Chap. 6 & Chap. 12: Performability Modeling
6.4 Markov Reward Model

We can associate each state with a “reward” denoting the
performance level given by the system while 1t 1s in that state.

Markov process: X ={X(t), t >0}
State Probabilities: 7;(t) =Pr(X(t) =), J€S
Steady-state probabilities: 1t i»JES State j is associated

with a reward r;

Let Z(¢) = ry,, be the system reward at time t
denoting which state the system is in at time t in the markov process

Then, the amount of reward accumulated during an interval (0, t)
1s given by: v (1) = Iot Z (t)dt
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Ex: r,=2 r,=1 r,=0
e e
2)—)——=(0)

Z(t)
0
State { i | Accumulated
labels 2 reward
5 Reward {
t t t

X(t) vs. t Z(t) vs. t Y(t) vs. t

X(t) Y (1)

e

2

Bm Y (t) = 2 with no absorbing states: oo (notdefined)
-, (t) =+ with absorbing states: a finite value, denoted by
Y(): the accumulated reward until absorption

2)—W—

An absorbing state
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Performability Measures:

a) Expected reward at time t Sharpe:

E[Z()]= X1, -7 (t) exrt(t; system-name)

1eS
can be used to represent the instantaneous “computational
capacity” of the system at time t

b) Expected reward at steady state
Sharpe:
E[Z(t=)] =21 ‘T, exrss(system-name)
1eS

Meaningless for a Markov chain with absorbing states
(1.e., meaningful only for irreducible Markov models which
by definition do not have absorbing states)
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c) Expected cumulative reward over the interval [0, t]

t t Sharpe:
ETY (1)] = EUO Z(f)df} = jo E|Z (1) jit cexrt(t; system-name)
= [ X nemnyde =Y [ w0t

_ Z r.L. (1) Expected total time that the Markov chain
b stays at state i during the time interval [0, t]

ieS

d) Time averaged cumulative reward
Wy = Y1)/t
with absorbing states:
Y (o) 1s finite .. ast— o0, W(0)=0
with no absorbing states: W(o0) 1s finite

cexrt (¢;system name ) for E[Y (¢)]

[ [

sharpe :
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¢) Distribution of cumulative reward:

a hard problem
(a hard problem) cdfyo OF Py
Sharpe: not provided prob{Y(t) <r}

Usage: can answer the following question:
What 1s the probability that the system is able to achieve a
given amount of work 7 during the interval [0, t]?

f) Probability that the “cumulative reward until absorption” Y(«)
1s less than or equal to » when an absorbing state 1s reached:
prob{Y(xo) <r}
— meaningful only for a Markov model with absorbing states

Sharpe:
reward(system-name) or rvalue(r;system-name) = prob{Y (o) <'r}

—~—

(in symbolic form) (in numerical form) .



Reward assignments

Ex1: An 1irreducible Markov model (no absorbing states)
reward assignment: r; = 1 to operational states
r; = 0 to non-operational states
E[Y(0)] E[Z()]=A(t) availability at time t
infinity E[Z(x)]=E[Z]=A steady state availability
(undefined) | pry(s)]= expected system up time during [0,t]
Same assignments for a Markov chain with absorbing states?

E[Z()]=R(t) reliability

E[Z(x)]=0 -
E[Y@®)]= | Ry | E[Y(0)[=MTTF= [y R(t)dt
0 k servers
Ex 2: A birth-death process modeling an M/M/k
DD D R
i 2p 3u (k-T)p kp kp kp

Suppose we know the s.s. probability vector © = {m,, T, T, ...}
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1) assign a reward of “# of customers” to each state
E[Z(t)] = expected population at time t
E[Z(x)] = E[Z] = steady state population

2) assign a reward of “service rate” to each state
E[Z(t)] = expected throughput at time t
E[Z(x)] = steady state throughput

A A -failure rate
. . . oq e p m
Ex 3:2P3M without repair capability .~ =

the system functions if at least 1 processor & 1 mm functioning
mm  CPU
P314 . \ ,/P
chap.12 * state representation: (i, j)
 assume that the service rate of the system in state (i, j) 1s:

r, =m(l—-(1 —l)l) when / = min(i, j) and m = max(i, j)
m

1) assign a reward of ““service rate” to each state
E[Z(t)] = expected throughput at time t
E[Y(x)] = expected # of customers serviced before fallure



