
J. Parallel Distrib. Comput. 71 (2011) 1034–1046

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Adaptive per-user per-object cache consistency management for mobile data
access in wireless mesh networks

Yinan Li ∗, Ing-Ray Chen
Department of Computer Science, Virginia Tech, Northern Virginia Center, 7054 Haycock Road, Falls Church, VA 22043, United States

a r t i c l e i n f o

Article history:

Received 9 August 2010

Received in revised form

27 December 2010

Accepted 11 March 2011

Available online 21 March 2011

Keywords:

Cache consistency management

Mobile data access

Data proxy

Wireless mesh networks

Performance analysis

a b s t r a c t

We propose and analyze an adaptive per-user per-object cache consistency management (APPCCM)

scheme for mobile data access in wireless mesh networks. APPCCM supports strong data consistency

semantics through integrated cache consistency and mobility management. The objective of APPCCM is

to minimize the overall network cost incurred due to data query/update processing, cache consistency

management, and mobility management. In APPCCM, data objects can be adaptively cached at the mesh

clients directly or at mesh routers dynamically selected by APPCCM. APPCCM is adaptive, per-user and

per-object as the decision regarding where to cache a data object accessed by a mesh client is made

dynamically, depending on the mesh client’s mobility and data query/update characteristics, and the

network’s conditions. We develop analytical models for evaluating the performance of APPCCM and

devise a computational procedure for dynamically calculating the overall network cost incurred. We

demonstrate via both model-based analysis and simulation validation that APPCCM outperforms non-

adaptive cache consistency management schemes that always cache data objects at the mesh client, or at

the mesh client’s current serving mesh router for mobile data access in wireless mesh networks.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Wireless mesh networks (WMNs) are emerging in recent
years as a promising standard for next-generation broadband
wireless networks and are regarded as a cost-effective solution for
providing last-mile broadband wireless Internet connectivity [19].
A WMN consists of two types of components: wireless mesh
routers (MRs) and mesh clients (MCs) [1]. Each MR serves as both
a router that forwards packets and a wireless access point for MCs.
The group of MRs within a WMN forms a wireless mesh backbone
that provides last-mile broadband Internet connectivity to MCs.
A WMN is interconnected to the Internet through the gateway
functionality of MRs. MCs are devices that have wireless access
capability, e.g., laptops, smartphones, PDAs, etc.

In this paper, we investigate the problem of data caching
and cache consistency management for mobile data access in
WMNs. Mobile data access, which is fundamental to client–server
computing in mobile environments [11], is challenging due to
the intrinsic characteristics of mobile computing: mobility and
resource constraints of clients, and bandwidth constraints of
wireless communications [9,20]. An additional challenge as a result
of these characteristics is that mobile data access must cope with
voluntary or involuntary disconnection of mobile clients. That is,

∗ Corresponding author.

E-mail addresses: yinan926@vt.edu (Y. Li), irchen@vt.edu (I.-R. Chen).

mobile data access must support disconnected operations [13].
Caching is a key technique for improving the performance of
mobile data access because it alleviates constraints such as highly
variable mobile connectivity and wireless bandwidth limitations,
and it significantly reduces the latency for answering a query.
Caching is also the basis for disconnected operations inmobile data
access.

Data caching is particularly beneficial for mobile Internet data
access inWMNs for amajor reason. Specifically, becauseWMNs are
a cost-effective solution for last-mile broadband Internet access,
Internet traffic contributed considerably by mobile Internet data
access is expected to dominate network traffic in WMNs. Because
Internet traffic always passes through the gateway, the gateway
is potentially the bottleneck under conditions of heavy Internet
traffic and network congestion is highly probably to happen
around the gateway. Caching is an efficient solution for mitigating
the problem because it can significantly reduce the number of
uplink and downlink messages passing through the gateway in
client–server mobile Internet data access, thereby mitigating the
performance bottleneck at the gateways in WMNs [6].

A central issue closely related to caching inmobile data access is
cache consistency management because clients may not be able to
keep cached data synchronized due to mobility and disconnection.
We propose and analyze an adaptive per-user per-object cache
consistencymanagement (APPCCM) scheme formobile data access
in WMNs. APPCCM supports strong data consistency semantics
through integrated cache consistency and mobility management.

0743-7315/$ – see front matter© 2011 Elsevier Inc. All rights reserved.

doi:10.1016/j.jpdc.2011.03.001



Y. Li, I.-R. Chen / J. Parallel Distrib. Comput. 71 (2011) 1034–1046 1035

The objective of APPCCM is to minimize the overall network
cost incurred collectively by data query/update processing, cache
consistency management, and mobility management. APPCCM
provides two data access and caching modes: a data object can
be cached either directly at the MC, or at a data proxy running
on an MR dynamically selected by APPCCM. We use the terms
client-cache mode (CCM) and data-proxy mode (DPM) to refer to
these two modes throughout the paper. CCM is based on existing
asynchronous stateful-based cache invalidation schemes [2,21]
augmentedwith the capability of integrated cache consistency and
mobilitymanagement such thatMCs can perform data access, data
caching and cache consistency management while roaming in a
WMN. DPM is distinct from traditional approaches by exploiting
the capability of increasingly powerful MRs to perform data
caching in addition to routing. The rationale of using data proxies
is that it is beneficial to cache a data object at the data proxy
rather than at theMCunder certain operational and environmental
conditions which we aim to identify in the paper.

APPCCM is adaptive, per-user and per-object because for each
individual MC, the decision of where to cache data objects is
made dynamically and independently for each object based on
the MC’s mobility and data query/update characteristics, and
the WMN conditions. We develop a computational procedure
for dynamically calculating the overall communication cost in
APPCCM, given parameters characterizing the MC’s mobility and
data query/update characteristics, and the WMN conditions. For
DPM, APPCCM determines when a cached data object should be
migrated between two data proxies due to MC mobility. We use a
threshold on the number of location changes of theMC denoted by
Koptimal to model the optimal time point at which the data object
should be migrated such that the overall communication cost is
minimized. When the threshold is reached, the data object will be
migrated to the data proxy on the MC’s current serving MR.

We develop analytical models for evaluating the performance
of APPCCM and devise a computational procedure for dynamically
calculating the overall network cost incurred. We demonstrate
via both model-based analysis and simulation validation that AP-
PCCM outperforms non-adaptive cache consistency management
schemes that always cache data objects at the mesh client, or at
the mesh client’s current serving mesh router for mobile data ac-
cess in wireless mesh networks.

The rest of the paper is organized as follows. Section 2 surveys
existing work and contrasts our scheme with existing schemes.
Section 3 presents the systemmodel and assumptions made in the
paper. The proposed APPCCM scheme is presented in Section 4.
In Section 5, we develop mathematical models for evaluating
APPCCM. Performance analysis and comparison are carried out in
Section 6. The paper concludes with Section 7.

2. Related work

The issue of cache consistency management in wireless
data access has been intensively studied. Most existing work
focuses on cache invalidation strategies. The basic idea of cache
invalidation for cache consistency management in wireless data
access proposed in [2] is as follows: the server periodically
broadcasts invalidation reports (IRs),which carry information about
data objects that have been updated by the server in the most
recent time interval. Clients invalidate obsolete cacheddata objects
according to the content of invalidation reports. Based on this basic
approach, many different IR-based cache invalidation schemes
have been proposed in the literature [10,8,3,12,4,16,22,23,18].

