Chap. 6 & Chap. 12: Performability Modeling

6.4 Markov <u>Reward</u> Model

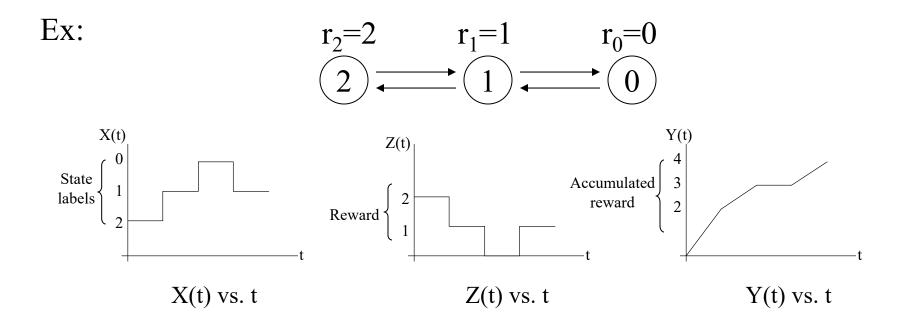
We can associate each state with a "reward" denoting the performance level given by the system while it is in that state.

Markov process: $X = \{X(t), t \ge 0\}$ State Probabilities: $\pi_j(t) = Pr(X(t) = j), j \in S$ Steady-state probabilities: $\pi_j, j \in S$ State j is associatedwith a reward r_j

Let $Z(t) = r_{X(t)}$ be the system reward at time t

denoting which state the system is in at time t in the markov process Then, the amount of reward accumulated during an interval (0, t) is given by: $Y(t) = \int_0^t Z(t) dt$

107



 $\lim_{t\to\infty} Y(t) = ?$

with no absorbing states: ∞ (not defined) with absorbing states: a finite value, denoted by $Y(\infty)$: the accumulated reward until absorption $2 \rightarrow 1 \rightarrow 0$

An absorbing state

Performability Measures:

a) Expected reward at time t

 $E[Z(t)] = \sum_{i \in S} r_i \cdot \pi_i(t)$

Sharpe:

exrt(t; system-name)

can be used to represent the instantaneous "computational capacity" of the system at time t

b) Expected reward at steady state

$$\mathbf{E}[\mathbf{Z}(\mathbf{t}=\infty)] = \sum_{i\in\mathbf{S}} \mathbf{r}_i \cdot \boldsymbol{\pi}_i$$

Sharpe:

exrss(system-name)

Meaningless for a Markov chain with absorbing states (i.e., meaningful only for <u>irreducible Markov models</u> which by definition do not have absorbing states) c) Expected cumulative reward over the interval [0, t]

$$E[Y(t)] = E\left[\int_{0}^{t} Z(t)dt\right] = \int_{0}^{t} E\left[Z(t)\right]dt$$
Sharpe:
cexrt(t; system-name)

$$= \int_{0}^{t} \sum_{i \in S} r_{i} \cdot \pi_{i}(t)dt = \sum_{i \in S} r_{i} \int_{0}^{t} \pi_{i}(t)dt$$

$$= \sum_{i \in S} r_{i}L_{i}(t)$$
Expected total time that the Markov chain
stays at state i during the time interval [0, t]

d) Time averaged cumulative reward

$$W(t) = Y(t) / t$$

with absorbing states:

 $Y(\infty)$ is finite ∴ as $t \to \infty$, $W(\infty) = 0$ with no absorbing states: $W(\infty)$ is finite

sharpe :
$$\frac{cexrt(t; system name)}{t}$$
 for $\frac{E[Y(t)]}{t}$

e) Distribution of cumulative reward:

(a hard problem)

Sharpe: not provided

 $\underbrace{cdf_{Y(t)}}_{prob} or \ pdf_{Y(t)} \leq r\}$

Usage: can answer the following question: <u>What is the probability that the system is able to achieve a</u> given amount of work *r* during the interval [0, t]?

f) Probability that the "**cumulative reward until absorption**" $Y(\infty)$ is less than or equal to *r* when an absorbing state is reached: $prob\{Y(\infty) \le r\}$

