simplest among the four models

because operators can consistently see the issue. As shown in Table 4, this symptom (fortunately) is

the most common one.

• Transient slowdown: The second one (Figure 1b) is a transient slowdown, wherein the device

performance fluctuates between normal condition and significant degradation, which is more diffi-

cult to troubleshoot. For example, disk and network performance can degrade when the environment

is too cold/hot, but will recover when the temperature is back to normal; occasional vibration when

many disks were busy at the same time can reduce disk speed by orders of magnitude; and appli-

cations that create a massive load can cause the rack power control to deliver insufficient power to

other machines (degrading their performance), but only until the power-hungry applications finish.

• Partial slowdown: The third model (Figure 1c) is partial slowdown, where only some parts of the

device will exhibit slowdown. In other words, this is the case of partial fail-stop converting to partial

slowdown (§3.2). For example, some parts of memory that are faulty require more ECC checks to

be performed; some parts of network router’s buffer that are corrupted will only cause the affected

packets to be resent; and in one incident, 40% of big packets were lost, while none of small packets

were lost. Partial fail-slow model also complicates debugging as some operations experience the

slowdown but others (on the same device) are not affected.

• Transient stop: The last one (Figure 1d) is the case of transient stop, where the device occasion-

ally reboots itself, thus there are times where the performance degrades to zero. For example, a

buggy firmware made the SSDs sometimes “disappears” from RAID controller and later reappears;
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Symptoms

HW Type Perm. Trans. Partial Tr. Stop

SSD 8 7 3 3

Disk 10 4 5 5

Mem 8 1 0 5

Net 25 0 5 2

CPU 10 7 1 3

Table 4. Fail-slow symptoms across hardware types. The table depicts the occurrences of fail-slow symp-

toms across hardware types. For example, in the 1st row and column number, there were 8 SSD cases whose

slowdown symptom is permanent (that the device performance does not return to normal until after repair). The

table is referenced in Section 3.3. The four symptoms “Perm.”, “Trans.”, “Partial”, and “Tr. Stop” represent the four

symptoms in Figure 1.

Symptoms

Root Perm. Trans. Partial Tr. Stop

ERR 22 8 8 7

FW 12 3 1 4

TEMP 6 3 1 2

PWR 3 2 1 2

ENV 12 4 3 1

CONF 9 1 0 0

UNK 6 1 1 2

Table 5. Fail-slow symptoms across root causes. The table depicts the counts of various fail-slow symptoms

across various root causes. For example, in the 1st row and column, there were 22 cases where the device

slowdown were caused by internal errors/wearouts that cause a permanent slowdown. The table is referenced

in Section 3.3. The root-cause abbreviations can be found in the caption of Table 3. The four symptoms “Perm.”,

“Trans.”, “Partial”, and “Tr. Stop” represent the four symptoms in Figure 1.

occasional bit flips in SAS/SCSI commands caused an host bus adapter to reboot repeatedly; and

nodes automatically rebooted on thermal throttle (e.g., when the fan firmware did not react quickly).

In one (hilarious) story, in the datacenter, there is a convenient table for staging, and one operator

put an office chair adjacent to a storage cluster. The operator liked to rock in the chair, repeatedly

popping hotplug drives out of the chassis (a hard correlation to diagnose).

While this paper focuses on hardware, we recorded an incident where the ext4 filesystem treated

a specific class of disk error in a way that caused requests to it to get hung rather than succeed or fail.

After the file system is remounted or the node is rebooted, the system will run normally but repeat

the same problem when the same disk error is received, creating a transient fail-stop behavior.

We also note that a high degree of bit errors will make ECC ineffective in repairs the errors. There

were cases where ECC-supported memory returns corrupted data causing the machine to reboot, and

the problem repeats. The root cause was still a mystery (e.g., it might have also been caused by a

bug in an L2/L3 cache.
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Overall, transient stop is extremely hard to diagnose, because typically there is no complete “core-

dump” at all levels of the hardware and software stack. When a device or a machine reboots, the

root cause was not logged, and only in the same specific corner case will the device reboot again.

3.4 Cascading Causes and Impacts

Another intricacy of fail-slow hardware is the chain of cascading events: First, between the actual

root cause and the hardware’s fail-slow symptom, there is a chain of cascading root causes. Sec-

ond, the fail-slow symptom then creates cascading impacts to the high-level software stack, and

potentially to the entire cluster.

Below are some of the examples of long cascading root causes that lead to fail-slow hardware. A

fan in a compute node stopped working, making other fans compensate the dead fan by operating at

maximal speeds, which then caused a lot of noise and vibration that subsequently degraded the disk

performance. A faulty sensor in a motherboard reported a false value to the OS making the CPUs

run slower in energy saving mode. A lack of power from a broken power supply can cause many

types of hardware, disks, processors, and network components to run sub-optimally. Power failure

itself can also be caused by a long cascading causes, for example, the vendor omitted a 120V fuse

that shipped with faulty capacitors that have a high probability of shorting when power is cycled,

which then caused minor electrical fires that cascade into rack-level power failures.

Next, when a hardware becomes fail-slow, not only it affects the host machine, but it can cause

cascading impacts across the cluster. For example, a degraded NIC, from 1 Gbps to 1 Kbps, in

one machine caused a chained reaction that slowed down the entire cluster of 100 machines (as the

affected connecting tasks held up containers/slots for a long time, and new jobs cannot run due to

slot shortage). In an HDFS HA (High Availability) deployment, a quorum of namenodes hang when

one of the disks was extremely slow. In an HBase deployment, a memory card at 25% of normal

speed caused backlogs, out-of-memory errors, and crashes. In another similar story, a faulty ECC

memory that is very slow in processing caused locking of the distributed index node and created

contention of objects due to retries from other clients. Lastly, a degraded disk created a backlog all

the way to the client VMs, popping up the “blue screen of death” to users;

These cases above highlight the importance of monitoring the performance of each individual

type of hardware. While the research community has made a significant advancement in the area

of distributed systems tail tolerance, the concept behind latency “tail” is mostly attributed to re-

source contention (e.g., a slow disk due to IO burst). However, a specific failslow hardware might

be unnoticed if the tail model does not incorporate failslow hardware.

Our earlier work [18, 40] shows that tail latency management in many popular systems such as

Hadoop and Spark are flawed, such that one degraded NIC can eventually collapse the entire cluster.

This is because the notion of task progress only includes task speed but does not incorporate the

individual transfer bandwidth that may reveal NIC degradation problem. For example, let us imagine

two reduce nodes R1 and R2 that both read from two map nodes M1 and M2 within the MapReduce

shuffling process. Here, there are four data transfers M1→R1, M1→R2, M2→R1, and M2→R2. If map

node M2’s NIC is degraded, both reducers R1 and R2 will be slow. That is, both of the reducers will

report similar task progress scores to the job manager, and as a result speculative execution is not

triggered and the job fails to escape from the slow M2’s NIC.