These schemes fall into two categories: stateless-based schemes
and stateful-based schemes [21]. Stateless-based approaches are
very popular and most existing schemes fall into the stateless-
based category because the server does not need to keep state

information and the server-side overhead is minimum [21].
In stateless-based approaches, the server either synchronously
or asynchronously broadcasts IRs for updated data objects.
In synchronous stateless-based approaches, IRs are broadcast
periodically by the server, whereas in asynchronous stateless-
based approaches, they are broadcast whenever data objects
are updated. Asynchronous stateless-based approaches allow
connected clients to keep their cache contents synchronized
instantaneously. A disconnected client, however, may need to
discard the entire cache contents because it has no idea about
which data objects have been updated during its disconnection.
Synchronous stateless-based approaches strike a balance in
waiting time for both connected and disconnected clients because
the waiting time for the next IR is bounded by the broadcast
interval. However, synchronous stateless-based approaches have
the drawback that they consume wireless bandwidth significantly
for broadcasting the IRs.

In stateful-based approaches, the server is stateful as it keeps
information about where data objects are cached. The callback (CB)
algorithm [24,16] uses the stateful-based approach to maintain
strong cache consistency. In the CB approach, whenever the server
updates a data object, it asynchronously sends an IR to each client
that keeps a cached copyof the updateddata object. Upon receiving
the IR and removing the obsolete data object, the client sends
the server an acknowledgement confirming that the invalidation
is successful. If the server subsequently updates the data object
before the client queries it for the first time after the invalidation,
no IR needs to be sent to the client. To answer a query, the
client checks its cached copy to see if it has been invalidated.
If there is a valid copy, the query is answered immediately.
Otherwise, the client sends the query to the server to retrieve a
fresh copy of the data object and stores it into the cache before
answering the query. Stateful-based approaches have the same
drawback as in asynchronous stateless-based approaches, i.e., a
disconnected client may need to discard the entire cache contents
upon reconnection because it has no idea about which data objects
have been updated during its disconnection.

Poll-each-read (PER) [24,16]maintains strong cache consistency
by always checking if the queried data object is still valid in the
cache for every query. The PER approach is not based on cache
invalidation. Specifically, in the PER approach, the server does not
send IRswhen data objects are updated. Instead, to answer a query,
a client always sends amessage to the server to check if the cached
copy of the queried data object is still valid. If the queried data
object is still valid in the cache, the server sends the client an
affirmativemessage, and the client retrieves the cached copy of the
data object to answer the query. If the data object has been updated
before the query, the server sends the updated data object to the
client, and the client stores the data object into the cache before
answering the query. Therefore, a cache hit in the PER approach
is not as beneficial as in approaches based on cache invalidation.
The PER approach avoids the signaling overhead for transmitting
IRs with the cost of increasing the average latency for answering a
query. This algorithm incurs unnecessary signaling overhead and
delay when a data object is queried more frequently than being
updated by the server.

Although many cache consistency management schemes exist,
these existing schemes generally cannot be used directly for
cache consistency management in WMNs without considerable
modification and performance penalty. Existing stateless-based
approaches are not appropriate forWMNs because they rely on the
gateway (as a server surrogate) to broadcast invalidation reports,
so the gateway can easily become the bottleneckwhendata objects
are frequently updated by the data server. Existing stateful-based
approaches incur too much overhead to track the locations of MCs
to deliver invalidation reports or data objects to roaming MCs
because of a lack of cache consistency management integrated



1036 Y. Li, I.-R. Chen / J. Parallel Distrib. Comput. 71 (2011) 1034–1046

withusermobility support inWMNs. Another limitation of existing
schemes is that most of them consider read-only mobile data
access, making them not appropriate for applications supporting
client-side updates that are propagated to the server.

In this paper we propose APPCCM to address the limitations
of existing schemes. APPCCM is based on integrated cache con-
sistency management and user mobility support as it minimizes
the overall network cost incurred by data query/update process-
ing, cache consistency management, and mobility management.
APPCCM supports both read and write operations to data objects.
Moreover, APPCCM is specifically designed for WMNs, taking into
consideration the characteristics of WMNs. We leverage the fact
thatmodernMRs have adequate processing power and expandable
memory capacity (via USB-based flash or hard drives) [6], mak-
ing it feasible to perform caching at data proxies running on the
MRs. This work extends [14] with a refined design of APPCCMwith
model-based analysis, a more thorough performance comparative
study with existing non-adaptive schemes, including simulation
validation of analytical results and sensitivity analysis of design pa-
rameters, aswell as a discussion of the applicability andpracticality
of APPCCM.

3. Systemmodel

In this paper, we consider a scenario in which MCs within a
WMN access data objects on a data server that is located outside
of the WMN but is accessible to the WMN through a wired
connection between the server and the gateway. Because the
server is not within the WMN, all data queries must go through
the gateway, thus incurring a substantial amount of traffic load
onto the gateway. To alleviate the performance bottleneck at the
gateway andmake data accessmore efficient, eachMCmaintains a
cached copy for each queried data object either in its local cache or
at a data proxy running on anMRdynamically selected byAPPCCM,
which may be the MC’s current serving MR or one of its previous
serving MRs. In certain circumstances, it is beneficial to cache a
data object directly at the MC, whereas in other circumstances it
is beneficial to cache a data object at a data proxy. The decision of
where to cache a data object is adaptively made based on the MC’s
data query/update and mobility characteristics.

APPCCM is based on a stateful approach by which when a data
object is updated, an IR is asynchronously sent from the server
to the MCs and data proxies that keep a cached copy of the data
object. Recall that the server is stateful as it keeps state information
aboutwhich clients cachewhich data objects. Specific to this work,
the server sends an IR to the gateway whenever it updates a data
object, and the gateway forwards the IR to those MCs and data
proxies that keep a cache copy of the data object. Therefore, the
gateway rather than the server is stateful and keeps information
about where data objects are cached. We assume that the gateway
always keeps a copy of every data object accessed by MCs within
the WMN. Therefore, the gateway is like a replica of the server.

The data query/update characteristics between an MC and the
server are specified by a number of parameters. We assume that
the inter-arrival timebetween two consecutive queries to the same
data object from the same MC follows a Poisson distribution with
mean 1/λ, where λ is the query rate. Updates to the data object
by the server also follow a Poisson distribution with mean 1/μ,
where μ is the rate of updates by the server. Additionally, updates
to the data object from MCs follow Poisson distributions. Here we
need to differentiate between two different cases: local updates
from the MC under consideration and remote updates from other
MCs within the WMN. We use δ and η to denote the rate of local
updates by the MC under consideration and the aggregate rate of
remote updates by otherMCs in theWMN, respectively.We define
a parameter called query to update ratio (QUR) to model the data

query/update characteristics between the MC and the server. The
QUR is given by: QUR = λ

μ+δ+η
.

An MC may voluntarily disconnect from the WMN and switch
to idle mode periodically to reduce power consumption during
its stay within the network. The MC may also involuntarily
disconnect due to a weak wireless connection. We view MCs that
are disconnected from the WMN as being in idle mode, regardless
of the reasons for disconnection, as a disconnected MC cannot
transmit nor receive any data, therefore incurring no network cost.
Wemodel the transition between activemode and idlemode using
three parameters: ω, ωw , and ωs. The physical meaning of ω is the
rate of reconnection of an MC with the WMN given that the MC is
in idle mode. The reciprocal of ωw indicates the average duration
of disconnection of the MC before a transition from idle mode to
active mode. Similarly, The reciprocal of ωs denotes the average
duration inwhich theMC keeps connected before a transition from
active mode to idle mode.