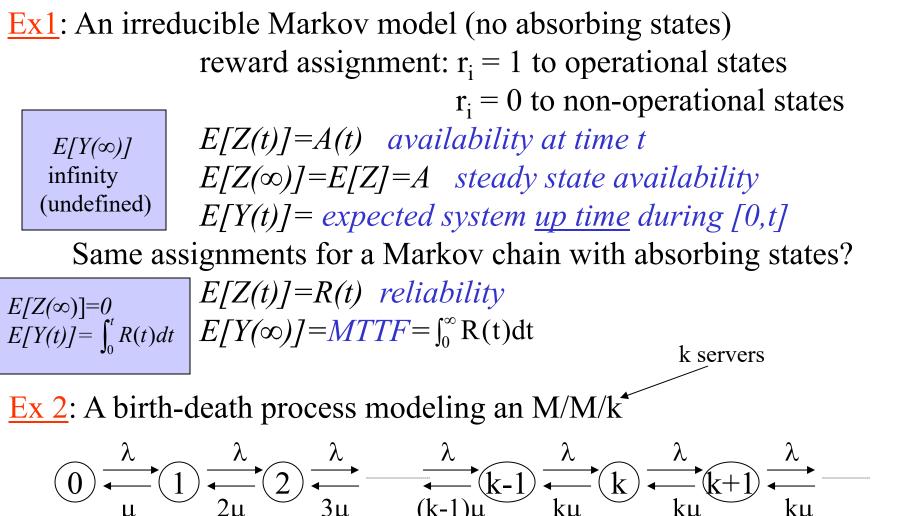
 \Rightarrow meaningful only for a Markov model with absorbing states

Sharpe:

reward(system-name) or rvalue(r;system-name) = $prob\{Y(\infty) \le r\}$

(in symbolic form) (in numerical form)

Reward assignments



Suppose we know the s.s. probability vector $\pi = \{\pi_0, \pi_1, \pi_2 ...\}$

 assign a reward of "# of customers" to each state E[Z(t)] = expected population at time t E[Z(∞)] = E[Z] = steady state population

 assign a reward of "service rate" to each state E[Z(t)] = expected throughput at time t E[Z(∞)] = steady state throughput

Ex 3: 2P3M without repair capability λ_p λ_m :failure rate the system functions if at least 1 processor & 1 mm functioning *P.314 chap.12* • state representation: (i, j)• assume that the service rate of the system in state (i, j) is: $r_{ij} = m(1 - (1 - \frac{1}{m})^l)$ when $l = \min(i, j)$ and $m = \max(i, j)$

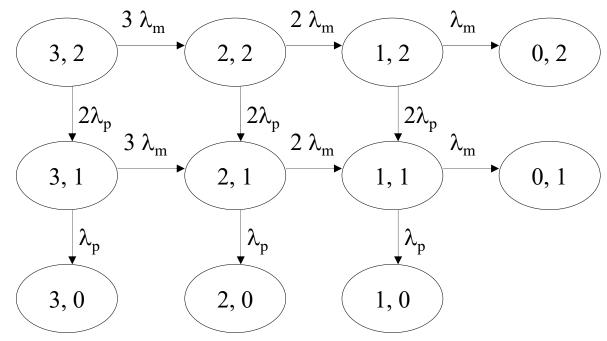
1) assign a reward of "service rate" to each state

E[Z(t)] = expected throughput at time t $E[Y(\infty)] = expected \# of customers serviced before failure$ 2) reward assignment: $r_i = 1$ to operational states, i.e., (3,2), (2,2) (1,2), (3,1), (2,1) and (1,1)