Again the problem here is that in MapReduce design, each reduce task (e.g., R1) does not report

the individual transfer progress (e.g., M1→R1 and M2→R1). Had they done that, the slow M2’s NIC

will be detected (e.g., M2→R1 is marked slower than M1→R1) and a new speculative task, M2’ is

created to avoid M2.
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Fig. 2. Time to Detect. The figure shows CDF of time to detect in hours among the fail-slow hardware incidents

with time-to-detect values reported. The x-axis (hours) is in log scale.

While the above example only illustrates tasks from one job, the tasks of this slow job lock up

the task slots in healthy machines. For example, reduce tasks R1 and R2 are slow as their throughput

is dictated by M2’s NIC throughput. Yet R1’s and R2’s machines are healthy but the reduce tasks

lock up the slots for a long time. Gradually as more jobs in healthy nodes communicate with the

node with a slow NIC, healthy nodes run out of free task slots and new jobs cannot run. In one

of our experiments with Hadoop Facebook workload, we were able to collapse the entire 30-node

cluster from 170 to 1 job(s)/hour in 4 hours. Interested readers can see the details in our prior papers

[18, 40].

3.5 Rare but Deadly: Long TTD

The fail-slow hardware incidents in our report took hours or even months to detect (pinpoint). More

specifically, 1% of the cases are detected in minutes, 10% in hours, 11% in days, 18% in weeks, and

23% in months (and unknown time in 37%). Figure 2 shows the distribution (CDF) in more detail,

among the incidents with time-to-detect values reported, with the x-axis in log-scaled hours. Some

engineers called this a “costly debugging tail.” In one story, an entire team of engineers were pulled

to debug the problem, costing the institution tens of thousands of dollar. There are several reasons

why the time-to-detect (TTD) is long.

First, the fact that the incidence of fail-slow hardware is not as frequent as fail-stop cases implies

that today’s software systems do not completely anticipate (i.e., undermine) such scenarios. Thus,

while more-frequent failures can be solved quickly, less-frequent but more complex failures (that

cannot be mitigated by the system) can significantly cost the engineers time.

Second, as explained before, the root cause might not originate from the fail-slow hardware (e.g.,

the case of transient slowdown caused by power-hungry applications in §3.3 took months to figure

out as the problem was not rooted in the slow machines nor the power supply).

Third, external environment conditions beyond the control of the operators can prolong diagnosis

(e.g., for months, a vendor failed to reproduce the fail-slow symptoms in its sea-level testing facility

as the hardware only slows down at a high mountain altitude).

Finally, operators do not always have full visibility of the entire hardware stack (e.g., an incident

took days to solve because the operators had no visibility into the power supply health).
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4 INTERNAL ROOT CAUSES

We now discuss internal root causes, primarily firmware bugs and device errors/wear-outs. We orga-

nize the discussion based on the hardware types (SSD, disk, memory, network, and processor).

4.1 SSD

Fail-slow SSDs can be triggered by firmware bugs and NAND flash management complexities.

Firmware/driver bugs: We received three reports of SSD firmware bugs, admitted by the ven-

dors. First, many individual IOs that should only take tens of µs were throttled by exactly multiples

of 250µs, as high as 2-3ms. Even worse, in another report, a bad batch of SSDs stopped responding

for seconds and then recovered. As mentioned before, an operator found some SSDs “disappeared”

from the system and later reappeared. Upon vendor’s inspection, the SSDs were performing some

internal metadata writes that triggered hardware assertion failure and rebooted the device. In all

these cases, the reasons why the firmware behaves as such were not explained (proprietary reasons).

However, other incidents below might shed more light on the underlying problems. We recorded one

issue where the OS uses an old device driver which interacts suboptimally with the SSD controller

firmware, and as a result, many I/Os observe high latencies in order of seconds.

Read retries with different voltages: In order to read a flash page, SSD controller must set a

certain voltage threshold. As flash chips wear out, the charge in the oxide gates weakens, making

the read operation with the default voltage threshold fail, forcing the controller to keep retrying the

read with different voltage thresholds [11, 12]. It is hard to accurate model the correct voltage as the

device wears out or the environment (more below) is different than the expectation. For this reason,

a default voltage threshold is used, and if that fails, the SSD will perform retries with different

voltages. We observed as high as 4 retries in the field.

RAIN/parity-based read reconstruction: Furthermore, if the data cannot be read (i.e., is com-

pletely corrupted and fails the ECC checks), the SSD must reconstruct the page with RAIN (NAND-

level RAID) [1, 42]. Three factors can make this situation worse. First, if the RAIN stripe width is

N , N−1 additional reads must be generated to reconstruct the corrupt page. Second, the N−1 reads

might also experience read retries as described above. Third, newer TLC-based SSDs use LDPC

codes [41], which takes longer time to reconstruct the faulty pages. We observed that this recon-

struction problem occurs frequently in devices nearing end of life. Moreover, SSD engineers found

that the number of bit flips is a complex function of the time since the last write, the number of

reads since the last write, the temperature of the flash, and the amount of wear on the flash.

Heavy GC in partially-failing SSD: Garbage collection (GC) of NAND flash pages is known

to be a main culprit of user SLA violations [24, 29, 42]. However, in modern datacenter SSDs,

the more advanced firmware successfully reduces GC impacts to users. In reality, there are SSDs

shipped with “bad” chips. We witnessed that as more chips die, the size of the over-provisioned

area gets reduced, which then triggers GC more frequently with impacts that cannot be hidden. For

example, let us consider a 1-TB SSD with 1.5-TB of raw space. Here, the OS-level file system

believes the SSD has a 1-TB area and the SSD maintains a 0.5 TB of overprovisioned space. As

more chips are dying, the SSD cannot reduce the 1-TB exposed space to the OS. Thus, the 0.5-TB

overprovisioned space will be reduced over time, and as a result, free space will get filled up faster

and garbage collection will run more frequently.

Broken parallelism by suboptimal wear-leveling: Ideally, large IOs are mapped to parallel

channels/chips, increasing IO parallelism. However, wear-leveling (the migration of hot/cold pages

to hot/cold blocks) causes the mapping of LPN to PPN changes all the time. It has been observed that

some rare workload behaviors can make wear-leveling algorithms suboptimal, making sequential

LPNs mapped behind the same channels/chips (less parallelism). Furthermore, the problem of bad

ACM Transactions on Storage, Vol. 9, No. 4, Article 39. Publication date: March 2010.



Fail-Slow at Scale: Evidence of Hardware

Performance Faults in Large Production Systems 39:11

page/chip above also forces wear-leveling algorithms to make sub-optimal, less-parallel page/block

mapping.