We assume that futuremobile devices, e.g., PDAs, smartphones,
tablet computers, etc., are powerful enough to execute the com-
putational procedure developed in this paper. It is worth empha-
sizing that the computational procedure developed in the paper is
lightweight and just needs to be executed periodically by a mobile
device to determine its operational settings to minimize the net-
work traffic. The end result is minimized communication costs not
only to theWMNas awhole but also to individualmobile devices in
the network. As energy consumption due to computation is small
comparedwith that due to communication, we believe that the en-
ergy saving from minimizing the communication costs outweighs
the energy consumption from executing the lightweight computa-
tional procedure.

4. The proposed APPCCM scheme

4.1. DPM vs. CCM

There are two caching modes in APPCCM, namely CCM and
DPM. In CCM, a data object accessed by an MC is cached directly
by the MC, whereas in DPM, the data object is cached by a data
proxy running on an MR. A data proxy is essentially a data cache
maintained by an MR. Modern MRs have sufficient computing
power and storage capacity to perform both routing and data
caching [6]. The rationale of using data proxies to cache data
objects is that it incurs less network cost than always caching
data objects directly at the MCs, under certain circumstances.
More specifically, when a data object is updated more frequently
than being accessed by an MC such that the invalidation cost is
dominating, it may be beneficial to cache the data object at a data
proxy rather than locally at the MC to reduce the invalidation
cost and hence the total communication cost. On the other hand,
if a data object is accessed more frequently by the MC than
being updated such that the access cost is dominating, it may be
beneficial to let the MC cache the data object directly to avoid the
additional cost of accessing a data proxy. Therefore, there exists
a tradeoff between the access cost and invalidating cost. APPCCM
exploits this tradeoff and adaptively decides on a per-user per-
object basis where to cache a data object based on the data object’s
QUR and the MC’s mobility characteristic. The decision is made
independently for each data object accessed by each individual
MC. Therefore APPCCM is an adaptive per-user per-object cache
consistency management scheme.

4.2. Data access and caching

In APPCCM, each MCmaintains a caching status table that keeps
the caching status of each data object it has accessed. The caching



Y. Li, I.-R. Chen / J. Parallel Distrib. Comput. 71 (2011) 1034–1046 1037

Table 1
The fields of a caching status table and explanations.

Field Explanation

Object ID The data object identifier; each data object has a

unique identifier

Caching location The location where the data object is cached

Address of data proxy The address of the data proxy where the data

object is cached if applicable

Time stamp The time stamp when the cached copy of the data

object is most recently updated due to query

status table has four fields as shown and explained in Table 1.
When an MC receives a new data query from an application, it
first checks its caching status table to see whether an entry for
the queried data object exists or not in the table, and if an entry
is found, it determines where the data object is currently cached
and if the cached copy is still valid. Depending on the result of this
table lookup, the query is answered accordingly in different ways.
The pseudo code presented below describes the query processing
algorithm.

Algorithm 1 The query processing algorithm.

if an entry is not found then
the MC sends the query to the server to retrieve a fresh copy
of the data object;
if CCM is to be used to cache the object then

theMCputs the receiveddata object into its local cache upon
receiving it;

else
upon receiving the data object, the MC’s current serving MR
puts it into the data proxy before forwarding it to the MC;

end if
the MC updates its caching status table;

else
if the data object is found cached by the MC then

if the cached copy is still valid then
the query is answered immediately locally;

else
the MC sends the query to the server, and upon receiving
the data object, the MC updates the cached copy and the
caching status table;

end if
else

the MC sends the query to the data proxy specified in the
caching status table;
if the cached copy is still valid then
the data proxy sends the data object to the MC;

else
the data proxy forwards the query to the server, and upon
receiving the data object, updates the cached copy and
forwards the data object to the MC;

end if
upon receiving the data object, the MC updates the caching
status table;

end if
end if

In this paper, we consider that in addition to the server, an MC
can also update any data object for which it keeps a cached copy.
Therefore, MCs have both read and write permissions. Whenever
an MC updates a data object, it sends the updated object and an
IR to the gateway, which forwards the updated data object to the
server and, upon receiving an acknowledgement from the server
that the update is accepted, forwards the IR to those MCs and
data proxies that keep a cached copy of the data object to be
invalidated.

Fig. 1. Examples of query and update processing in APPCCM.

Fig. 1 illustrates examples of query and update processing in

APPCCM. As the figure shows, MC1 that is connected to MR1

employs MR2 as a data proxy to cache some data objects it has

accessed. Upon receiving a query for a data object cached in the

data proxy running on MR2, MC1 sends the query to MR2, which

sends the queried data object back to MC1. In another example,

MC2 updates a data object cached in the data proxy running on

MR3. After the update is completed, MR3 sends the updated object

and an IR to the gateway, which then forwards the updated data

object to the server. Upon receiving an acknowledgement from the

server that the update is accepted, the gateway forwards the IR to

those MCs and data proxies that keep a cached copy of the data

object being invalidated, namely, MC3 and MR4 in this example.

4.3. MC mobility and data migration

We explicitly consider the effect of mobility of MCs on data

caching and cache consistency management in APPCCM. MC

mobility affects the two caching modes of APPCCM differently.

Specifically, in DPM, a threshold denoted by K is specified for

each data object accessed by an MC, such that when the distance

between the MC’s current serving MR and the data proxy where

the data object is cached reaches K due to MC mobility, the data

object is migrated to the data proxy on the MC’s current serving

MR. The optimal threshold Koptimal that results in minimized total

communication cost is determined dynamically on a per-user per-

object basis.

DPM can be easily implemented, as illustrated by Fig. 2.

Specifically, each MC keeps a counter for each data object that

records the number of location changes of the MC since the data

object’s most recent migration. Each timewhen theMCmoves and

changes its servingMR, the counter is incremented by 1.When the

counter reaches the threshold K after a movement, the data object

will be migrated from its current data proxy to the one running on

thenewservingMRof theMC. After the datamigration, the counter

is reset to zero.

In DPM, there are chances that the same MR is chosen by more

than one MC as the data proxy for caching the same data object. In

this case, only a single cached copy of the data object needs to be

kept by the MR serving all such MCs. For each such shared data

object, the data proxy maintains a count indicating the number



1038 Y. Li, I.-R. Chen / J. Parallel Distrib. Comput. 71 (2011) 1034–1046

Fig. 2. Threshold-based data object migration in DPM.

Fig. 3. Pointer forwarding based location management in CCM.

of MCs that share the data object. When the count reaches zero
because of object migration, the data object can be deleted from
the data proxy.

In CCM, a location management scheme is employed to track
the locations of MCs in order for the gateway to deliver IRs to
the destination MCs. We develop a per-user location management
scheme for CCM based on pointer forwarding [5,15]. In this
scheme, the gateway maintains a location database where the
address of the forwarding chain head of each MC is kept. A
threshold denoted by L is specified for each MC to regulate
the allowable forwarding chain length. The optimal threshold
Loptimal under which the overall communication cost for location
management and service delivery is minimized is dynamically
determined for each MC based on the MC’s mobility and service
characteristics. When an MC moves and changes its serving MR, a
forwarding pointer is setup between the two involvedMRs, and the
forwarding chain length is increased by 1. When the forwarding
chain length of the MC reaches the threshold L, its current
forwarding chain is reset and the new servingMR becomes its new
forwarding chain head. A location binding update message is sent
to the gateway in this case to update the location information of
the MC, i.e., the address of its forwarding chain head.

