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Section 3.1
Methods of Proof

Definition: A theorem is a valid logical assertion which
can be proved using

• other theorems

• axioms (statements which are given to be true) and

• rules of inference (logical rules which allow the
deduction of conclusions from premises).

A lemma (not a “lemon”) is a 'pre-theorem' or a result
which is needed to prove a theorem.

A corollary is a 'post-theorem' or a result which follows
directly from a theorem.

Rules of Inference

Many of the tautologies in Chapter 1 are rules of
inference. They have the form

H1 ∧ H2 ∧..... ∧Hn → C

where

Hi are called the hypotheses

and
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C is the conclusion.

As a rule of inference they take the symbolic form:

H1

H2

.

.

Hn

∴C

where ∴ means 'therefore' or  'it follows that.'

________________

Examples:

The tautology P ∧ (P → Q) → Q becomes

P

P → Q

∴Q

This means that whenever P is true and P → Q is true we
can conclude logically that Q is true.

This rule of inference is the most famous and has the name

• modus ponens

or
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• the law of detachment.

____________________

Other famous rules of inference:

P

∴P ∨ Q
Addition

_______________________________________________

P ∧ Q

∴P
Simplification

______________________________________________
¬Q

P → Q

∴¬P

Modus Tollens

_____________________________________________

P → Q

Q → R

∴P → R

Hypothetical syllogism

____________________________________________

P ∨Q

¬P

∴Q

Disjunctive syllogism

____________________________________________

P

Q

∴P ∧Q

Conjunction
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__________________________________

(P → Q) ∧ (R → S)

P ∨ R

∴Q ∨ S

Constructive dilemma

Formal Proofs

To prove an argument is valid or the conclusion follows
logically from the hypotheses:

•     Assume    the hypotheses are true

• Use the rules of inference and logical equivalences
to determine that the conclusion is true.

__________________

Example:

Consider the following logical argument:

If horses fly or cows eat artichokes, then the mosquito
is the national bird. If the mosquito is the national
bird then peanut butter takes good on hot dogs. But
peanut butter tastes terrible on hot dogs. Therefore,
cows don't eat artichokes.

• Assign propositional variables to the component
propositions in the argument:
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F Horses fly
A Cows eat artichokes
M The mosquito is the national bird
P Peanut butter tastes good on hot dogs

• Represent the formal argument using the variables

1.(F ∨ A) → M

2.M → P

3.¬P

∴¬A

• Use the hypotheses 1., 2., and 3. and the above
rules of inference and any logical equivalences to construct
the proof.

    Assertion       Reasons   
1.(F ∨ A) → M Hypothesis 1.
2.M → P Hypothesis 2.
3.(F ∨ A) → P` steps 1 and 2 and

hypothetical syll.
4.¬P Hypothesis 3.
5.¬(F ∨ A) steps 3 and 4 and

modus tollens
6.¬F ∧ ¬A step 5 and DeMorgan
7.¬A ∧ ¬F step 6 and 

commutativity of 'and'
8.¬A step 7 and simplification

Q. E. D.

Rules of Inference for Quantifiers
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∀xP(x)

∴P(c)
Universal  Instantiation (UI)

________________________________________

P(x)

∴∀xP(x)
Universal Generalization (UG)

________________________________________

P(c)

∴∃xP(x)
Existential Generalization (EG)

________________________________________

∃xP(x)

∴P(c)
Existential Instantiation (EI)

________________________________________

Note:
• In Universal Generalization, x must be arbitrary.

• In Universal Instantiation, c need not be arbitrary
but often is assumed to be.

• In Existential Instantiation, c must be an element of
the universe which makes P(x) true.

_____________________

Example:

Every man has two legs. John Smith is a man.
Therefore, John Smith has two legs.

Define the predicates:
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M(x): x is a man
L(x): x has two legs
J: John Smith, a member of the universe

The argument becomes

1.∀x[M(x) → L(x)]

2.M(J )

∴ L(J)

The proof is

1.∀x[M(x) → L(x)] Hypothesis 1
2.M(J ) → L(J ) step 1 and UI
3.M(J ) Hypothesis 2
4. L(J) steps 2 and 3 

and modus ponens

Q. E. D.

_______________________

Note: Using the rules of inference requires lots of practice.

Fallacies

Fallacies are incorrect inferences.

Some common fallacies:

• The Fallacy of Affirming the Consequent
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If the butler did it he has blood on his hands.
The butler had blood on his hands.
Therefore, the butler did it.

This argument has the form

P → Q

Q

∴P

or

[(P → Q)∧ Q] → P

which is    not    a tautology and therefore not a rule of
inference!

___________________

• The Fallacy of Denying the Antecedent (or the
hypothesis)

If the butler is nervous, he did it.
The butler is really mellow.
Therefore, the butler didn't do it.

This argument has the form
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P → Q

¬P

∴¬Q

or

[(P → Q)∧ ¬P]→ ¬Q

which is also not a tautology and hence not a rule of
inference.

___________________

• Begging the question or circular reasoning

This occurs when we use the truth of statement being
proved (or something equivalent) in the proof itself.

