COURSENOTES

CS2604:
Data Structures and File Processing
Java Edition

Clifford A. Shaffer
Department of Computer Science
Virginia Tech
Copyright ©1998

The Need for Data Structures

Data structures organize data
= more efficient programs.

e More powerful computers = more complex
applications.

e More complex applications demand more
calculations.

e Complex computing tasks are unlike our
everyday experience.

Any organization for a collection of records can
be searched, processed in any order, or
modified.

e [he choice of data structure and algorithm
can make the difference between a program
running in a few seconds or many days.

Efficiency

A solution is said to be efficient if it solves the
problem within its resource constraints.

® Space
e time

The cost of a solution is the amount of
resources that the solution consumes.

Selecting a Data Structure

Select a data structure as follows:

1. Analyze the problem to determine the
resource constraints a solution must meet.

2. Determine the basic operations that must
be supported. Quantify the resource
constraints for each operation.

3. Select the data structure that best meets
these requirements.

Some questions to ask:

e Are all data inserted into the data structure
at the beginning, or are insertions
interspersed with other operations?

e Can data be deleted?

e Are all data processed in some well-defined
order, or is random access allowed?

Data Structure Philosophy

Each data structure has costs and benefits.

Rarely is one data structure better than
another in all situations.

A data structure requires:
e Space for each data item it stores,

e time to perform each basic operation,
e programming effort.

Each problem has constraints on available
sSpace and time.

Only after a careful analysis of problem
characteristics can we know the best data
structure for the task.

Bank example:
e Start account: a few minutes
e Transactions: a few seconds
e Close account: overnight

Goals of this Course

1. Reinforce the concept that there are costs
and benefits for every data structure.

2. Learn the commonly used data structures.
These form a programmer’s basic data
structure “toolkit.”

3. Understand how to measure the
effectiveness of a data structure or
program.

e [hese techniques also allow you to judge
the merits of new data structures that
you or others might invent.

Definitions

A type is a set of values.

A data type is a type and a collection of
operations that manipulate the type.

A data item or element is a piece of
information or a record.

A data item is said to be a member of a data
type.

A simple data item contains no subparts.

An aggregate data item may contain several
pieces of information.

Abstract Data Types

Abstract Data Type (ADT): a definition for a
data type solely in terms of a set of values and
a set of operations on that data type.

Each ADT operation is defined by its inputs
and outputs.

Encapsulation: hide implementation details

A data structure is the physical
implementation of an ADT.

e Each operation associated with the ADT is
implemented by one or more subroutines in
the implementation.

Data structure usually refers to an
organization for data in main memory.

File structure: an organization for data on
peripheral storage, such as a disk drive or tape.

An ADT manages complexity through
abstraction: metaphor.

Logical vs. Physical Form

Data items have both a logical and a physical
form.

Logical form: definition of the data item within
an ADT.

Physical form: implementation of the data item
within a data structure.

Data Type
ADT: D | _
o Type Lata_ tclerlr:15.
e Operations beltal Form

Data Structure:
— Storage Space
— Subroutines

Data ltems:
Physical Form

Problems

Problem: a task to be performed.

e Best thought of as inputs and matching
outputs.

e Problem definition should include
constraints on the resources that may be
consumed by any acceptable solution.

Problems & mathematical functions

e A function is a matching between inputs
(the domain) and outputs (the range).

e An input to a function may be single
number, or a collection of information.

e [he values making up an input are called
the parameters of the function.

e A particular input must always result in the
same output every time the function is
computed.

Algorithms and Programs

Algorithm: a method or a process followed to
solve a problem.

An algorithm takes the input to a problem
(function) and transforms it to the output.

A problem can have many algorithms.

An algorithm possesses the following properties:
1. It must be correct.

2. It must be composed of a series of
concrete steps.

3. There can be no ambiguity as to which
step will be performed next.

4. It must be composed of a finite number of
steps.

5. It must terminate.

A computer program is an instance, or
concrete representation, for an algorithm in
some programming language.

10

Mathematical Background

Set concepts and notation

Recursion
Induction proofs

LLogarithms

Summations

11

Estimation Techniques

Known as “back of the envelope” or “back of
the napkin’ calculation.

1. Determine the major parameters that affect
the problem.

2. Derive an equation that relates the
parameters to the problem.

3. Select values for the parameters, and apply
the equation to vield an estimated solution.

Example:

How many library bookcases does it take to
store books totaling one million pages?

Estimate:
e pages/inch
e feet/shelf
e shelves/bookcase

12