Fig. 3 illustrates how the location management scheme in CCM
is implemented. Like in DPM, each MC maintains a counter that
records the number of movements since the most recent location
update. Each time the MC moves to a new MR, the counter is
incremented by 1, indicating that the length of the forwarding
chain increases by 1. When the counter reaches the threshold L
after a movement, a location update is performed and the MC’s
current forwarding chain is reset. After the location update, the
new serving MR becomes its new forwarding chain head, and the
counter is reset to zero.

5. Analytical modeling

In this section, we develop analytical models based on
stochastic Petri net (SPN) for analyzing the performance of
APPCCM. Table 2 lists the parameters used in performance
modeling and analysis.

5.1. SPN models for APPCCM

Fig. 4 presents the SPN model for DPM. The meanings of places
and transitions in the SPN model are defined in Table 3. Mark(P)

Table 2
Parameters used in performance modeling and analysis.

Parameter Meaning

σ Mobility rate of an MC

λ Rate of queries from an MC for a data object

μ Rate of updates of the server to a data object

δ Aggregate rate of updates of all MCs but the one under

consideration to a data object

η Rate of updates of the MC under consideration to a data object

ω Rate of reconnection when an MC switches from idle mode

back to active mode

ωw
1

ωw
indicates the average duration of disconnection of the MC

before a transition from idle mode to active mode

ωs
1
ωs

denotes the average duration within which the MC keeps

connected before a transition from active mode to idle mode

QUR Query to update ratio, defined as λ
μ+δ+η

QMR Query to mobility ratio, defined as λ
σ

Pactive Probability of an MC in active mode, defined as ωw

ωw+ωs

α Average distance (number of hops) between the gateway and

an arbitrary MR

β Average distance (number of hops) between the current

serving MR of an MC after it reconnects and its serving MR

before disconnection

τ One-hop communication cost between two MRs

Phit Cache hit ratio

Pmiss Cache miss ratio

Fig. 4. The SPN model for DPM.

returns the number of tokens in place P. In the SPN model, #(P)
associated with an arc means that the multiplicity of the arc is
equal to the number of tokens in place P. The SPN model for DPM
is constructed as follows:

• The event of MC movement is modeled by transition Move, the
transition rate of which is σ . When an MC moves to and is



Y. Li, I.-R. Chen / J. Parallel Distrib. Comput. 71 (2011) 1034–1046 1039

Table 3
The meanings of places and transitions defined in the SPN model for DPM.

Symbol Meaning

Move A timed transition modeling MC movement

Moves Mark(Moves) represents the number of movements

DataMigration A timed transition modeling the migration of the data

object between two data proxies

Active2Idle A timed transition modeling the state transition of the

MC from active mode to idle mode

Idle Mark(Idle)=1 means the MC is in idle mode

Idle2Active A timed transition modeling the state transition of the

MC from idle mode to active mode

Active Mark(Active)=1 means the MC is in active mode

StatusChecking A timed transition modeling the event of checking the

caching status after the MC reconnects

Fig. 5. The SPN model for CCM.

Table 4
The meanings of places and transitions defined in the SPN model for CCM.

Symbol Meaning

Move A timed transition modeling MC movement

tmp Mark(tmp)=1 means that the MC just moves to a newMR

AddPointer A timed transition modeling setting up a forwarding

pointer between two neighboring MRs

FL Mark(FL) returns the MC’s current forwarding chain

length

Reset A timed transition modeling a location update event that

resets the forwarding chain

Active2Idle A timed transition modeling the state transition of the MC

from active mode to idle mode

Idle Mark(Idle)=1 means the MC is in idle mode

Idle2Active A timed transition modeling the state transition of the MC

from idle mode to active mode

Active Mark(Active)=1 means the MC is in active mode

AfterReconnection A timed transition modeling the event of retrieving IRs

from the forwarding chain head received during the MC’s

disconnection and sending the gateway a location binding

update message after the MC reconnects

associatedwith anewMR, a token is put into placeMoves, which
represents the number of times the MC has moved since the
most recent migration of the data object under consideration.

• When the number of movements since the last data object
migration reaches K , i.e., the number of tokens in placeMoves is
accumulated to K , transitionDataMigration is enabled and fired,
representing the event of migrating the data object from the
data proxy where it is currently cached to the one running on
the new serving MR.

• An MC typically switches alternatively between active mode
and idle mode during its stay in a WMN. Initially the MC is in
active mode, and can send and receive packets. After staying
in active mode for a period of time, the MC is switched to
idle mode to save battery life. This is modeled by transition
Active2Idle, the transition rate of which is ωs. After transition
Active2Idle is fired, a token is put into place Idle, representing
that the MC is switched to idle mode. The MC reconnects to the
WMN after being in idle mode for some time. This is modeled
by transition Idle2Active, the transition rate of which is ωw .

• When the MC reconnects, it sends a query message to the
data proxy where the data object under consideration is
cached to check its caching status. This event is modeled by
transition StatusChecking. If the cached copy is still valid, it is
migrated to the new data proxy running on the MC’s current
serving MR; otherwise, the data proxy simply responses with
a message telling that the cached copy is obsolete. After the
status checking, the number of movements since the last data
migration is reset to zero, i.e., all tokens in place Moves are
consumed by transition StatusChecking.

Fig. 5 depicts the SPN model for CCM. Table 4 defines the
meanings of places and transitions in the model. The SPN model
for CCM is constructed as follows:

• The event of MC movement is modeled by transition Move, the
transition rate of which is σ . When an MC moves to and is
associated with a new MR, a token is put into place tmp, which
subsequently enables and fires transition AddPointer, meaning
that a new forwarding pointer is setup between the old and new
serving MRs. After transition AddPointer is fired, a token is put
into place FL that represents the length of the forwarding chain,
indicating that the forwarding chain length is increased by 1.

• When the length of the forwarding chain reaches L, i.e., the
number of tokens in place FL is accumulated to L, transition
Reset is enabled and fired, representing that the current
forwarding chain is reset and the new current serving MR
becomes the MC’s new forwarding chain head.

• Transitions Active2Idle and Idle2Active represent the same
physical meanings as in the SPN model for DPM.

• When the MC reconnects, it sends a query message to its
current forwarding chain head to retrieve any IRs received
by the forwarding chain head during its disconnection. The
MC also sends a location binding update message to the
gateway to update its location information, i.e., the address
of the forwarding chain head. After the location update, the
current serving MR becomes the MC’s new forwarding chain
head. Transition AfterReconnection models the above events
performed by the MC after it reconnects.

