Section 6.1 Relations and Their Properties

Definition: A *binary relation* R from a set A to a set B is a subset R $A \times B$.

Note: there are no constraints on relations as there are on functions.

We have a common graphical representation of relations:

Definition: A *Directed graph* or a *Digraph* D from A to B is a collection of *vertices* V = A = B and a collection of *edges* $R = A \times B$. If there is an ordered pair $e = \langle x, y \rangle$ in *R* then there is an *arc* or *edge* from x to y in D. The elements x and y are called the *initial* and *terminal* vertices of the edge e.

Examples:

- Let $A = \{ a, b, c \}$
- $\mathbf{B} = \{1, 2, 3, 4\}$
- R is defined by the ordered pairs or edges

can be represented by the digraph D:

Definition: A binary relation R *on a set* A is a subset of $A \times A$ or a relation from A to A.

Example:

- $A = \{a, b, c\}$
- $\mathbf{R} = \{ \langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle \}.$

Then a digraph representation of R is:

Note: An arc of the form <x, x> on a digraph is called a *loop*.

Question: How many binary relations are there on a set A?

Special Properties of Binary Relations

Given:

- A Universe U
- A binary relation R on a subset A of U

Definition: R is *reflexive* iff

 $x[x \quad U < x, x > R]$

Note: if U = then the implication is true vacuously

The void relation on a void Universe is reflexive!

Note: If U is not void then <u>all</u> vertices in a reflexive relation must have loops!

Definition: R is symmetric iff

 $x \quad y[< x, y > R < y, x > R]$

Note: If there is an arc $\langle x, y \rangle$ there must be an arc $\langle y, x \rangle$.

Definition: R is antisymmetric iff

 $x \quad y[< x, y > R \quad < y, x > R \quad x = y]$

Note: If there is an arc from x to y there cannot be one from y to x if x = y.

You should be able to show that logically: if $\langle x, y \rangle$ is in R and x y then $\langle y, x \rangle$ is not in R.

Definition: R is *transitive* iff

 $x \ y \ z[< x, y > R < y, z > R < x, z > R]$

Note: if there is an arc from x to y and one from y to z then there must be one from x to z.

This is the most difficult one to check. We will develop algorithms to check this later.

Examples:

- A: not reflexive symmetric antisymmetric transitive
- C: not reflexive not symmetric antisymmetric not transitive

- B: not reflexive not symmetric not antisymmetric not transitive
- D: not reflexive not symmetric antisymmetric transitive

Combining Relations

Set operations

A very large set of potential questions -

Let R1 and R2 be binary relations on a set A:

If R1 has property 1

and

R2 has property 2,

does

R1 * R2 have property 3

where * represents an arbitrary binary set operation? Example:

If

• R1 is symmetric,

and

• R2 is antisymmetric,

does it follow that

• R1 R2 is transitive?

If so, prove it. Otherwise find a counterexample.

Discrete Mathematics	by	Section 6.1
and Its Applications 4/E	Kenneth Rosen	<i>TP 6</i>

Example:

Let R1 and R2 be transitive on A. Does it follow that

R1 R2

is transitive?

Consider

•
$$A = \{1, 2\}$$

•
$$R1 = \{<1,2>\}$$

•
$$R2 = \{<2, 1>\}$$

Then R1 R2 = $\{\langle 1, 2 \rangle, \langle 2, 1 \rangle\}$ which is <u>not</u> transitive! (Why?)

Composition

Definition: Suppose

- R1 is a relation from A to B
- R2 is a relation from B to C.

Then the composition of R2 with R1, denoted R2 \circ R1 is the relation from A to C:

If $\langle x. y \rangle$ is a member of R1 and $\langle y, z \rangle$ is a member of R2 then $\langle x, z \rangle$ is a member of R2 \circ R1.

Note: For $\langle x, z \rangle$ to be in the composite relation R2 \circ R1 there must exist a y in B

Note: We read them right to left as in functions.

Example:

Definition: Let R be a binary relation on A. Then

Basis: $\mathbf{R}^{1} = \mathbf{R}$

Induction: $\mathbf{R}^{n+1} = \mathbf{R}^n \circ \mathbf{R}$

Note: an ordered pair $\langle x, y \rangle$ is in Rⁿ iff there is a *path* of length n from x to y following the arcs (in the direction of the arrows) of R.

Example:

Discrete Mathematics and Its Applications 4/E by Kenneth Rosen Section 6.1 TP 10 Very Important **Theorem:**

R is transitive iff $R^n = R$ for n > 0.

Proof:

1. *R* transitive $R^n = R$

Use a direct proof and a proof by induction:

• Assume *R* is transitive.

• Now show $R^n = R$ by induction.

Basis: Obviously true for n = 1.

Induction:

• The induction hypothesis:

'assume true for n'.

• Show it must be true for n + 1.

 $R^{n+1} = R^n \circ R$ so if $\langle x, y \rangle$ is in R^{n+1} then there is a z such that $\langle x, z \rangle$ is in R^n and $\langle z, y \rangle$ is in R.

But since R^n R, $\langle x, z \rangle$ is in R.

R is transitive so $\langle x, y \rangle$ is in *R*.

Since <x, y> was an arbitrary edge the result follows.

2. R^n R R transitive

Use the fact that $R^2 = R$ and the definition of transitivity. Proof left to the

Q. E. D.