HW#3, Problem #1

Can make use of the SPN model and code on slide #175 for M/M/m/b (with m=3 and b=10)
HW#3, Problem #2
Reliability Modeling and Analysis of a 3P2M system using SPNP
(a) Each component (CPU or memory) has an independent repair facility
(b) Each subsystem (CPU or memory) has an independent repair facility
 that can repair failed components within the subsystem one at a time.
(c) The whole system shares a repair facility which repairs failed
 components one at a time with the repair priority of memory modules
 over CPUs.

Enabling function: return false when CPU_up==0 or MM_up==0

Enabling function: return false when CPU_up==0 or MM_up==0; for case c only: also return false when MM_down>0

variable rate: mark("CPU_up")*per-CPU failure rate

variable rate: For case (a) it is mark("CPU_down")*per-CPU repair rate; for cases (b) and (c) it is just per-CPU repair rate

238
HW#3, Problem #3

\(\alpha = 2 \), so a token represents one-half slot.

A new transition “T8” with rate \(\lambda_L \) is added to account for subrating for low-priority clients.

For the homework in which only the middle partition exists, the enabling condition for “T8” is \(\text{mark(“RS”) == 0} \).

For case study #2 in which all three partitions exist, the enabling condition for “T8” is \(\text{mark(“RL”) == 0} \) \&\& \(\text{mark(“RS”) == 0} \).

Ex1: Reward assignment function for calculating the population of low-priority clients:

```c
reward_type
population_low_priority()
{return
 (mark("SLL")/(\alpha -1) +
 mark("SL")/\alpha);}
```

Ex2: Reward assignment function for calculating the throughput of low-QoS, low-priority clients:

```c
reward_type
throughput_low_QoS_low_priority()
{return
 rate(“T5”);}
```

same as

\[
\text{mark(SLL)}/(\alpha-1) \times \mu
\]
Client arrival rate depends on mark("Po")

Ethernet service rate depends on mark("P1")

HW#3, Problem #4