
The 28th ACM Symposium on Operating Systems Principles (SOSP’21)

Huaicheng Li☆✶, Martin L. Putra☆, Ronald Shi☆,
Xing Lin✽, Gregory R. Ganger✶, Haryadi S. Gunawi ☆

☆University of Chicago, ✶Carnegie Mellon University, ✽NetApp

0

20

40

Base IODA Ideal

99
.9
th
La
te
nc
y
(m
s)

0

20

40

99
.9
th
La
te
nc
y
(m
s)

IODA close to ideal!

“Small but powerful”

3

Controller NAND Flash

100us

10ms

J

100x slower
due to GC

Flash Firmware

Garbage
Collection (GC)

GC is Invisible to the Host

Host SSD

4

SSD3SSD2SSD1SSD0

Pe
rc

en
ta

ge

100us

R

RAID

R3R1R0

J

Host Better

5

SSD3SSD2SSD1SSD0

Pe
rc

en
ta

ge

100us

R

GC

RAID

R3R1R0

J

GC

Long Tails

10ms

A slow SSD makes the entire flash array slow!

WorseBetter

6

NVMe Predictable Latency Mode (PLM)

…Predictable/Busy Time Window (TW)

Device status query & toggling

A major lea
p

Predictable Busy

Requiring complex status tracking

Coarse-grained device-level predictability

“Soft-contract” breaking predictability

But insufficien
t

…

Predictable Busy

Time

TW Are you busy? Go busy!

How to leverage NVMe PLM
and enhance it

for predictable latencies?

7

§ Simple policies for efficiency
§ Minimal changes for easy deployment

q Design Principles:

Complex

Coarse-grained

“Soft-contract”

NVMe PLM

q IODA Approach/Techniques:

q Goal: Tail-free flash array system on top of slightly-extended PLM interface

+ Time Window (TW) Formulation

+ An end-to-end design exploiting above extensions

+ Per-I/O latency predictability

+ Busy Remaining Time (BRT) Exposure

8

q Background & Motivation

q IODA Overview

q IODA Design
§ Predictable latency flagged I/Os
§ Busy remaining time
§ Time window formulation
§ Relaxed TW for better write amplification

q Evaluation

q Summary

9

When to issue the parity reads?

(1) Wait for timeout

(2) Always Proactive (always send full-stripe)

Increased load Inefficient

Best threshold? Tricky

between the Host and SSD to communicate the “ ”

An old, effective idea; Yet, challenging for PLM

10

“Fail-if-Slow”: the SSD should fast-fail an I/O if it contends with GC

Fast-Failflag=true

“Seems your submission
targets a crowded area,

early-rejection!”

SSD #2

Host

SSD

Lightweight

Deterministic

11

SSD3SSD2SSD1SSD0

R

RAID5

R3R1R0

Host

GC

R2

fast-fail

R1 R2R0
xor()

RR

100us

~100us

~10ms

12
Fail-if-Slow

Cut tails up to ~99th percentile

1

4

8

1 2 3 4

Pe
rc

en
ta

ge
 (%

)

of busy sub-IOs

1

4

8

1 2 3 4

Pe
rc

en
ta

ge
 (%

)

of busy sub-IOs

.90

.95

1

 0 10 20 30
Latency (ms)

TPCC Read Latency CDF

.90

.95

1

 0 10 20 30
Latency (ms)

TPCC Read Latency CDF

.90

.95

.99
1

 0 10 20 30
Latency (ms)

TPCC Read Latency CDF

@p99 ~5x

@p95 ~7x

(n, k):
IOD1 couldn’t handle
>k busy sub-IOs

NoGC

13

SSD3SSD2SSD1SSD0

R

RAID5

R3R1R0

Host

GC

R2

fast-fail

R1R0
xor()

R

GC

✘

: the host
doesn’t know how long
SSD “busyness” will last

End up waiting for
the busiest SSD

14

“Fail-if-Slow”: the SSD should fast-fail an I/O if it contends with GC

“BRT: 60ms”Fast-Failflag=true

Host

SSD

Piggybacking BRT to reconstruct data from less busy SSDs

15

.98

.99

1

 0 10 20 30
Latency (ms)

TPCC Read Latency CDF

.98

.99

1

 0 10 20 30
Latency (ms)

TPCC Read Latency CDF

Can we do better?