5.2. Parameterization

Transition DataMigration in the SPN model for DPM represents
the event of migrating a data object between two data proxies
when the threshold K with respect to the data object is reached.
In this event, the MC that initiates the migration sends a data
migration request to the data proxy where the data object is
cached, asking it tomigrate the data object to the data proxy on the
MC’s new serving MR. After the data migration is completed, the
new serving MR sends a data migration acknowledgement to the
MC. The signaling cost incurred by the event is 2Kτ + 2τ because
the distance between the two data proxies is K hops. Therefore,
the transition rate of DataMigration denoted by μDataMigration is
calculated as:

μDataMigration = 1

2Kτ + 2τ
. (1)

Transition StatusChecking in the SPNmodel for DPM represents
the event of checking the caching status of a data object in a data
proxy after the MC that initiates the status checking reconnects,
and if the data object is still valid, migrating it to the data proxy on
the MC’s new serving MR. Therefore, the signaling cost for status
checking upon reconnection is the sum of the cost for sending the
status checking request and the cost for migrating the data object
if it is still valid or for transmitting the IR if the data object has
already been invalidated. The cost is 2βτ +2τ because the distance
between the current serving MR of the MC after it reconnects and
its serving MR before disconnection is β hops. The transition rate
of StatusChecking denoted by μStatusChecking is therefore calculated
as:



1040 Y. Li, I.-R. Chen / J. Parallel Distrib. Comput. 71 (2011) 1034–1046

μStatusChecking = 1

2βτ + 2τ
. (2)

Transition Reset in the SPNmodel for CCM represents the event
of resetting the current forwarding chain of an MC. In this event,
the MC sends a location binding update message to the gateway
to update its location information, i.e., the address of the new
forwarding chain head. The gateway responses with a location
binding update confirmation. The signaling cost incurred in this
event is 2ατ + 2τ . Therefore, the transition rate denoted by μReset

can be derived as follows:

μReset = 1

2ατ + 2τ
. (3)

Transition AfterReconnection in the SPN model for CCM repre-
sents two events after anMC reconnects. Specifically, theMC sends
a query message to its forwarding chain head before disconnec-
tion to retrieve any IRs received by the head during its reconnec-
tion. The MC also sends a location binding update message to the
gateway to update its location information. The signaling cost in-
curred is 2(α +β)τ +4τ . Therefore, the transition rate denoted by
μAfterReconnection can be derived as follows:

μAfterReconnection = 1

2(α + β)τ + 4τ
. (4)

5.3. Performance metric

We use the total communication cost incurred per-time-unit
(per-second) per-MC per-object as the metric for performance
evaluation. The total communication cost is measured as the
number of hops because we normalize one-hop communication
cost between two neighboring MRs, τ , to 1. It is worth noting
that since the performance metric used is on a per-MC, per-object,
and per-time-unit basis, even a small performance gain of 5%–10%
is considered significant over time, over all MCs, and over all
data objects in the system. For DPM, the total communication
cost (CDPM) consists of the query cost (Cquery), the invalidation
cost (Cinvalidation), the signaling cost for data migration (Cmigration),
and the signaling cost for status checking upon reconnection
(Creconnection). Using these cost terms, CDPM is calculated as follows:

CDPM = λ′ · Cquery + (μ + δ + η′) · Cinvalidation

+ σ ′ · Cmigration + ω · Creconnection. (5)

In the above equation, λ′ and η′ denote the effective data
query rate and the effective data update rate of the MC under
consideration, respectively. σ ′ denotes the effective mobility rate
of the MC. These are effective rates because the MC cannot access
or update any data object during its disconnection. These effective
rates are calculated by:

σ ′ = Pactiveσ

λ′ = Pactiveλ

η′ = Pactiveη.

(6)

Here Pactive denotes the probability that the MC is in active mode,
calculated by the ratio of the average active duration over the sum
of the average active duration and the average idle duration, as
follows:

Pactive =
1
ωs

1
ωs

+ 1
ωw

= ωw

ωw + ωs

. (7)

Below we parameterize various cost terms in Eq. (5). We
exclude the communication cost for data object or IR transmission
between the server and the gateway because it is not part of the
overall cost incurred to theWMN. The query cost incurred by DPM
in the case of a cache hit consists of the cost for sending the query to

the data proxy, and the cost for delivering the queried data object
to theMC. In the case of a cachemiss, the query cost consists of the
cost for sending the query to the data proxy, the cost for forwarding
the query to the gateway, the cost for transmitting the data object
from the gateway to the proxy, and finally the cost for delivering
the queried data object to the MC. Therefore, Cquery is calculated as
(with nm denoting the number of tokens in placeMoves):

Cquery =
{
2nmτ + 2τ if cache hit
2(α + nm)τ + 2τ if cache miss.

(8)

The invalidation cost incurred by DPM in the case that the MC
under consideration updates a cached data object consists of the
cost for sending the updated data object and IR to the data proxy,
and subsequently to the gateway, and the cost for the delivery
of the invalidation acknowledgement. If the invalidation is due to
updates from other MCs, the invalidation cost consists of the cost
for pushing the IR from the gateway to theMC under consideration
and the cost for transmitting the invalidation acknowledgement.
Therefore, Cinvalidation is given by (with MC0 representing the MC
under consideration):

Cinvalidation =
{
2ατ if update by other MCs
2(nm + α)τ + 2τ if update by MC0 itself.

(9)

The signaling cost for data migration in DPM is for transmitting
the data migration request and acknowledgement, and for
transmitting the data object between two data proxies that are K
hops away from each other. Cmigration is therefore calculated as:

Cmigration = 2Kτ + 2τ . (10)

The signaling cost for status checking upon reconnection in
DPM is the sum of the cost for sending the status checking request
and the cost for migrating the data object if it is still valid or for
transmitting the IR if the data object has already been invalidated.
Because the distance between the current serving MR of the MC
after it reconnects and its serving MR before disconnection is β
hops, Creconnection is calculated as:

Creconnection = 2βτ + 2τ . (11)

For CCM, the total communication cost (CCCM) consists of the
query cost (Cquery), the invalidation cost (Cinvalidation), the signaling
cost for location management (Clocation), and the signaling cost for
cache status checking upon reconnection (Creconnection). Using these
cost terms, CCCM is calculated as:

CCCM = λ′ · Cquery + (μ + δ + η′) · Cinvalidation

+ σ ′ · Clocation + ω · Creconnection. (12)

The query cost incurred by CCM in the case of a cache hit is
zero because the data object is retrieved locally from the cache.
In the case of a cache miss, the query cost consists of the cost for
sending the query to the gateway and the cost for transmitting the
data object from the gateway to the MC following the forwarding
chain. Therefore,Cquery is calculated as (with lf denoting the current
forwarding chain length):

Cquery =
{
0 if cache hit
(α + lf )τ + ατ + 2τ if cache miss.

(13)

The calculation of the invalidation cost in CCM depends on
where the update to the invalidated data object originates. In
the case that the update is from the server or other MCs, two
situations can arise: (a) if the MC under consideration is in idle
mode, the cost incurred is for transmitting the IR and invalidation
acknowledgement between the gateway and the MC’s forwarding
chain head, and (b) if the MC under consideration is in active
mode, the cost incurred is for transmitting the IR and invalidation



Y. Li, I.-R. Chen / J. Parallel Distrib. Comput. 71 (2011) 1034–1046 1041

acknowledgement between the gateway and the MC. If the update
is from the MC under consideration (MC0), the invalidation cost
consists of the cost for sending the IR and the updated data object
to the gateway, and the cost for transmitting the invalidation
acknowledgement. Therefore, Cinvalidation is calculated as:

Cinvalidation =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2ατ if update by other MCs or
the server and MC0 is active

(2α + lf )τ + 2τ if update by other MCs or
the server and MC0 is idle

(2α + lf )τ + 2τ if update by MC0 itself.

