
COURSENOTES

CS2604:
Data Structures and File Processing

Java Edition

Cli�ord A. Sha�er

Department of Computer Science

Virginia Tech

Copyright c©1998



The Need for Data Structures

[A primary concern of this course is e�ciency.]

Data structures organize data

⇒ more e�cient programs. [You might

believe that faster computers make it unnecessary to be

concerned with e�ciency. However...]

• More powerful computers ⇒ more complex

applications.

• More complex applications demand more

calculations.

• Complex computing tasks are unlike our

everyday experience. [So we need special

training]

Any organization for a collection of records can

be searched, processed in any order, or

modi�ed. [If you are willing to pay enough in time delay.

Ex: Simple unordered array of records.]

• The choice of data structure and algorithm

can make the di�erence between a program

running in a few seconds or many days.

1



E�ciency

A solution is said to be e�cient if it solves the

problem within its resource constraints. [Alt:

Better than known alternatives (\relatively" e�cient)]

• space [These are typical contraints for programs]

• time

[This does not mean always strive for the most e�cient

program. If the program operates well within resource

constraints, there is no bene�t to making it faster or smaller.]

The cost of a solution is the amount of

resources that the solution consumes.

2



Selecting a Data Structure

Select a data structure as follows:

1. Analyze the problem to determine the

resource constraints a solution must meet.

2. Determine the basic operations that must

be supported. Quantify the resource

constraints for each operation.

3. Select the data structure that best meets

these requirements.

[Typically want the \simplest" data struture that will meet

requirements.]

Some questions to ask: [These questions often help

to narrow the possibilities]

• Are all data inserted into the data structure

at the beginning, or are insertions

interspersed with other operations?

• Can data be deleted? [If so, a more complex

representation is typically required]

• Are all data processed in some well-de�ned

order, or is random access allowed?

3



Data Structure Philosophy

Each data structure has costs and bene�ts.

Rarely is one data structure better than

another in all situations.

A data structure requires:

• space for each data item it stores, [Data +

Overhead]

• time to perform each basic operation,

• programming e�ort. [Some data

structures/algorithms more complicated than others]

Each problem has constraints on available

space and time.

Only after a careful analysis of problem

characteristics can we know the best data

structure for the task.

Bank example:

• Start account: a few minutes

• Transactions: a few seconds

• Close account: overnight

4



Goals of this Course

1. Reinforce the concept that there are costs

and bene�ts for every data structure. [A

worldview to adopt]

2. Learn the commonly used data structures.

These form a programmer's basic data

structure \toolkit." [The \nuts and bolts" of the

course]

3. Understand how to measure the

e�ectiveness of a data structure or

program.

• These techniques also allow you to judge

the merits of new data structures that

you or others might invent. [To prepare

you for the future]

5



De�nitions

A type is a set of values.

[Ex: Integer, Boolean, Float]

A data type is a type and a collection of

operations that manipulate the type.

[Ex: Addition]

A data item or element is a piece of

information or a record.

[Physical instantiation]

A data item is said to be a member of a data

type.

[]

A simple data item contains no subparts.

[Ex: Integer]

An aggregate data item may contain several

pieces of information.

[Ex: Payroll record, city database record]

6



Abstract Data Types

Abstract Data Type (ADT): a de�nition for a

data type solely in terms of a set of values and

a set of operations on that data type.

Each ADT operation is de�ned by its inputs

and outputs.

Encapsulation: hide implementation details

A data structure is the physical

implementation of an ADT.

• Each operation associated with the ADT is

implemented by one or more subroutines in

the implementation.

Data structure usually refers to an

organization for data in main memory.

File structure: an organization for data on

peripheral storage, such as a disk drive or tape.

An ADT manages complexity through

abstraction: metaphor. [Hierarchies of labels]

[Ex: transistors → gates → CPU. In a program, implement an

ADT, then think only about the ADT, not its implementation]

7



Logical vs. Physical Form

Data items have both a logical and a physical

form.

Logical form: de�nition of the data item within

an ADT. [Ex: Integers in mathematical sense: +, −]

Physical form: implementation of the data item

within a data structure. [16/32 bit integers: over
ow]

{ Subroutines

Data Type

ADT:
� Type

� Operations

Data Items:
Logical Form

Physical Form
Data Items:

Data Structure:
{ Storage Space

[In this class, we frequently move above and below \the line"

separating logical and physical forms.]

8



Problems

Problem: a task to be performed.

• Best thought of as inputs and matching

outputs.

• Problem de�nition should include

constraints on the resources that may be

consumed by any acceptable solution. [But

NO constraints on HOW the problem is solved]

Problems ⇔ mathematical functions

• A function is a matching between inputs

(the domain) and outputs (the range).

• An input to a function may be single

number, or a collection of information.

• The values making up an input are called

the parameters of the function.

• A particular input must always result in the

same output every time the function is

computed.

9



Algorithms and Programs

Algorithm: a method or a process followed to

solve a problem. [A recipe]

An algorithm takes the input to a problem

(function) and transforms it to the output. [A

mapping of input to output]

A problem can have many algorithms.

An algorithm possesses the following properties:

1. It must be correct. [Computes proper function]

2. It must be composed of a series of

concrete steps. [Executable by that machine]

3. There can be no ambiguity as to which

step will be performed next.

4. It must be composed of a �nite number of

steps.

5. It must terminate.

A computer program is an instance, or

concrete representation, for an algorithm in

some programming language.

[We frequently interchange use of \algorithm" and \program"

though they are actually di�erent concepts]

10



Mathematical Background

[Look over Chapter 2, read as needed depending on your

familiarity with this material.]

Set concepts and notation [Set has no duplicates,

sequence may]

Recursion

Induction proofs

Logarithms [Almost always use log to base 2. That is our

default base.]

Summations

11



Estimation Techniques

Known as \back of the envelope" or \back of

the napkin" calculation.

1. Determine the major parameters that a�ect

the problem.

2. Derive an equation that relates the

parameters to the problem.

3. Select values for the parameters, and apply

the equation to yield an estimated solution.

Example:

How many library bookcases does it take to

store books totaling one million pages?

Estimate:

• pages/inch [guess 500]

• feet/shelf [guess 4 (actually, 3)]

• shelves/bookcase [guess 5 (actually, 7)]

[Units check: pages/in × ft/shelf × shelf/bkcase ⇒
pages/bkcase]

12