BRT helps a little

16

t t+TW t+2×TW t+3×TW t+4×TW

SSD#0 Busy Predictable Predictable Predictable

SSD#1 Predictable Busy Predictable Predictable

SSD#2 Predictable Predictable Busy Predictable

SSD#3 Predictable Predictable Predictable Busy

“Fail-if-Slow”: the SSD should fast-fail an I/O if it contends with GC

TW Coordination: SSDs take turns to perform GCs

JIODA: Always Predictable Latencies!

How long should TW be?

17

Busy

t0 t1 t2 t3

Bburst : User load

Bgc : GC reclamation speed

SSD free space >= User load

Sp : Over-provisioning space

TW Upper Bound

SSD

18

.95

.98

.99
1

 0 10 20 30
Latency (ms)

TPCC Read Latency CDF

IODA closes the gap between Base and NoGC

No Tails!

19

q IODA TW analysis
§ 6 SSD models
§ Relaxed TW
§ TW vs. WAF tradeoffs

q Implementation
§ Platforms: FEMU + OpenChannel-SSD
§ Kernel: Linux Software-RAID + NVMe

q More evaluation results
§ 9 datacenter block traces + 21 real applications
§ IODA vs. 7 State-of-the-art approaches
§ IODA on OpenChannel-SSD
§ IODA throughput and write latency
§ …

20

SQ CQ

Kernel

SSDs

User Storage Workloads

Software-RAID

NVMe Driver

FEMU
OpenChannel-

SSD

9 datacenter
I/O traces

6 FileBench
Workloads

15 Data Intensive
Applications

Speculation

Preemption

Suspension

Coordination

Partitioning Tiny-TailSLO-aware

vs. State-of-the-art

Metric: Read tail latencies

21

0

20

40

75 90 95 99 99.9 99.99

La
te
nc
y
(m
s)

Percentiles

TPCC Read Latency

0

20

40

75 90 95 99 99.9 99.99

La
te
nc
y
(m
s)

Percentiles

TPCC Read Latency

0

20

40

75 90 95 99 99.9 99.99

La
te
nc
y
(m
s)

Percentiles

TPCC Read Latency

0

20

40

75 90 95 99 99.9 99.99

La
te
nc
y
(m
s)

Percentiles

TPCC Read Latency

0

20

40

75 90 95 99 99.9 99.99

La
te
nc
y
(m
s)

Percentiles

TPCC Read Latency

Predictable Latency Flag
+ Reconstruction

Predictable Latency Flag
+ Busy Remaining Time

Base
Predictable Latency Flag

+ Time Window

IODA is close to Ideal!

22

IODA Results: (95th – 99.99th)
Up to 75x improvement over Base

IODA is more deterministic and
efficient in cutting tail latencies!

Speculation

Preemption

Suspension

Coordination

Partitioning Tiny-TailSLO-aware

vs.

23

100

200

300

400

100/0 80/20 80/20 0/100
Read/Write (%)

Base
Throughput

IODA doesn’t sacrifice the array’s aggregate bandwidth

100

200

300

400

100/0 80/20 80/20 0/100
Read/Write (%)

Base
IODA

Throughput

(K
 IO

PS
)

Read Only Write OnlyRW 80/20

Read

Write

24

q A Co-Design Approach for Performance Predictability
- Proactive reconstruction via fast-fail interface
- BRT for improved latencies
- TW formulation to program the window length
- Cross-device synchronization

Thank you!
I’m on the job market.

IODA: https://github.com/huaicheng/IODA