(14)

The signaling cost for location management in CCM is the cost
for setting up a forwarding pointer between two neighboring MRs,
if the forwarding chain length after the movement is less than the
threshold L, or the cost for location update if the forwarding chain
length after the movement reaches the threshold L. In the latter
case, a location binding update message is sent to the gateway
in this case to update the location information of the MC, i.e.,
the address of its forwarding chain head. Therefore, Clocation is
calculated as:

Clocation =
{
4τ if fl < L
2ατ + 2τ if fl = L.

(15)

The signaling cost for status checking upon reconnection in
CCM consists of the cost for transmitting the status checking
request and the IR if there are cached data object that have been
invalidated during the disconnection, and the cost for location
update. Therefore, Creconnection is calculated as:

Creconnection = 2(α + β)τ + 4τ . (16)

A query for a data object results in a cache hit if there is no
update to the object between this query and themost recent query
in the past. There will be a cachemiss if there is at least one update
to the object in between two consecutive queries. Therefore, the
cache hit ratio of a data object denoted by Phit can be calculated by
the average number of successive accesses that can be done during
the interval between two consecutive updates, as follows:

Phit = λ′

λ′ + μ + δ + η′ . (17)

An MC may switch between active mode and idle mode during
its stay in a WMN. The average interval between two consecutive
reconnections of the MC is the sum of the average active duration
and the average idle duration, i.e., 1

ωw
+ 1

ωs
. The rate of reconnection

denoted by ω is therefore calculated as follows:

ω = 1
1

ωw
+ 1

ωs

= ωw × ωs

ωw + ωs

. (18)

6. Performance analysis and numerical results

In this section, we analyze the performance of APPCCM, in
terms of the total communication cost incurred per-time-unit
(per-second) per-MC per-object. We also carry out a comparative
performance study to compare APPCCM with non-adaptive cache
consistency management schemes that always cache a data object
at the MC, or at the MC’s current serving MR for supporting mobile
data access in WMNs. The numerical results are obtained by first
defining a SPN model as shown in Fig. 4 or Fig. 5 using SPNP [7],
and then evaluating the SPN model by assigning rewards to states
of the system based on the equations presented above.We define a
parameter called query tomobility ratio (QMR) indicating howoften
anMC performs data access relative to itsmobility speed. The QMR
of an MC with respect to a data object is defined as: QMR = λ

σ
.

Table 5
Parameters and their values used in performance analysis.

Parameter Value

QUR {0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0}
QMR {1, 2, 4, 8, 16, 32, 64, 128, 256}
Pactive

{
1
9
, 1

5
, 1

3
, 1

2
, 2

3
, 4

5
, 8

9

}
ωw

1
600

ωs
1

1200

α {10, 20, 30}
β {5, 10, 20}
τ 1

Fig. 6. Cost vs. K/L (QUR = 0.5; QMR = 8.0).

Table 5 lists the parameters and their default values used in
the performance evaluation. The time unit used in the paper is in
seconds. We select a wide range of values for QMR, QUR, and Pactive
to cover diverse data query/update, mobility and service patterns
and to test their effects on performance characteristics of APPCCM.
The physical meaning of ωw is the reciprocal of the average
duration of disconnection of an MC before reconnection with the
WMN. Therefore, ωw = 1

600
means that the MC stays disconnected

for a duration of 10min on average before switching to activemode
and reconnecting with the WMN. Similarly, ωs = 1

1200
means that

the MC stays in active mode for a duration of 20 min on average
before disconnecting from the WMN and changing to idle mode.
The values of α and β are chosen to model WMNs of different
dimensions, using hop counts to measure distances. For example,
we vary the distance between the gateway and an arbitrary MR,
i.e., α from 10 to 30 to simulate WMNs of different sizes. All costs
presented below are normalized with respect to τ = 1.

6.1. Performance evaluation of APPCCM

Figs. 6 and 7 plot CDPM and CCCM as a function of K/L, under
two different values of QUR. As both figures illustrate, for either
mode, there exists an optimal threshold K/L that minimizes the
total communication cost, given a set of parameters characterizing
the mobility and data query/update characteristics (with respect
to the accessed data object) of the MC. DPM performs consistently
better thanCCM,whenQUR=0.5,whereas CCM is superior toDPM
when QUR = 2.

Intuitively, DPM is expected to perform better than CCM under
circumstances when the access rate is lower than the update
rate, because DPM reduces invalidation costs at the expense of
increased query costs. In contrast, CCM is expected to be superior
to DPM under other circumstances when the access rate is higher
than the update rate, because CCM incurs smaller query costs than
DPM under the same cache hit ratio, at the expense of increased
invalidation costs.



1042 Y. Li, I.-R. Chen / J. Parallel Distrib. Comput. 71 (2011) 1034–1046

Fig. 7. Cost vs. K/L (QUR = 2.0; QMR = 8.0).

Fig. 8. Cost vs. QUR.

The effect of tradeoff on the performance of DPM and CCM is
clearly illustrated by Fig. 8, which compares CDPM and CCCM, as
a function of QUR. As can be seen in the figure, initially when
QUR is small, DPM performs better than CCM. As QUR increases,
the performance gap between DPM and CCM decreases, and there
exists a crossover point of QUR beyond which CCM becomes
superior toDPM.As illustrated by Fig. 8,whenQUR is high, APPCCM
behaves like CCM for which there is no data object migration, since
the MC will store data objects locally in its own cache. When QUR
is low, APPCCM behaves like DPM for which Koptimal increases as
the user mobility rate increases. Therefore, APPCCM will reduce
the object migration overhead for highly mobile MCs, essentially
avoiding inopportune data objectmigration amongMRswhenMCs
have a high level of mobility.

Fig. 9 shows the optimal threshold Koptimal in DPM as a
function of QUR. As shown in both figures, the optimal threshold
Koptimal in DPM decreases with increasing QUR. This is because
as QUR increases, the contribution of the query cost to the total
communication cost becomes more significant, and therefore,
a smaller Koptimal is favored to reduce the query cost and
consequently minimize the total communication cost.

Fig. 10 compares CDPM and CCCM as a function of QMR. We
observe that this figure shows the same trend as in Fig. 8. There
exists a crossover point of QMR beyond which CCM outperforms
DPM. This is because with a fixed mobility rate and fixed update
rates (μ, δ, and η), the access rate increases as QMR increases,
and consequently QUR increases, resulting in the same trend as in
Fig. 8.

Fig. 11 comparesCDPM andCCCM as a function of Pactive, under two
different values of QUR. As the figure shows, both CDPM and CCCM

Fig. 9. The optimal threshold Koptimal vs. QUR in DPM.

Fig. 10. Cost vs. QMR.

Fig. 11. Cost vs. Pactive under two different values of QUR.

increase monotonically with increasing Pactive. This is because the
volumeof activities of anMCand consequently the communication
cost it incurs increase as the MC spends increasingly more time in
active mode than in idle mode. The figure also shows that DPM
outperforms CCM when QUR = 0.5, whereas CCM is superior to
DPM when QUR = 2.0. These results are well correlated with the
trends exhibited in Figs. 6 and 7.