Hot temperature to wear-outs, repeated erases, and reduced space: Hot temperature can be

attributed to external causes (§5.1), but can cause a chain reaction to SSD internals [32]. We also

observed that SSD pages wear out faster with increasing temperature and there were instances of

voltage threshold modeling that are not effective when SSDs operate at a higher temperature regime.

As a result, after a block erase, the bits were not getting reset properly (not all bits become “1”).

Consequently, some blocks had to be erased multiple times. Note that erase time is already long (e.g.,

up to 6 ms), thus repeated erases resulted in observable fail-slow behavior. Worse, as some blocks

cannot be reset properly after several tries, the firmware marked those blocks unusable, leading to

reduced over-provisioned space, and subsequently more frequent GCs as discussed above.

Wearouts to higher garbage collection and write amplification: Faster wear-outs and more

frequent GCs can induce higher write amplification. It is worthy to report that we observed wildly

different levels of amplification (e.g., 5× for model “A”, 600× for model “B”, and “infinite” for

certain workloads due to premature wear-outs). In one case, services times on a worn-out SSD

observe between 12-300 ms latency due to heavy garbage collection.

Not all chips are created equal: In summary, most of the issues above originated with the fact

that not all chips are created equal. Bad chips still pass vendor’s testing, wherein each chip is given

a quality value and high quality chips are mixed with lesser quality chips as long as the aggregate

quality passes the quality-control standard. Thus, given an SSD, there are unequal qualities [11, 37].

Some workloads may cause more apparent wear-outs on the low quality chips, causing all the issues

above.

4.2 Disk

Similar to SSDs, fail-slow disks can also be caused by firmware bugs and device errors/wear-outs.

Firmware bugs: We collected three reports related to disk firmware bugs causing slowdowns.

There was a case where a disk controller delayed I/O requests for tens of seconds. In another prob-

lem, the disk “jitters” every few seconds, creating a problem that is hard to debug. In a large testbed,

a RAID controller on the master node stalled, but then after restarted, the controller worked but with

occasional timeouts and retries. Finally, there was an incident where a single bad disk exhausted the

RAID card resources causing many IO timeouts (a failed case of bad-disk masking).

Device errors: Triggered by extensive disk rots, a RAID controller initiated frequent RAID re-

building during run time; the fix reformatted the file systems so that bad sectors are collected and

not used within the storage stack. Disk errors can be recurrent; in one case, disks with “bad” status

were removed automatically from the storage pool but then added back when their status changed to

“good,” but the good-bad continuous transitions caused issues that affected user VMs. Some opera-

tors also observed media failures that forced the disks to retry every read operation multiple times

before returning to the OS. A recent proposal advocates disks to automatically disable bad platters

and continue working partially (with reduced bandwidth) [10].

Weak heads: This issue of disk “weak” heads is common in troubleshooting forums [18, 39], but

the root cause is unclear. A report in our study stated that gunk that spills from actuator assembly

and accumulates between the disk head and the platter can cause slow movement of the disk head.

As disks are becoming “slimmer,” the probability of trapped gunk increases. This problem can be

fixed by performing random IOs to make the disk head “sweep the floor.”

Other causes: Fail-slow disks can also be caused by environment conditions (e.g., noises and

vibrations from fans operating at the maximum speed) or temperature (e.g., disks entering read-

after-write mode in a colder environment [20]), which will be discussed later (§5).
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4.3 Memory

Memory systems are considered quite robust, but we managed to collect a few evidence showing

that memory hardware can also exhibit fail-slow faults.

ECC overhead: The most popular root cause of memory slowdown is the ECC overhead. Nor-

mally, only a few addresses in memory are corrupted such that ECC needs to repair the data. How-

ever, we have collected many incidents of a significantly high number of faults that make ECC

repair becomes the common case. Here, one can imagine that referencing to most of the addresses

in the memory hardware will trigger ECC repair.

Device errors to reduced space: In cases of partial memory errors, there were reports of custom

chips masking the errors and not exposing bad addresses. Here, as more errors increase over time,

the available memory size decreases, causing higher cache misses. Unlike disk/SSD usage where

out-of-space error is thrown when space runs out, memory usage is different; as long as the mini-

mum memory space requirement is met, applications can still run albeit with slower performance

due to more frequent page swapping from the reduced cache size.

External causes: There were two cases of memory cards slowing down due to the environment

condition (specifically a high altitude deployment that introduces more cosmic events that cause

frequent multi-bit upsets) and human mistakes (an operator plugged in a new NVDIMM card in a

rush and the loose connection made the card still functional, but with slower performance).

Unknown causes: There were other fail-slow memory incidents with unknown causes. In an

HBase deployment, a memory card ran only 25% of normal speed. In another non-deterministic

case, low memory bandwidth was observed under a certain benchmark, but not under different

benchmarks.

SRAM errors: Much attention is paid to DRAM errors [38] and arguably DRAM reliability is

largely a solved problem – most errors can be masked by ECC (by sacrificing predictable latency)

or lead to fail-stop behavior of the impacted program. Besides DRAM, SRAM usage is pervasive in

device controllers (e.g., FPGAs, network cards, and storage adapters). Unlike DRAM, SRAM works

by constantly holding the voltage of each memory cell at the desired level; it does not incorporate

refresh cycles that can cause read/write to stall. It is most commonly used by circuits that cannot

afford to incur stalls or buffer data between RAM and the combinatorial logic that consumes the

data.

SRAM errors on data paths are typically transparently masked; they ultimately lead to a CRC

validation error, and the network packet or disk I/O is simply retried. However, SRAM is also

incorporated in control paths. We observed SRAM errors that caused occasional reboots of the

device from broken control path (among many other problems), inducing a transient-stop symptom

(as discussed in §3.3). SRAM per-bit error rates unfortunately have not improved [9]. Therefore

in practice, SRAM errors are a regular occurrence in large-scale infrastructure, a major culprit of

service disruptions.

4.4 Network

Network performance variability is a well-known problem, typically caused by load fluctuations.

This paper highlights that fail-slow networking hardware can be a major cause of network perfor-

mance degradation.

Firmware bugs: We collected three reports of “bad” routing algorithms in switch firmware. In

one case, the network performance decreased to half of the maximum performance due to a dynamic

routing algorithm on stock driver/firmware that did not work “as promised [by the vendor].” Due to

lack of visibility to what is happening in the firmware, the operators must hack the kernel to perform

ping between the switches, which consumed a long time. In another story, MAC learning was not
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being responsive and special types of traffic such as multicast were not working well, creating traffic

floods. The third story is similar to the first one.

