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IODA close to ideal!

“Small but powerful”
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Controller NAND Flash

100us

10ms

J

100x slower
due to GC

Flash Firmware

Garbage
Collection (GC)

GC is Invisible to the Host

Host SSD
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A slow SSD makes the entire flash array slow!

WorseBetter
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NVMe Predictable Latency Mode (PLM)

…Predictable/Busy Time Window (TW)

Device status query & toggling

A major lea
p

Predictable Busy

Requiring complex status tracking

Coarse-grained device-level predictability

“Soft-contract” breaking predictability

But insufficien
t

…

Predictable Busy

Time

TW Are you busy? Go busy!

How to leverage NVMe PLM 
and enhance it

for predictable latencies? 



7

§ Simple policies for efficiency
§ Minimal changes for easy deployment

q Design Principles:

Complex

Coarse-grained

“Soft-contract”

NVMe PLM

q IODA Approach/Techniques:

q Goal: Tail-free flash array system on top of slightly-extended PLM interface

+ Time Window (TW) Formulation

+ An end-to-end design exploiting above extensions

+ Per-I/O latency predictability

+ Busy Remaining Time (BRT) Exposure
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q Background & Motivation

q IODA Overview

q IODA Design
§ Predictable latency flagged I/Os
§ Busy remaining time
§ Time window formulation
§ Relaxed TW for better write amplification

q Evaluation

q Summary
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When to issue the parity reads?

(1) Wait for timeout

(2) Always Proactive (always send full-stripe)

Increased load      Inefficient

Best threshold? Tricky

between the Host and SSD to communicate the “ ”

An old, effective idea; Yet, challenging for PLM
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“Fail-if-Slow”: the SSD should fast-fail an I/O if it contends with GC 

Fast-Failflag=true

“Seems your submission
targets a crowded area, 

early-rejection!”

SSD #2

Host

SSD

Lightweight

Deterministic
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Fail-if-Slow

Cut tails up to ~99th percentile
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@p99 ~5x

@p95 ~7x

(n, k):  
IOD1 couldn’t handle 
>k busy sub-IOs

NoGC
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: the host 
doesn’t know how long 
SSD “busyness” will last  

End up waiting for 
the busiest SSD
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“Fail-if-Slow”: the SSD should fast-fail an I/O if it contends with GC 

“BRT: 60ms”Fast-Failflag=true

Host

SSD

Piggybacking BRT to reconstruct data from less busy SSDs
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Can we do better?

BRT helps a little
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t t+TW t+2×TW t+3×TW t+4×TW

SSD#0 Busy Predictable Predictable Predictable

SSD#1 Predictable Busy Predictable Predictable

SSD#2 Predictable Predictable Busy Predictable

SSD#3 Predictable Predictable Predictable Busy

“Fail-if-Slow”: the SSD should fast-fail an I/O if it contends with GC 

TW Coordination: SSDs take turns to perform GCs

JIODA: Always Predictable Latencies!

How long should TW be?
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Busy

t0 t1 t2 t3

Bburst : User load

Bgc : GC reclamation speed

SSD free space >= User load

Sp : Over-provisioning space

TW Upper Bound

SSD
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IODA closes the gap between Base and NoGC

No Tails!



19

q IODA TW analysis
§ 6 SSD models
§ Relaxed TW
§ TW vs. WAF tradeoffs

q Implementation
§ Platforms: FEMU + OpenChannel-SSD
§ Kernel: Linux Software-RAID + NVMe

q More evaluation results
§ 9 datacenter block traces + 21 real applications
§ IODA vs. 7 State-of-the-art approaches
§ IODA on OpenChannel-SSD
§ IODA throughput and write latency
§ …
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SQ CQ

Kernel

SSDs

User Storage Workloads

Software-RAID

NVMe Driver

FEMU
OpenChannel-

SSD

9 datacenter 
I/O traces

6 FileBench
Workloads

15 Data Intensive 
Applications

Speculation 

Preemption

Suspension

Coordination

Partitioning Tiny-TailSLO-aware

vs. State-of-the-art

Metric: Read tail latencies
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Predictable Latency Flag 
+ Reconstruction

Predictable Latency Flag
+ Busy Remaining Time

Base
Predictable Latency Flag

+ Time Window

IODA is close to Ideal!
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IODA Results: (95th – 99.99th)
Up to 75x improvement over Base

IODA is more deterministic and 
efficient in cutting tail latencies!

Speculation 

Preemption

Suspension

Coordination

Partitioning Tiny-TailSLO-aware

vs. 
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q A Co-Design Approach for Performance Predictability
- Proactive reconstruction via fast-fail interface
- BRT for improved latencies
- TW formulation to program the window length
- Cross-device synchronization

Thank you!
I’m on the job market.

IODA: https://github.com/huaicheng/IODA