___________________

Example:

Conjecture: if x2 is even then x is even.

Proof: If x2 is even then x2 = 2k for some k. Then x = 2l
for some l. Hence, x must be even.

Methods of Proof

We wish to establish the truth of the 'theorem'

P → Q.
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P  may be a conjunction of other hypotheses.

 P → Q is a conjecture until a proof is produced.

___________________

• Trivial  proof

If we know Q  is true then P → Q is true.

___________________

Example:

If it's raining today then the void set is a subset of every
set.

The assertion is trivially true independent of the truth of P.

___________________

• Vacuous proof

If we know one of the hypotheses in P  is false then
P → Q is vacuously  true.

____________________

Example:

If I am both rich and poor then hurricane Fran was a mild
breeze.

This is of the form
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(P ∧ ¬P) → Q

and the hypotheses form a contradiction.

Hence Q follows from the hypotheses vacuously.

___________________

• Direct proof

- assumes the hypotheses are true

- uses the rules of inference, axioms and any
logical equivalences to establish the truth of the
conclusion.

_______________

Example: the Cows don’t eat artichokes  proof above

_________________

• Indirect proof

A direct proof of the contrapositive:

- assumes the conclusion of P → Q is false (¬Q
is true)

- uses the rules of inference, axioms and any
logical equivalences to establish the premise P is false.

Note, in order to show that a conjunction of hypotheses is
false is suffices to show just one of the hypotheses is false.
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___________________

Example:

Theorem: If 6x + 9y = 101, then x or y is not an integer.

Proof: (Direct) Assume 6x + 9y = 101 is true.

Then from the rules of algebra 3(2x + 3y) = 101.

But 101/3 is not an integer so it must be the case that one
of 2x or 3y is not an integer (maybe both).

Therefore, one of x or y must not be an integer.

Q.E.D.
_____________________

Example:

A perfect number is one which is the sum of all its divisors
except itself. For example, 6 is perfect since 1 + 2 + 3 = 6.
So is 28.

Theorem: A perfect number is not a prime.

Proof: (Indirect).  We assume the number p is a prime and
show it is not perfect.

But the only divisors of a prime are 1 and itself.

Hence the sum of the divisors less than p is 1 which is not
equal to p.

Hence p cannot be perfect.
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 Q. E. D.
_____________________

• Proof by contradiction  or  reductio ad
absurdum

- assumes the conclusion Q is false

- derives a contradiction, usually of the form
P ∧ ¬P which establishes ¬Q → 0.

The contrapositive of this assertion is 1→ Q from which it
follows that Q must be true.

_________________

Example:

Theorem: There is no largest prime number.

(Note that there are no formal hypotheses here.)

We assume the conclusion 'there is no largest prime
number' is false.

 There is a largest prime number.

Call it p.

Hence, the set of all primes lie between 1 and p.

Form the product of these primes:

r = 2•3•5•7•11•....•p.
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But r + 1 is a prime larger than p. (Why?).

This contradicts the assumption that there is a largest
prime.

Q.E.D.

____________________

The formal structure of the above proof is as follows:

Let P be the assertion that there is no largest prime.
Let Q be the assertion that p is the largest prime.

Assume ¬P  is true.

Then (for some p) Q is true so ¬P → Q is true.

We then construct a prime greater than p so Q → ¬Q.

Applying hypothetical syllogism we get ¬P → ¬Q .

From two applications of modus ponens we conclude
that Q is true and ¬Q is true so by conjunction ¬Q ∧ Q or
a contradiction is true.

Hence the assumption must be false and the theorem
is true.

_____________________

• Proof by Cases

Break the premise of P → Q into an equivalent
disjunction of the form
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P1 ∨ P2 ∨... ∨Pn .

Then  use the tautology

[(P1 → Q) ∧ (P2 → Q) ∧ ...∧ (Pn → Q)] ↔
[(P1 ∨ P2 ∨ ... ∨ Pn ) → Q]

Each of the implications Pi → Q is a case.

You must

• Convince the reader that the cases are inclusive,
i.e., they exhaust all possibilities

• establish all implications

__________________

Example:

Let ⊗ be the operation 'max' on the set of integers:

if a ≥ b then a⊗b = max{a, b} = a = b⊗a.

Theorem: The operation ⊗ is associative.

For all a, b, c

(a⊗b)⊗c = a⊗(b⊗c).

Proof:

Let a, b, c be arbitrary integers.
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Then one of the following 6 cases must hold (are
exhaustive):

1. a ≥ b ≥ c
2. a ≥ c ≥ b
3. b ≥ a ≥ c
4. b ≥ c ≥ a
5. c ≥ a ≥ b
6. c ≥ b ≥ a

Case 1: a⊗b = a, a⊗c = a,  and b⊗c = b.

Hence

 (a⊗b)⊗c = a = a⊗(b⊗c).

Therefore the equality holds for the first case.

The proofs of the remaining cases are similar (and are left
for the student).

Q. E. D.

Existence Proofs

We wish to establish the truth of

∃xP(x).