NIC driver bugs: Four instances of NIC driver bugs were reported, dropping many packets and

collapsing TCP performance. In one story, 5% package loss caused many VMs to go into “blue

screen of death.” Another NIC driver bug caused a “very poor” throughput and the operators had

to disable TCP offload to work around the problem. In another case, the developers found a non-

deterministic network driver bug in Linux that only surfaced on one machine, making the 1 Gbps

NIC card transmit only at 1 Kbps. Finally, a bug caused an unexpected auto-negotiation between

a NIC and a TOR switch that capped the bandwidth between them, under-utilizing the available

bandwidth.

Device errors: In one interesting story, the physical implementation of the network cards did not

match the design specification – there is a distant corner of the chip that is starving from electrons

and not performing at full speed; the vendor re-manufactured all the network cards, a very costly

ramification. Similarly, a bad VSCEL laser degraded switch to switch performance; this bad design

affected hundreds of cables. In one deployment, a router’s internal buffer memory was introduc-

ing occasional bit errors into packets, causing failed end-to-end checksums and subsequently TCP

retries.

External causes: Some fail-slow networking components were also caused by environment con-

ditions (e.g., loose network cables, pinched fiber optics), configuration issues (e.g., a switch envi-

ronment not supporting jumbo frames such that MTU size must be configured to 1500 bytes), and

temperature (e.g., clogged air filter, bad motherboard design that puts NIC behind CPU).

When “networking” components are monitored, mostly they are the NICs and switches/routers.

One lesson we learned in cases above is that the networking cables (the interconnects) can also

cause performance issues.

Unknown causes: There are other reports of throughput degradation at the hardware level or

severe loss rates without known root causes. For example, a 7 Gbps fibre channel collapsed to 2

Kbps, a 1 Gbps throughput degraded to 150 Mbps with just 1% loss rate, 40% of big packets were

lost (but no small-package loss), and some observed error/loss rates as high as 50%.

We note that the TCP retry problem (due to lost packets) is similar to the storage retry/repair

problem (e.g., memory ECC, disk read-after-write). However, in TCP, loss rate and throughput rate

are not a linear correlation. TCP performance is highly sensitive to loss rate. A small loss rate of

10% can easily collapse TCP throughput by one or two orders of magnitude. This is the reason why

we include networking hardware that induces packet loss as instances of fail-slow hardware.

4.5 Processor

We find processors are quite reliable and do not self-inflict fail-slow mode. Most of the fail-slow

CPUs are caused by external factors, which we briefly discuss below, but will be detailed in the next

section (§5).

External causes: We observed fail-slow processors caused by configuration mistakes (e.g., a

buggy BIOS firmware incorrectly down-clocked the CPUs), environment conditions (e.g., a high-

altitude deployment made the CPUs enter thermal throttle), temperature issues (e.g., CPU heat-sinks

were not in physical contact with the CPUs, a fan firmware did not react quickly to cool down the

CPUs), and power shortage (e.g., insufficient capacitors in the motherboard’s power control logic

did not deliver enough power when the load is high).
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5 EXTERNAL ROOT CAUSES

We now describe external root causes of fail-slow hardware such as temperature variance, power

shortage, environment condition, and configuration mistakes. These external causes complicate trou-

bleshooting because the symptoms can be non-deterministic and only reproducible in the same on-

line scenario, but not observable in offline (in-office) testing.

5.1 Temperature

To keep temperature in normal operating condition, fans or heat-sinks must work correctly. De-

ployed systems have monitoring tools to detect when fans are spinning to slow or temperature is

increasing [2], and usually such cases are resolved quickly. Below are root causes of temperature

variance that went undetected by the monitoring tools.

Clogged air filter: In one report, a clogged air filter caused optics in the switch to start failing

due to a high temperature, generating a high 10% packet loss rate. After the air filter was cleaned,

the switch returned to normal speed but only temporarily. It is likely that the high temperature had

broken the switch’s internal parts.

Cold environment: temperature can induce fail-slow faults as well [20]. In one deployment,

some of the disks went into read-after-write mode. Upon inspection, the machine room had a “cold-

air-under-the-floor” system, which was more common in the past. The disks at the bottom of the

racks had a higher incidence of slow performance. This suggests that temperature variance can

originate from deployment environment as well.

Broken fans: Cooling systems such as fans sometimes work as a cluster, rather than individually.

There was a case where a fan in a compute node stopped working, and to compensate this failing fan,

fans in other compute nodes started to operate at their maximal speed, which then generated heavy

noise and vibration that degraded the disk performance. Again, this is an example of cascading root

causes (§3.4).

Buggy fan firmware: Fans can be fully functional, but their speeds are controlled by the fan

firmware. In one condition, a fan firmware would not react quickly enough when CPU-intensive

jobs were running, and as a result the CPUs entered thermal throttle (reduced speed) before the fans

had the chance to cool down the CPUs.

Improper design/assembly/operation: A custom motherboard was “badly” designed in such a

way that the NIC was soldered on the motherboard behind the CPU and memory. The heat from

the CPU affected the NIC causing many packet errors and retries. In a related story, due to bad

assembly, CPU heat-sinks were not in physical contact with the CPUs, causing many nodes to

overheat. In another case, new disks were plugged into machines with “very old” fans. The fans did

not give enough cooling for the newer disks, causing the disks to run slowly.

5.2 Power

Reduced power can easily trigger fail-slow hardware. Below are some of the root causes of power

shortage.

Insufficient capacitors: In one custom motherboard design, the capacitor on the motherboard’s

power control logic did not provide adequate voltage to the CPUs under certain load. This put the

processors out of specification, causing corruptions and recomputations. The diagnosis time was

months due to the fact that the problem could not be reliably reproduced. To fix the problem, a

small capacitor was added to each motherboard on site for thousands of nodes. In a similar story,

an inadequate capacitor caused voltage drop, but only when multiple cores transition from parked

to turbo-boost simultaneously (a corner-case situation). Thus, independent testing of the updated

BIOS and software did not reproduce the issue.
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PCU firmware bugs: In one scenario, the firmware of the power control units (PCUs) entered

a “weird” state and did not deliver enough power, and the whole rack failed off the power control.

This was a transient fault that sometimes can be fixed by resetting the controller, sometimes by

re-flashing the firmware, and in rare instances, by replacing the PCUs.

Fail-partial power supply: In one deployment, every four machines share two power supplies.

However, when one power supply failed, there was not enough power to run all the four machines

at normal capacity, thus throttling the CPUs on each machine by 50%. The problem cascaded as the

machines were used for indexing service and could not keep up with the number of requests. The

problem took days to solve because the operators had no visibility into the power supply health. This

problem is also interesting as two power supplies do not imply that one of them is a full-working

backup, but rather a reduced power, enough to keep the machines alive.

Power-hungry neighbors: Some nodes were running slow because other nodes in the same rack

were drawing more power, causing the rack power supply to go unstable, and dropping power to

various parts of the rack. It took months to diagnose the problem as it was not rooted in the slow

machines and only happened when power-hungry applications were running in neighboring nodes.

