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Section 6.1
Relations and Their Properties

Definition: A binary relation R from a set A to a set B is
a subset R ⊆ A × B.

Note: there are no constraints on relations as there are on
functions.

We have a common graphical representation of relations:

Definition: A Directed graph or a Digraph D from A to B
is a collection of vertices  V ⊆ A ∪ B and a collection of
edges R ⊆ A × B. If there is an ordered pair e = <x, y> in
R then there is an arc or edge from x to y in D. The
elements x and y are called the initial and terminal vertices
of the edge e.

_____________________

Examples:

• Let A = { a, b, c}

• B = {1, 2, 3, 4}

• R is defined by the ordered pairs or edges

{<a, 1>, <a, 2>, <c, 4>}

can be represented by the digraph D:
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a 1
b 2
c 3

4

___________________

Definition: A binary relation R on a set A  is a subset of
A × A or a relation from A  to A .

Example:

• A = {a, b, c}

• R = {<a, a>, <a, b>, <a, c>}.

Then a digraph representation of R is:

a
b

c

Note: An arc of the form <x, x> on a digraph is called a
loop.

Question: How many binary relations are there on a set A?

_______________
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Special Properties of Binary Relations

Given:

• A Universe U

• A binary relation R on a subset A of U

Definition: R is reflexive iff

∀x[x ∈U →< x, x >∈ R]

Note: if U = ∅ then the implication is true vacuously

The void relation on a void Universe is reflexive!

Note: If U is not void then    all    vertices in a reflexive
relation must have loops!

__________________

Definition: R is symmetric iff

∀x∀y[< x, y >∈ R →< y, x >∈ R]

Note:    If    there is an arc <x, y> there must be an arc <y, x>.

___________________
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Definition: R is antisymmetric iff

∀x∀y[< x, y >∈ R∧ < y, x >∈R → x = y]

Note: If there is an arc from x to y there cannot be one
from y to x if x≠y.

You should be able to show that logically: if <x, y> is in R
and x ≠ y then <y, x> is not in R.

_____________________

Definition: R is transitive iff

∀x∀y∀z[< x, y >∈ R∧ < y, z >∈ R →< x,z >∈R]

Note: if there is an arc from x to y and one from y to z
then there must be one from x to z.

This is the most difficult one to check. We will develop
algorithms to check this later.
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Examples:

A.     B.

C.      D.

A: not reflexive B: not reflexive
symmetric not symmetric
antisymmetric not antisymmetric
transitive not transitive

C: not reflexive D: not reflexive
not symmetric not symmetric
antisymmetric antisymmetric
not transitive transitive
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Combining Relations

Set operations

A very large set of potential questions -

Let R1 and R2 be binary relations on a set A:

 If R1 has property 1

and

R2 has property 2,

does

R1 * R2 have property 3

where * represents an arbitrary binary set operation?

Example:

 If

 • R1 is symmetric,

and

• R2 is antisymmetric,

does it follow that

• R1∪R2 is transitive?

If so, prove it. Otherwise find a counterexample.
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__________________

Example:

Let R1 and R2 be transitive on A. Does it follow that

 R1∪ R2

is transitive?

Consider

• A = {1, 2}

• R1 = {<1,2>}

• R2 = {<2, 1>}

Then R1∪ R2 = {<1, 2>, <2,1>} which is    not    transitive!
(Why?)
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Composition

Definition: Suppose

• R1 is a relation from A to B

• R2 is a relation from B to C.

Then the composition of R2 with R1, denoted R2  oR1 is
the relation from A to C:

If <x. y> is a member of R1 and <y, z> is a member
of R2 then <x, z> is a member of R2  oR1.

__________________

Note: For <x, z> to be in the composite relation R2  oR1
there must exist a y in B . . . .

Note: We read them right to left as in functions.

_________________

Example:

a x x x A
b x x B
c x x C

x D

R1 R2

R2  oR1 = {<b, D>,  <b, B>}

____________________
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Definition: Let R be a binary relation on A. Then

Basis: R1 = R

Induction: R n + 1= R n  oR

_________________

Note: an ordered pair <x, y> is in R n iff there is a path of
length n from x to y following the arcs (in the direction of
the arrows) of R.

Example:

a b

cd

R
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a b

d c

R 2

a b

d c

R3

a b

cd

R 4
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___________________

Very Important
Theorem:

R is transitive iff Rn ⊆  R for n > 0.

Proof:

1. R transitive → Rn ⊆ R

Use a direct proof and a proof by induction:

• Assume R is transitive.

• Now show Rn ⊆ R by induction.

Basis: Obviously true for n = 1.

Induction:

• The induction hypothesis:

'assume true for n'.

• Show it must be true for n + 1.

  Rn+1 = Rn o R so if <x, y> is in Rn+1 then there is a z
such that <x, z> is in Rn and <z, y> is in R.

But since Rn ⊆ R, <x, z> is in R.

R  is transitive so <x, y> is in R.

Since <x, y> was an arbitrary edge the result follows.
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_________________

2.  Rn ⊆ R → R transitive

Use the fact that R2 ⊆ R and the definition of
transitivity. Proof left to the ......

Q. E. D.

___________________