Fig. 12 investigates the sensitivity of performance evaluation to
α and β . Specifically, Fig. 12 compares CDPM and CCCM as a function
of QUR, under different combinations of α and β . Comparing the
figure with Fig. 8, it can be observed that both figures exhibit very



Y. Li, I.-R. Chen / J. Parallel Distrib. Comput. 71 (2011) 1034–1046 1043

Fig. 12. Cost vs. QUR under different combinations of α and β .

Fig. 13. Performance comparison: cost vs. QUR.

similar trends, regardless of the values of α and β . Here we again
observe that there exists a crossover point of QUR beyond which
CCM outperforms DPM, and the performance gain of CCM over
DPM increaseswith increasing QUR. This figure also illustrates that
APPCCM achieves good scalability in terms of different network
sizes as measured by different values of α and β . APPCCM achieves
scalability essentially through network cost minimization, thus
allowing more MCs to be accommodated by a WMN. The cost
saving or the amount of network traffic reduced is cumulative and
is more significant as the number of MCs increases.

6.2. Comparative performance study

In this section, we compare APPCCM with two non-adaptive
cache consistency management schemes for supporting mobile
data access. The first non-adaptive scheme always caches a data
object at the MC directly (we call it caching-at-the-MC scheme).
Therefore, it is essentially equivalent to existing asynchronous
stateful-based schemes [2,21] augmented with optimal per-user
pointer forwarding for integrated cache consistency and mobility
management such that MCs can perform data access, data caching
and cache consistency management while roaming and changing
their locations in aWMN. The second non-adaptive scheme always
caches a data object at the MC’s current serving MR (we call it
caching-at-the-MR scheme). Therefore, a data object cached by an
MC at its current serving MR will be migrated to the new serving
MR every time the MC moves and changes its location.

Figs. 13 and 14 compare the total communication cost between
APPCCM and the two non-adaptive schemes, as a function of

Fig. 14. Cost vs. QMR.

Fig. 15. Gateway overhead vs. QUR.

QUR and QMR, respectively. We see that APPCCM outperforms
both non-adaptive schemes. More specifically, APPCCM performs
significantly better than the caching-at-the-MC scheme initially
when QUR/QMR is small. As QUR/QMR increases, the performance
gap narrows, and at some point, APPCCM degenerates to the
caching-at-the-MC scheme, or equivalently, CCM. This is because
APPCCM adaptively uses CCM to cache a data object when
QUR/QMR is relatively large. Therefore, the advantage of APPCCM
over the caching-at-the-MC scheme is most pronounced when
QUR/QMR is relatively small.

Below we explain the reason that APPCCM is always superior
to the caching-at-the-MR scheme. When QUR/QMR is small,
APPCCM adaptively uses DPM to cache a data object. Since
APPCCM dynamically determines Koptimal under which the total
communication cost is minimized, APPCCM performs significantly
better than the caching-at-the-MR scheme, when QUR/QMR is
small. As QUR/QMR increases, APPCCM adaptively switches to
CCM, because CCM is superior to DPM when QUR/QMR is large.
Therefore, APPCCM is also superior to the caching-at-the-MR
scheme when QUR/QMR is large. Here again we emphasize that
since the performance metric used in this paper is on a per-MC,
per-object and per-time-unit basis, so even a small performance
gain of 5%–10% would be significant over time, over all MCs, and
over all data objects in the system. These results demonstrate the
advantage of APPCCM over non-adaptive schemes due to its ability
to choose either DPM or CCM that can best balance the query cost
and the invalidation cost and thus minimize the overall cost.

Figs. 15 and 16 compare the gateway overhead between
APPCCM and the baseline schemes, as a function of QUR and QMR,
respectively. The gateway overhead is measured by the traffic



1044 Y. Li, I.-R. Chen / J. Parallel Distrib. Comput. 71 (2011) 1034–1046

Fig. 16. Gateway overhead vs. QMR.

Fig. 17. Simulation validation: cost vs. K/L (QUR = 0.5).

incurred at the gateway, i.e., the number of messages processed
by the gateway per second. Messages considered include those
used for carrying queries, data objects, IRs, and location/data proxy
updates. As can be seen in the figures, APPCCM reduces the traffic
at the gateway for approximately 5% to 10% on a per-second basis,
compared with the two baseline schemes which incur the same
amount of traffic at the gateway. In particular, we demonstrate
that in case of a great number of data updates (when QUR is
small reflecting a high data update rate) or a great number of
location updates (when QMR is small reflecting a high mobility
rate), APPCCM greatly reduces the gateway overhead compared
with the two baseline schemes.

6.3. Simulation validation

We conduct extensive simulation to validate the analytical re-
sults obtained above, using a discrete simulation language called
Simulation Model Programming Language (SMPL) [17]. In this
simulation system, all operations in APPCCM are associated with
discrete events, each with a state-dependent operation cost. For
example, query processing operations, cache invalidation opera-
tions, data migration operations, and location update operations,
are associated with events. Events are scheduled and executed in
FIFO order, according to the algorithm description presented in
Section 4. The average total communication cost is evaluated and
reported. To ensure the statistical significance of simulation re-
sults, we use a batch mean analysis technique. Each simulation
batch consists of a large number of runs and therefore a large

Fig. 18. Simulation validation: cost vs. K/L (QUR = 2.0).

Fig. 19. Simulation validation: cost vs. QUR.

number of observations for computing one batch average. The sim-

ulation runs for aminimumof 10 batches, and stops until themean

of the batch means collected is within 5% from the true mean with

a confidence level of 95%. In the simulation study we use the same

set of parameter values as those listed in Table 5.

Figs. 17 and 18 show the simulation results of CDPM and CCCM as a

function ofK/L, under twodifferent values ofQUR. Comparing both

figures with Figs. 6 and 7, we observe that the simulation results

are well-correlated with the analytical results, as demonstrated by

the trends exhibited in the figures. This justifies that the analytical

results are valid and there exists optimal thresholds Koptimal and

Loptimal, respectively, under which CDPM and CCCM are minimized.

Fig. 19 illustrates the simulation results of CDPM and CCCM as a

function of QUR. Again, the simulation results show excellent cor-

relation with the analytical results presented in Fig. 8. Similarly,

the simulation results shown in Figs. 20 and 21 for the perfor-

mance comparison between APPCCM and the two non-adaptive

schemes also correlate well with the analytical results shown in

Figs. 13 and 14.

7. Conclusion and applicability

In this paper, we proposed an adaptive per-user per-object

cache consistency management scheme for mobile data access in

WMNs, namely APPCCM,with the objective to improve data access

performance as well as to mitigate the performance bottleneck at

the gateways in WMNs. APPCCM supports strong data consistency



Y. Li, I.-R. Chen / J. Parallel Distrib. Comput. 71 (2011) 1034–1046 1045

Fig. 20. Simulation validation: performance comparison vs. QUR.

Fig. 21. Simulation validation: performance comparison vs. QMR.

semantics through integrated cache consistency and mobility
management. APPCCM is adaptive, per-user and per-object, as
one of two caching modes provided by APPCCM, namely DPM
and CCM, is adaptively selected based on the MC’s mobility
and data query/update characteristics as well as operational and
networking conditions of the WMN. We demonstrated via model-
based analysis that APPCCM outperforms two non-adaptive cache
consistency management schemes that always cache a data object
at the MC or at the MC’s current serving MR. The advantage of
APPCCM is due to effective exploitation of the tradeoff between the
query cost and invalidation cost realized by adaptively selecting
the best cache consistency management strategy out of DPM and
CCM.