Faulty motherboard sensors: After a long period of debugging a slow machine, the operator

discovered that the motherboard had a faulty sensor that reported faulty value to the OS, making the

OS configure the CPUs to run in slower speed in energy saving mode.

5.3 Environment

Fail-slow hardware can be induced by a variety of environment conditions, as listed below.

Altitude and cosmic events: One of the most interesting reports we collected is from a deploy-

ment at altitude of 7500 feet. At this height, some CPUs would become hot and enter thermal

throttle (reduced performance). Apparently, the fault was not in the CPUs, but rather in the vendor’s

cooling design that was not providing enough cooling at such a high altitude. In another report, still

at the same altitude, some memory systems experienced more frequent multi-bit upsets than usual

(increased ECC checks and repairs), which then were shipped back to the vendor and re-assembled

with more memory protection.

Loose interconnects: Loose network cables and pinched fiber optics caused network delays up

to hundreds of milliseconds, making the storage cluster behave abnormally. It took several days

to diagnose the problem, as the symptom was not deterministic. The reason behind loose/pinched

cables can be vibration or human factor. In some other cases, loose PCIe connections between the

SSDs and the PCIe slots made the device driver layer retry the operations multiple times. In another

story, an NVDIMM was not plugged in properly when the operator was rushed in fixing the machine.

The machine was still functional albeit with a much lower speed.

Vibrations: The performance of some disk drives collapsed to 100 KB/s when deployed in the

racks, but performed maximally 100 MB/s when tested in office. Apparently, faulty chassis fans

surrounding the nodes caused such a strong vibration, making the drives go into recovery mode. The

solution was to add vibration dampers to each of the eight hard drive screws and replace roughly

10% system fans in all nodes.

Environment and operating condition mismatch: In one institution, a system was configured

correctly at the advertised clock rate, temperature range, and voltage range. However, due to an

unknown environment condition, it was not working optimally, and the solution was turning down

the clock slightly, putting a software monitor on processor temperature and voltage, and killing the

node if voltage/temperature got close to the edge of the binned values (i.e., a dead node is better than

a slow node). Time to diagnose was months due to not reliably able to reproduce. In another case, a
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switch environment did not support “jumbo frames” and caused the 10 Gbps throughput network to

have a poor throughput. The fix was to reconfigure the MTU size to be 1500 bytes.

Unknown causes: In one interesting report, billions of SAS errors simultaneously reported by all

the independent drives in the cluster, lasting for five minutes. The report stated that this happened

when a technician was performing maintenance on another machine.

5.4 Configuration

While hardware typically runs in default configuration, today’s hardware has “knobs” that allow con-

figurable parameters. Such configurations can be modified by human operators or software/firmware

layers (e.g., BIOS). In our findings, fail-slow hardware can be induced by the following misconfig-

uration mistakes.

Buggy BIOS firmware: In one institution, one of the systems typically ingested 2.8 billion met-

rics per minute, however at one time the metric write time increased, taking more than a minute to

process all the metrics from previous minutes. The operators added more nodes (thinking that it will

load balance the request spikes). Counter-intuitively, adding more nodes resulted in increased write

time. The diagnosis spanned a month. The root cause was the BIOS was incorrectly down-clocking

the CPUs of the new machines being added to the database cluster. These machines were “limping”

along but were assigned the same number of load (as if a correctly clocked machine). Similarly,

as reported elsewhere [17, §3.6], a buggy initialization configuration can also disable the processor

caches.

Human mistakes: Regarding SSD connections, not all PCIe slots have the same number of lanes.

Mistakes in mapping PCIe cards to PCIe slots with different number of lanes had occasionally been

made by human operators, which results in under-utilization of full connection bandwidth. In a dif-

ferent case, an incorrect parameter set in xtnird.ini, a network configuration that manages High

Speed Networking (HSN) over InfiniBand, was not set up properly and the network was throttling.

In another example, an operator incorrectly set the switch setting – only one single 100 MB uplink

was configured – in a new 1 GB switch with two uplinks. Still related to network, multiple institu-

tions reported a wrong configuration of MTU size in the switches causing packet drops. An incorrect

host interface configuration was also incorrectly hardcoded by the user. There is plethora of related

work on configuration mistakes [6, 43]. We believe there are many more instances of configuration

mistakes that trigger fail-slow hardware, not recorded in production logs.

6 SUGGESTIONS

In addition to cataloguing instances of fail-slow hardware, a goal of this paper is to offer vendors,

operators and systems designers insights about how to address this poorly-studied failure mode.

6.1 To Vendors

6.1.1 Making implicit error masking explicit. Fail-slow hardware can be categorized as an

“implicit” fault, meaning they do not always return any explicit hard errors, for example due to error

masking (§3.2). However, there were many cases of slowly increasing error rates that would even-

tually cause cascading performance failures. Although statistics of error rates are obtainable from

the device (e.g., number of ECC repairs, corrupt packets), they are rarely monitored by the overall

system. Vendors might consider throwing explicit error signals when the error rates far exceed the

expected rate.

We understand that this could be a far-from-reach reality because vendors often hide internal

statistics (e.g., most recent SSDs no longer expose the number of internal writes, as some users

were upset to learn about the write amplification). In fact, the trend of moving to white-box storage
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makes the situation worse. That is, black-box storage such as commodity disks and SSDs conform

to some standards (e.g., S.M.A.R.T data), however as more institutions now compose the entire

hardware/software storage stack (e.g., fully host-managed flash), the hardware designers might not

conform to existing standards, making software-level error management more difficult.

6.1.2 Exposing device-level performance statistics. Two decades ago, statistical data of

hard errors was hard to obtain, but due to user demands, modern hardware now exposes such in-

formation (e.g., via S.M.A.R.T), which then spurred many statistical studies of hardware failures

[7, 8, 31, 35–37] However, the situation for hardware-level performance studies is bleak. Our con-

versations with operators suggest that the information from S.M.A.R.T is “insufficient to act on.”

In some institutions, hardware-level performance logs are only collected hourly, and we could not

pinpoint whether a slow performance was due to the workload or the device degradation. With these

limitations, many important statistical questions are left unanswered (e.g., how often fail-slow hard-

ware occurs, how much performance was degraded, what correlations fail-slow faults exhibit with

other metrics such as device age, model, size, and vendor). We hope vendors will expose device-

level performance data to support future statistical studies.

6.1.3 Identifying error sources and common mistakes in hardware design. In many inci-

dents reported earlier, the root causes originate from hardware internals, but not many details were

available due to the typical proprietary nature of hardware design. Fortunately, a few authors of this

paper have substantial experience in designing and selling custom hardware for use at scale and can

shed light on some of the problems. The lessons below are the result of direct experience from ship-

ping over 10,000 machines to 1000’s of third party data-center environments, and then continually

monitoring that fleet for ongoing hardware issues.