• Constructive existence proof:

- Establish P(c) is true for some c in the universe.
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- Then ∃xP(x) is true by Existential Generalization
(EG).

_________________

Example:

Theorem: There exists an integer solution to the equation
x2 + y2 = z2.

Proof:

Choose x = 3, y = 4, z = 5.

_________________

Example:

Theorem: There exists a bijection from A= [0,1] to
B= [0, 2].

Proof:

We build two injections and conclude there must be a
bijection without ever exhibiting the bijection.

Let f be the identity map from A to B.

Then f is an injection (and we conclude that | A | ≤ | B | ).

Define the function g from B to A as g(x) = x/4.

Then g is an injection.
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Therefore, | B | ≤ | A |.

We now apply a previous theorem which states that

if | A | ≤ | B | and | B | ≤ | A | then | A | = | B |.

Hence, there must be a bijection from A to B.

(Note that we could have chosen g(x) = x/2 and obtained a
bijection directly).

Q. E. D.
_____________________

• Nonconstructive existence proof.

- Assume no c exists which makes P(c) true and
derive a contradiction.

__________________

Example:

Theorem: There exists an irrational number.

Proof:

Assume there doesn’t exist an irrational number.

Then all numbers must be rational.

Then the set of all numbers must be countable.

Then the real numbers in the interval [0, 1] is a countable
set.



Discrete Mathematics by Section 3.1
and Its Applications 4/E Kenneth Rosen TP 19

But we have already shown this set is not countable.

Hence, we have a contradiction (The set [0,1] is countable
and not countable).

Therefore, there must exist an irrational number.

Q. E. D.

Note: we have not produced such a number!

_____________________

• Disproof by Counterexample:

Recall that ∃x¬P(x) ↔ ¬∀xP(x ).

To establish that ¬∀xP(x ) is true (or ∀xP(x)  is false)
construct a c such that ¬P(c) is true or P(c) is false.

In this case c is called a counterexample  to the assertion
∀xP(x)

_____________________

Nonexistence Proofs

We wish to establish the truth of

¬∃xP(x)  (which is equivalent to ∀x¬P(x)).   

Use a proof by contradiction by assuming there is a c
which makes P(c) true.

___________________
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Example:

The (infamous) Halting Problem

We wish to establish the    nonexistence    of a universal
debugging program.

Theorem: There    does not exist    a program which will
always determine if an    arbitrary    program P halts.

We say the Halting Problem is undecidable.

Sidenote: this is not the same as determining if a    specific   
program or finite set of programs halts which    is decidable   .

There is always exists a program to determine if a specific
program P halts:

• Construct program P1 which always prints 'yes' and
halts.

• Construct program P2 which always prints 'no' and
halts.

One of the two programs, P1 or P2, is the correct
(deciding) program (we may not know which one!).

Hence    this    problem is decidable.

To simplify the argument: consider input-free programs
only (which may call other procedures)
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Proof:

Suppose there    is    such a program called HALT which will
determine if any input-free program P halts.

HALT(P) prints 'yes'  and halts if  P halts,

otherwise,

HALT(P) prints 'no' and halts.

We now construct another procedure as follows:

procedure ABSURD;
if HALT(ABSURD) = 'yes' then

while true do print 'ha'

Note that ABSURD is input-free.

• If ABSURD halts then we execute the loop which
prints unending gales of laughter and thus the procedure
does not halt.

• If ABSURD does not halt then we will exit the
program and halt.

Hence,

• ABSURD

- halts if it doesn't

and

- doesn't halt if it does
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which is an obvious contradiction. (You are free to loose
sleep over this).

Hence such a program does not exist.

Q. E. D.
___________________

Note: This is    not    the same as asserting a program exists
and we don't know how to write it or that it is very
difficult to write such a program!

Universally Quantified Assertions

We wish to establish the truth of

∀xP(x) .

We assume that x is an arbitrary member of the universe
and show P(x) must be true. Using UG it follows that
∀xP(x) .

___________________

Example:

Theorem: For the universe of integers, x is even iff x2 is
even.

Proof: The quantified assertion is

∀x[x is even ↔ x2  is even]
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We assume x is arbitrary.

Recall that P ↔ Q is equivalent to (P → Q) ∧ (Q → P).

    Case 1.    We show if x is even then x2 is even using a direct
proof (the only if  part or necessity).

If x is even then x = 2k for some integer k.

Hence, x2 = 4k2 = 2(2k2) which is even since it is an
integer which is divisible by 2.

This completes the proof of case 1.

    Case 2.    We show that if x2 is even then x must be even
(the if part or sufficiency) .

We use an indirect proof:

Assume x is not even and show x2 is not even.

If x is not even then it must be odd.

So, x = 2k + 1 for some k.

Then

x2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1

which is odd and hence not even.

This completes the proof of the second case.

Therefore we have shown x is even iff x2 is even.
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Since x was arbitrary, the result follows by UG.

Q.E.D.

______________________________

Dear students: Learning how to construct proofs is
probably one of the most difficult things you will face in
life. Few of us are gifted enough to do it with ease. One
only learns how to do it by    practicing   .