There is a variety of potential applications for which APPCCM is
applicable. For example, digital news and magazine applications
running on smartphones and mobile tablet computers such as
iPhone and iPad, are typical applications demanding mobile data
access. It is beneficial to use APPCCM for such applications in
a WMN environment to provide better response time, reduce
the Internet traffic flow billed to the users, and minimize the
total communication cost incurred for maximizing the network’s
throughput.

To implement APPCCM on real mobile devices, the devices
should have adequate computing power to perform the computa-
tional procedure presented in thepaper and storage to store cached
data objects. For mobile devices that are less powerful in com-
putation, a table-lookup approach can be used to implement AP-
PCCM without having to execute the computational procedure at
runtime. Specifically, the decision regarding where to cache a data

object and the optimal K/L can be statically determined at the de-

sign time over a wide range of mobility and service characteristics

and stored in a table for fast lookup. Then, during the execution of

APPCCM, a simple table lookup can quickly determine the caching

decision and the optimal K/L, when given a set of parameter val-

ues specifying the mobility and data query/update characteristics

of the user.

In the future, we plan to investigate community-based sharing

of data objects cached in a data proxy running on a mesh router

concurrently serving multiple mobile users. We also plan to

investigate concurrency control between the client and the server

to support disconnected write operations. Another direction is

to devise efficient integrated cache invalidation and replacement

management that can further reduce the data access latency and

the overall network cost.

References

[1] I.F. Akyildiz, X. Wang, W.Wang, Wireless mesh networks: a survey, Computer
Networks 47 (4) (2005) 445–487.

[2] D. Barbara, T. Imielinski, Sleepers and workaholics: caching strategies in
mobile environments (extended version), The VLDB Journal 4 (4) (1995)
567–602.

[3] J. Cai, K.L. Tan, Energy efficient selective cache invalidation,Wireless Networks
5 (6) (1999) 489–502.

[4] G. Cao, A scalable low-latency cache invalidation strategy for mobile
environments, IEEE Transactions on Knowledge and Data Engineering 15 (5)
(2003) 1251–1265.

[5] I.R. Chen, T.M. Chen, C. Lee, Performance evaluation of forwarding strategies
for location management in mobile networks, The Computer Journal 41 (4)
(1998) 243–253.

[6] S.M. Das, H. Pucha, Y.C. Hu, Mitigating the gateway bottleneck via transparent
cooperative caching inwirelessmesh networks, Ad Hoc Networks 5 (6) (2007)
680–703.

[7] C. Hirel, B. Tuffin, K.S. Trivedi, Spnp: Stochastic petri nets, Version 6.0, in: 11th
International Conference on Computer Performance Evaluation: Modelling
Techniques and Tools, Schaumburg, Illinois, United States, 2000, pp. 354–357.

[8] Q. Hu, D.K. Lee, Cache algorithms based on adaptive invalidation reports for
mobile environments, Cluster Computing 1 (1) (1998) 39–50.

[9] T. Imielinski, B.R. Badrinath, Datamanagement formobile computing, SIGMOD
Record 22 (1) (1993) 34–39.

[10] J. Jing, A. Elmagarmid, A.S. Helal, Bit-sequences: an adaptive cache invalidation
method in mobile client/server environments, Mobile Networks and Applica-
tions 2 (2) (1997) 115–127.

[11] J. Jing, A. Helal, A. Elmagarmid, Client–server computing in mobile environ-
ments, ACM Computing Surveys 31 (2) (1999) 117–157.

[12] A. Kahol, S. Khurana, S.K.S. Gupta, P.K. Srimani, A strategy to manage cache
consistency in a disconnected distributed environment, IEEE Transactions on
Parallel and Distributed Systems 12 (7) (2001) 686–700.

[13] J.J. Kistler, M. Satyanarayanan, Disconnected operation in the Coda file system,
ACM Transactions on Computer Systems 10 (1) (1992) 3–25.

[14] Y. Li, I.R. Chen, APPCCM: adaptive per-user per-object cache consistency
management formobile client–server applications inwirelessmesh networks,
in: 35th IEEE Conference on Local Computer Networks, Denver, Colorado,
United States, 2010, pp. 128–135.

[15] Y. Li, I.R. Chen, Design and performance analysis of mobility management
schemes based on pointer forwarding for wireless mesh networks, IEEE
Transactions on Mobile Computing 10 (3) (2011) 349–361.

[16] Y.B. Lin, W.R. Lai, J.J. Chen, Effects of cachemachanism onwireless data access,
IEEE Transactions on Wireless Communications 2 (6) (2003) 1247–1258.

[17] M.H. MacDougall, Simulating Computer Systems, MIT Press, 1987.
[18] A. Madhukar, T. Ozyer, R. Alhajj, Dynamic cache invalidation scheme for

wireless mobile environments, Wireless Networks 15 (6) (2009) 727–740.
[19] N. Nandiraju, L. Santhanam, B. He, J. Wang, D. Agrawal, Wireless mesh

networks: current challenges and future directions of web-in-the-sky, IEEE
Wireless Communications 14 (4) (2007) 79–89.

[20] M. Satyanarayanan, Fundamental challenges in mobile computing, in: 15th
Annual ACMSymposiumonPrinciples of Distributed Computing, Philadelphia,
Pennsylvania, United States, 1996, pp. 1–7.

[21] K.L. Tan, J. Cai, B.C. Ooi, An evaluation of cache invalidation strategies in
wireless environments, IEEE Transactions on Parallel and Distributed Systems
12 (8) (2001) 789–807.

[22] Z. Wang, M. Kumar, S.K. Das, H. Shen, Dynamic cache consistency schemes for
wireless cellular networks, IEEE Transactions on Wireless Communications 5
(2) (2006) 366–376.

[23] Y. Xiao, H. Chen, Optimal callback with two-level adaptation for wireless data
access, IEEE Transactions on Mobile Computing 5 (8) (2006) 1087–1102.

[24] J. Yin, L. Alvisi, M. Dahlin, C. Lin, Volume leases for consistency in large-scale
systems, IEEE Transactions on Knowledge and Data Engineering 11 (4) (1999)
563–576.



1046 Y. Li, I.-R. Chen / J. Parallel Distrib. Comput. 71 (2011) 1034–1046

YinanLi received theB.S. degree in Computer Science from
Xi’an Jiaotong University in China, and the M.S. degree
in Computer Science from the University of Tennessee in
2008. He is currently a Ph.D. student in the Department of
Computer Science at Virginia Tech. His research interests
includewireless networks,mobile adhocnetworks, sensor
networks, network security, high performance computing,
and dependable computing.

Ing-Ray Chen received the B.S. degree from the National
Taiwan University, Taipei, Taiwan, and the MS and
Ph.D. degrees in computer science from the University
of Houston. He is a professor in the Department of
Computer Science at Virginia Tech. His research interests
include mobile computing, wireless networks, security,
multimedia, real-time intelligent systems, and reliability
and performance analysis. Dr. Chen currently serves as
an editor for The Computer Journal, Wireless Personal
Communications, Wireless Communications and Mobile
Computing, Security and Communication Networks, and

International Journal on Artificial Intelligence Tools. He is a member of the IEEE/CS
and ACM.