We have identified four classes of hardware issues that we believe are fundamental. Top-tier

vendors repeatedly ship machines with these issues, and have been doing so for over a decade.

• Firmware: As Moore’s law continues to advance, it increases the number of microcontrollers that

are incorporated into typical board designs. This is partially due to increased system complexity, and

partially due to the fact that replacing “dumb” components with ones that incorporate management

software can increase component performance, reduce the number of stock keeping units (SKUs)

shipped by vendors, and ultimately reduces cost.

This paper’s audience should be well-aware of the difficulties inherent in implementing correct

software stacks, so it should not be surprising that firmware issues regularly crop into designs,

leading to surprising failure modes.

• Printed circuit board (PCB) design and manufacturing: Complex and fragile metallurgical

processes are used in modern PCBs. If oxygen or moisture comes into contact with board internals,

it leads to so-called tin whiskers, which are slowly growing filaments of conductive materials that

eventually lead to electrical shorts, and sometimes fire. A wide range of design manufacturing pro-

cess flaws can lead to systematic failures of this sort. Common examples include adding traces to a

design that are too close to the edge of a board, using dull drill bits to add mounting holes, and dull

cutting tools on the edge of the board.

Solder flux contamination leads to similar problems: Flux contamination occurs due to sloppy

soldering techniques at the factory. The contamination is initially typically transparent and non-

conductive, but will eventually cloud and become conductive when exposed to moisture and heat.

Like tin whiskers, this can lead to accelerated, correlated failures in some data centers, but not

others, and the reliability of a batch of boards from the same factory can vary from day to day. Both

of these issues can be addressed via continual destructive testing of sample boards, and by careful
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oversite of the factory producing the hardware. It is currently common practice to use third-party

manufacturing lines instead of building factories in-house.

• Second-source components: The logistics challenges inherent in manufacturing a printed circuit

board are daunting: Typical designs incorporate dozens to hundreds of different components from

nearly as many different vendors. A part delay or factory shutdown for any of the subcomponents

can indefinitely delay hardware programs. Also, parts are discontinued on a regular basis.

For all of these reasons, it is common practice to maintain multiple sources for each board compo-

nent. However, there is no industry-standard machine-readable specification language for electronic

components, and some manufacturers actually omit important information, while others include

far too little or far to much engineering tolerance in their advertised specifications. Similarly, it is

known (but apparently not written down) that certain circuit components require doubling of toler-

ances, while others do not.

Capacitors are the canonical example of these problems. They are generally described in terms of

capacitance, and the break-down voltage of the component. However, in reality, voltage tolerance

is a function of temperature, sustained voltage in time, since failures occur as electrons slowly

boar holes in surrounding conductive materials. Some capacitors can tolerate rapid charge-discharge

cycles (usually measured in Hz), while others cannot. Power supplies are more likely than other

circuits to exercise these edge cases.

For these reasons is common for “identically-specced” components to have wildly different reli-

abilities in the field. Since each manufacturing run and board revision is likely to swap out some

component vendors, it is not uncommon for manufacturing runs of existing designs to encounter

reliability issues after years of reliable service from previous manufacturing runs.

• SRAM and other high-performance memory technologies: Although much more attention

is paid to DRAM errors than SRAM issues, we argue that DRAM reliability is largely a solved

problem – most errors can be masked by ECC, or lead to fail-stop behavior of the impacted program.

DRAM achieves this by sacrificing predictable request latency.

As mentioned earlier, unlike DRAM, SRAM works by constantly holding the voltage of each

memory cell at the desired level; it does not incorporate refresh cycles that can cause read and write

requests to stall. It is most commonly used by circuits that cannot afford to incur stalls or buffer data

between RAM and the combinatorial logic that is consuming the data. Common examples include

FPGAs, network cards, and storage adaptors.

SRAM errors on data paths are typically transparently masked: They ultimately lead to a CRC

validation error, and the network packet or disk I/O is simply retried. However, devices that incor-

porate SRAM on data paths often also incorporate SRAM in their control paths. In the best case,

this leads to byzantine behavior (the control logic was fed a bad signal, corrupting internal state,

or leading to incorrect transfers), followed by a crash of the device. In the worst case, control path

errors go undetected, leading to repeated misbehavior that can impact many independent requests.

Most SRAMs are relatively small, and SRAM has traditionally had a reputation for being ex-

tremely reliable. Unfortunately, although DRAM’s per-bit error rates have improved as capacities

increased, SRAM per-bit error rates have not [9].

In practice, machine failures due to SRAM errors are a regular occurrence in current large-scale

computing infrastructure. If not properly masked, they can easily be a top source of service disrup-

tions. Since the errors occur in third-party silicon, mitigation techniques are often limited.
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6.2 To Operators

6.2.1 Online diagnosis. In our study, 32% of the cases were caused by external root causes,

which suggests that blames cannot be directed towards the main hardware components. Some re-

ports suggest that operators took days or even months to diagnose, as the problems cannot be repro-

duced in offline (“in-office”) testing. Thus, online diagnosis is important, but also not straightfor-

ward because not all hardware components are typically monitored, which we discuss next.

Finally one important part of handling limping hardware is alerting the operator. Doing this with

few false positives or negatives is very difficult. One technique we have found is that by having

the clients that connect to the servers to keep “high level” stats on things like message response

time (which includes all queuing, network processing and io handling) and using a very high “out

of normal” indicator (we normally use 4 orders of magnitude) - it is possible to minimize false

positives and negatives. For a system like ours, normal responses for a healthy local request are 10-

20 ms. So 4 orders of magnitude is 100-200 seconds. Once servers experience limping hardware, it

is not uncommon for them to get to that state in a matter of minutes or hours. We have found having

too many false positives (alerts when there is no problem) is as bad or often worse than too many

false negatives as once a user starts to ignore false positives they will also ignore true positives and

limping conditions can be invisible for months in some cases.

6.2.2 Monitoring of all hardware components. Today, in addition to main hardware compo-

nents (e.g., disks, NICs, switches, CPUs), other hardware components and environment conditions

such as fan speeds and temperature are also monitored. Unfortunately, not all hardware is moni-

tored in practice. For example, multiple organizations failed to monitor network cables, and instead

used the flow of traffic as a proxy for cable health. The diagnosis took much longer time because

performance blames are usually directed towards the main hardware components such as NICs or

switches. For example, in one deployment, a single bad cable caused the NIC speed to drop from

10 Gbps to 100 Mbps, not resolved for almost 2 months. This 100x throughput degradation to/from

the node causes backlog of events across the entire cluster.

One challenge of monitoring all hardware components is preventing too much data being logged.