$r_i = 0$ to non-operational states

E[Z(t)] = reliability at time t $E[Y(\infty)] = MTTF$

A Markov chain for reliability analysis of a system without repair capability

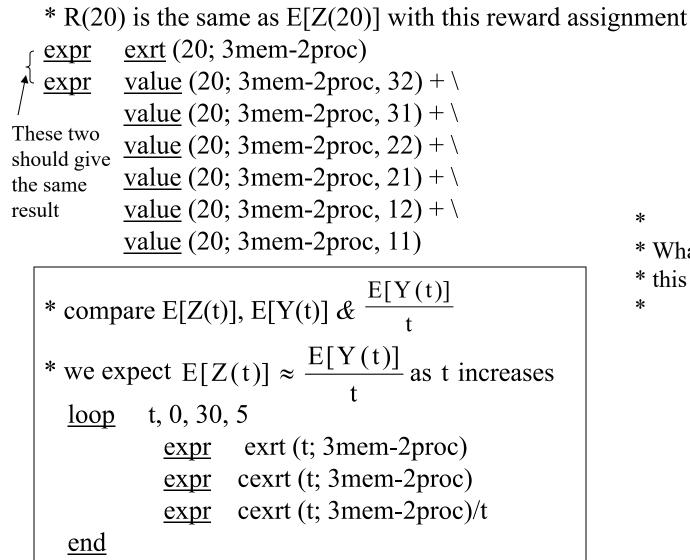


• $\lambda_p = 1/(2*720), \ \lambda_m = 1/(720)$

114

bind	λ_{m}	1/(2*720)	
bind	λ_{p}	1/720	
Markov 3mem-2proc			
* memory failure			
32	22		
22	12	$2*\lambda_{\rm m}^{\rm m}$	
	02	$\lambda_{ m m}$	
31	21	$3*\lambda_{\rm m}$	
21	11	$2*\lambda_{\rm m}$	
11	01		
* processor failure			
32	31	$2* \lambda_p$	
31	30	λ_{p}	
22	21	$2^{*}\lambda_{p}$ λ_{p} $2^{*}\lambda_{p}$	
21	20	λ_{p}	
12	11	$2^{\frac{1}{2}}\lambda_{p}$	
11	10	λ_{p}	
* reward assignment			
(<u>reward</u>			
32	r32		
22	r22		
12	r12		
31	r31		
21	r21		
11	r11		
* default is 0 assigned to other states			
end			
32	1.0		
end			
I			

Probability of the system serving less than 200 customers before it fails expected reward (throughput) at time t=20 <i>P.375</i> sum(index,low,high, expression) * * Reward assignment is the * service rate in state (<i>i</i> , <i>j</i>) <u>bind</u> r32 15/9 r22 3/2 r12 1 r31 1 r21 1 r11 1 end	* print prob { $Y(\infty) \le r$ } * in symbolic form reward (3mem-2proc) * print prob { $Y(\infty) \le 200$ } rvalue (200; 3mem-2proc) * print E[$Z(20)$] exrt (20; 3mem-2proc) * print E[$Z(20)$] again based on * the definition of E[$Z(t)$], i.e., * $E[Z(t)] = \sum_{ij} r_{ij} * \pi_{ij}(t)$ expr sum(i, 1, 3, sum(j, 1, 2,\ (sreward(3mem-2proc, \$(i)\$(j))*\ value(20;3mem-2proc, \$(i)\$(j))))) * * sreward returns the reward assigned * to a state * * Reward assignment to calculate R(t) * bind r32 1 : : bind r11 1 * * print R(t) at t=20 expr exrt(20; 3mem-2proc) * code to be continued in the next page
	115



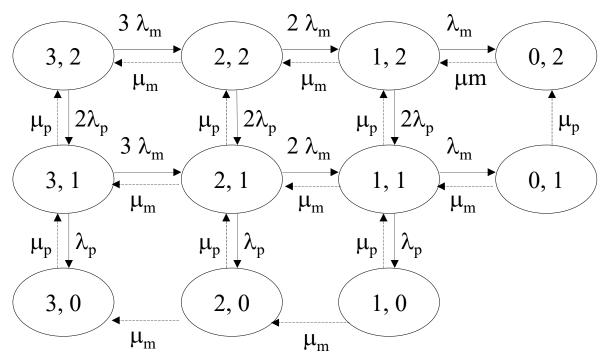
- * What is $E[Y(\infty)]$ with
- * this reward assignment?

*

* end the sharpe program

end

An <u>acyclic</u> (irreducible) Markov chain for availability analysis



- Per processor $\lambda_p = 1/(2*720)$, per MM $\lambda_m = 1/(720)$
- Once a system enters a failure state, the system halts until it enters an operational state again via repair
- There is 1 repair facility for processors with the repair rate of $\mu_p = 1/4 \& 1$ repair facility for memory modules with the repair rate of $\mu_m = 1/2$, so simultaneous repair is possible in this case.

P. 318: This Markov model is irreducible due to repair