Another operational challenge is that different teams are responsible for different parts of the data

center (e.g., software behavior, machine performance, cooling, power). Thus, with limited views,

operators cannot fully diagnose the problem. In one incident, the operators, who did not have access

to power supply health, took days to diagnose the reason behind the CPUs running only at 50%

speed. In another example, power supply health information was available, but basic precautions,

such as adding fuses to the input line, were overlooked.

Another challenge to come is related to proprietary full-packaged solution like hyper-converged

or rack-scale design. Such design usually comes with the vendor’s monitoring tools, which might

not monitor and expose all information to the operators. Instead, vendors of such systems often

monitor hardware health remotely, which can lead to fragmentation of monitoring infrastructure as

the number of vendors increases.

6.2.3 Correlating full-stack information. With full-stack performance data, operators can use

statistical approaches to pinpoint and isolate the root cause [16].

Although most of the cases in our study were hard-to-diagnose problems, fortunately, the revealed

root causes were relatively “simple.” For example, when a power-hungry application was running,

it drained the rack power and degraded other nodes. Such a correlation can be easily made, but

requires process- to power-level information. As another example, when a fan stopped, and to com-

pensate, the other fans ran in maximum speed to compensate, the resulting vibration degraded disk

performance. This 3-level correlation between fan status, vibration level, and disk performance can
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also be correlated. Future research can be done to evaluate whether existing statistical monitoring

approaches can detect such correlations.

While the metrics above are easy to monitor, there are other fine-grained metrics that are hard to

correlate. For example, in one configuration issue, only multicast network traffic was affected, and in

another similar one, only big packets (>1500 bytes) experienced long latencies. In these examples,

the contrast between multicast and unicast traffics and small and big packets is clear. However, to

make the correlation, detailed packet characteristics must be logged as well.

Beyond monitoring hardware, it is paramount importance to perform monitoring from the appli-

cation point of view itself and possibly correlate software issues with hardware issues. For example,

in one deployment with a degrading SSD, the system successfully determined its presence and was

able to take the necessary steps to remove it from the system, however, the SSD already caused

a soft lockup, and caused all the services on the node to hang. This could not have been detected

by just hardware monitoring or liveness monitoring. It is because of such secondary effects that it

is important for system designers to enable monitoring the nodes on a distributed system from the

application point of view to detect any form of slowness to supplement monitoring of individual

hardware performance.

Finally, monitoring algorithms should also detect “counter-intuitive” correlations. For example,

when users performance degrades, operators tend to react by adding more nodes. However, there

were cases where adding more nodes did not translate to better performance, as the underlying root

cause was not isolated.

6.3 To Systems Designers

While the previous section focuses on post-mortem remedies, this section provides some sugges-

tions on how to anticipate fail-slow hardware better in future systems.

6.3.1 Making implicit error-masking explicit. Similar to the error masking problem at the

hardware level, error masking (as well as “tail” masking) in higher software stack can make the

problem worse. We have observed fail-slow hardware that caused many jobs to timeout and be

retried again repeatedly, consuming many other resources and converting the single hardware prob-

lem into larger cluster-wide failures. Software systems should not just silently work around fail-slow

hardware, but need to expose enough information to help troubleshooting.

As mentioned before, one prime example is the cost of error correction. When errors are rare,

the correction cost is minimal, but when the rate of errors increase, the correction cost becomes the

common case. In some deployments, we already put a threshold-based algorithm; for example, when

the device generates errors higher than the threshold the device is deemed unusable. The challenge

is setting up a proper threshold (e.g., akin to setting up a timeout value). In one deployment, a batch

of bad drives in multiple server nodes experience errors (causing retries and repairs) but are still

under the threshold. However, the retry and repair cost was expensive enough to cause the entire

system to be slow. The problem was go unnoticed for a month.

6.3.2 Fail-slow to fail-stop. Earlier, we discussed about many fault conversions to fail-slow

faults (§3.2). The reverse can be asked: can fail-slow faults be converted into fail-stop mode? Such

a concept is appealing because modern systems are well equipped to handle fail-stop failures [13].

Below we discuss opportunities and challenges of this concept.

Skip non-primary fail-slow components: Some resources such as (e.g., caching layers) can be

considered non-primary components. For example, in many deployments, SSDs are treated as a

caching layer for the back-end disks. The assumption that SSD is always fast and never stalls does
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not always hold (§4.1). Thus, when fail-slow SSDs (acting as a caching layer) introduce more laten-

cies than the back-end disks, they can be skipped temporarily until the problem subsides. However,

consistency issues must be taken into account. In one story, the operators had to disable the flash

cache layer for one month until the firmware was fixed. Another suggestion is to run in “partial”

mode rather than in full mode but with slow performance. For example, if many disks cause heavy

vibration that degrades the disk throughput significantly, it is better to run fewer disks to eliminate

the throughput-degrading vibration [14].

Detect fail-slow recurrences: Another method to make slow-to-stop conversion is to monitor the

recurrence of fail-slow faults. For example, disks/SSDs that continue to “flip-flop” in online/offline

mode (§4.1), triggering RAID rebalancing all the time, is better to be put offline. As another exam-

ple, if I/O communication to a hardware requires many retries, the device perhaps can be removed.

We observed several cases of transient fail-slow hardware that was taken offline but after passing

the in-office diagnosis, the device was put online again, only to cause the same problem.

Challenges: While the concept of slow-to-stop conversion looks simple, there are many chal-

lenges that impedes its practicality in the field, which we hope can trigger more research in the com-

munity. First, an automated shutdown algorithm should be robust (no bugs or false positives) such

that healthy devices are not incorrectly shut down. Second, some storage devices cannot be abruptly

taken offline as it can cause excessive re-replication load. Third, similarly, removing slow nodes can

risk availability; in one deployment, some machines exhibited 10-20% performance degradation but

if they were taken out, availability would be reduced, and data loss could ensue. Fourth, a node is

an expensive resource (e.g., with multiple NICs, CPUs, memory cards, SSDs, disks), thus there is a

need for capability to shut off devices at fine-grained level. Fifth, and more importantly, due to the

cascading nature (§3.4), fail-slow hardware can be induced by external factors; here, the solution is

to isolate the external factors, not to shutdown the slow device.

6.3.3 Fail-slow hardware tolerance (akin to tail tolerance). A simple way to deal with fail-

slow hardware is using eventually consistent system. For example, while the majority of writes

(based on a certain threshold) have succeeded, the operation returns to the user with success. How-

ever, many deployed storage systems are strongly consistent. Thus, one design that is used by some

companies is to return success when the number of successfully replicate writes are higher than

the threshold. For example in a system that employs triple replication, it returns success to the user

when only 2 of 3 replica writes complete. However, the system continues to process the late write

asynchronously in the background. One example “signal” to detect a fail-slow hardware is the in-

creasing size of IO queue, more than the peers. This design is easy to build in master-server process

where all IO access must go to the master first, and the master knows which replica is still behind.

This type of design becomes much easier with erasure coding as the number of choices are much

higher. For instance in an example system where there are 24 storage machines to write to, a write

may return success to the user once 15 are complete, e.g., in Reed Solomon (15,9). Then in the

background, the system forces at least 21 to be written as soon as possible while the remaining 3

can be possibly cancelled and rebuilt later. This allows multiple fail-slow sources to happen without

affecting users.

Another method is to add to software systems some form of fail-slow awareness to the design. For

example, system designers should also take into account various hardware factors such as age/health

of the hardware/components of the node while doing leader selection, because any slow hardware

on a leader node can cause the maximum impact to the system.

6.3.4 Fail-Slow fault injections. System architects can inject fail-slow root causes reported in

this paper to their systems and analyze the impacts.
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For example, one can argue that asynchronous distributed systems (e.g., eventual consistency)

should naturally tolerate fail-slow behaviors. While this is true, there are many stateful systems that

cannot work in fully asynchronous mode; for example, in widely-used open-sourced distributed

systems, fail-slow hardware can cause cascading failures such as thread pool exhaustion, message

backlogs, and out-of-memory errors [18].

Another type of systems is tail-tolerant distributed systems [17]. However, another recent work

shows that the “tail” concept only targets performance degradation from resource contention, which

is different than fail-slow hardware model such as slow NICs, and as a result not all tail-tolerant

systems (e.g., Hadoop, Spark) can cut tail latencies induced by degraded NICs [40].

Beyond networking components, the assumption that storage latency is stable is also fatal. It

has been reported that disk delays causes race condition or deadlock in distributed consistency

protocols [30]. The problem is that some consistency protocols, while tolerating network delays, do

not incorporate the possibility of disk delays, for the sake of simplicity.

With fail-slow injections, operators can also evaluate whether their systems or monitoring tools

signal the right warnings or errors. There were a few cases in our reports, where wrong signals were

sent, causing the operators to debug only the healthy part of the system.

Overall, we strongly believe that injecting root causes reported in this paper will reveal many

flaws in existing systems. Furthermore, all forms of fail-slow hardware such as slow NICs, switches,

disks, SSD, NVDIMM, and CPUs need to be exercised as they lead to different symptoms. The

challenge is then to build future systems that enable various fail-slow behaviors to be injected easily.

7 DISCUSSIONS

7.1 Limitations (and Failed Attempts)

We acknowledge the major limitation of our methodology: the lack of quantitative analysis. Given

the reports in the form of anecdotes, we were not able to answer statistical questions such as how

often fail-slow hardware occurs, how much performance was degraded, what correlations fail-slow

faults exhibit with other metrics such as device age, model, size, and vendor, etc.

We initially had attempted to perform a quantitative study. However, many institutions do not

maintain a database of hardware-level performance data. Many institutions that we asked to join

in this community paper responded with either “we do not have clearance” or “we do not collect

such data (but have unformatted reports).” In the former category (no clearance), it is inconclusive

whether they have such data available or the nature of this public study was not allowed in the first

place.

An institution told us that they collect large performance data at the software level, but direct

inference to fail-slow hardware is challenging to perform. Our prior work only collected hourly

aggregate of disk/SSD-level performance data [25], but the coarse hourly granularity has limitations

and the findings cannot be directly tied to “hard proof” of the existence of fail-slow hardware.

We also managed to obtain ticket logs (in unformatted text) from a large institution, but searching

for fail-slow hardware instances in tens of thousands of tickets is extremely challenging as the

operators did not log the full information and there is no standard term for “fail-slow/limping/jittery”

hardware. For example, searching for the word “slow” produces hundreds of results that do not

directly involve hardware issues.

Indeed, we believe that the lack of easily accessible and analyzable data is a reason that the study

in this paper is valuable. Regardless of the limitation of our study, we believe we have successfully

presented the most complete account of fail-slow hardware in production systems that can benefit

the community.
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7.2 “Honorable Mentions”

While this paper focuses on fail-slow faults, our operators shared to us many other interesting anec-

dotes related to data loss, which we believe are “honorable” to mention as the details were rarely

mentioned in literature.

Triple replication is (sometimes) not enough: In one large Hadoop cluster, many machines were

failing regularly such that data loss was unavoidable even with triple replication. Apparently, this

was caused by a large batch of malfunctioning SSDs. The controller on this brand of SSDs was

“bad” and would stop responding. About 3-5% of the drives would be failing each week. Worse, the

servers would not shut down properly because the shutdown required a successful write to the SSD

to do so. Thus, there were lower success rates because broken machines with failed SSDs would try

to serve traffic and could not shut themselves down.

Single point of failure (in unseen parts): While at a high level, datacenter operators ensures that

there is no single hardware failure (redundant machines, power, cooling, etc.), there was a case of

redundant EEPROMS that rely on single capacitor (a part that was unobservable by the operators

and only known by the vendor). Unfortunately, the capacitor failed and triggered correlated failures

on both SAS paths, causing a complete 24-hour outage in production.

In a related story, a healthy-looking system was actually miscabled, without apparent performance

issues, but the miscabling led to multiple single points of failure. There was no cable topology moni-

toring, thus the technicians had to devise recabling strategies that maintain the expected redundancy

level.

Failed NVRAM dump under power fault: To handle write idiosyncrasies of NAND flash, writes

are “persisted” to NVRAM (capacitor-backed RAM) with the promise that under a power fault the

content of the RAM should be flushed (“dumped”) to the non-volatile NAND flash. However, there

was a non-deterministic case where in 1 out of 10,000 power losses, the firmware did not trigger

the NVRAM dump. Apparently, the FPGA design assumed a pin was grounded, but the pin was

attached to a test pad instead, and the RFI led to propagation of “nonsense” from the pin into the

NVRAM dump logic. More studies of SSD robustness under power fault are needed.

Concurrency bugs in the firmware causing stale/corrupt data: SSD firmware can have a read-

after-write concurrency bug that allows a read to a flash page happens while the previous write is

still in flight being programmed to a new flash page. As a result, the users often see old/corrupt data.

This suggests that in highly reliable systems, while low-level hardware performs checksumming,

high-level checksums within the file system are needed to achieve a highly reliable storage system.

8 CONCLUSION

Today’s software systems are arguably robust at logging and recovering from fail-stop hardware –

there is a clear, binary signal that is fairly easy to recognize a and interpret. We believe fail-slow

hardware is a fundamentally harder problem to solve. It is very hard to distinguish such cases from

ones that are caused by software performance issues. It is also evident that many modern, advanced

deployed systems do not anticipate this failure mode. We hope that our study can influence vendors,

operators, and systems designers to treat fail-slow hardware as a separate class of failures and start

addressing them more robustly in future systems.
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