2) reward assignment: 1. = 1 to operational states, 1.e., (3,2), (2,2)
(1,2), (3,1), (2,1) and (1,1)
r; = 0 to non-operational states
E[Z(t)] = reliability at time t
E[Y(0)] = MTTF

A Markov chain for Q @ @%
reliability analysis

of a system without

P
repair capability ° 3 Moy 2 A A
A

+ A= 1/(2%720), A= 1/(720)
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bind A,
bind A,

1/(2%720)
1/720

Markov 3mem-2proc
* memory failure

Q‘ default is 0 assigned to other states

32 22 3*Q,
22 12 2*Q,
12 02 A,
31 21 3*A,
21 11 2%k,
11 01 A,

* processor failure
3231 2%,
31 30 A,
2221 2%,
21 20 2,
1211 2%},
1 10 2,

* reward assignment

/ reward
32 132
22 122
12 rl2
31 31
21 21
11 rll
end
32 1.0

end

Probability of the
system serving less than
200 customers before
it fails

expected
reward
(throughput)
at time t=20

P.375
sum(index,low,high,
expression)
%
* Reward assignment is the

* service rate in state (i, /)
bind

r32 15/9

22 3/2

rl2 1

r31 1

21 1

rll |
end

* print prob{Y (o) <r}
* in symbolic form
reward (3mem-2proc)

\* print prob{Y () <200}

rvalue (200; 3mem-2proc)
* print E[Z(20)]

> exrt (20; 3mem-2proc)

* print E[Z(20)] again based on
* the definition of E[Z(1)], i.e.,

E[Z(V)] = Zrij T (1)

expr sum(i, 1, 3, sum(j, 1, 2,\

b'(srevvalrd(?amem—2proc, $(1)$())*\

value(20;3mem-2proc, $(1)$(j)))))

* sreward returns the reward assigned
* to a state
%

* Reward assignment to calculate R(t)
%

bind 32 1

bind rll1 1

%

* print R(t) at t=20

expr exrt(20; 3mem-2proc)

* code to be continued in the next page
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* R(20) 1s the same as E[Z(20)] with this reward assignment
{ expr exrt (20; 3mem-2proc)
/‘ expr value (20; 3mem-2proc, 32) +\
value (20; 3mem-2proc, 31) +\

sTl?:;e dt\gNii)/e value (20; 3mem-2proc, 22) + \
the same ~ value (20; 3mem-2proc, 21) +\
result value (20; 3mem-2proc, 12) +\ .
value (20; 3mem-2proc, 11) * What is E[Y(c0)] with
E[Y (1)] * this reward assignment?

*

* compare E[Z(1)], E[Y(t)] &

E[Y (1)]
t

t

as t increases

* we expect E[Z(t)] ~

loop t,0,30,5
expr exrt (t; 3mem-2proc)
expr cexrt (t; 3mem-2proc)
expr cexrt (t; 3mem-2proc)/t

end

* end the sharpe program
end
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An acyclic
(irreducible)

Markov chain
for availability

analysis
-+ Per processor A = 1/(2*720), per MM A= 1/(720)
b 318 * Once a system enters a failure state, the system
This Markov model halts. until it enters an operational state again via
is irreducible ) Tepair
due to repair * There 1s 1 repair facility for processors with the
repair rate of p, = 1/4 & 1 repair facility for

~  memory modules with the repair rate of p = 1/2,

so simultaneous repair 1s possible 1n this case.
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bind A, 1/(2*%720)
bind A, 1/720
bind p, 172
bind p, 1/4
Markov 3mem-2proc readprobs
* memory failure 4
32 22 3%), required for
22 12 2%}, transient
1202 A, analysis
SO
m irreducible
11 01 A, )
* processor failure Markov chain
32 31 2%),
31 30 A,
2221 2%,
21 20 A,
1211 2%,
1T 10 A,
* reward assignment
p reward
32 132
22 122
12 rl2
31 131
21 21
11 rll

* default is 0 assigned to other states
\ end

32 1.0

end

* processor repair

30 31 |,
31 32 u,
20 21y,
21 22
10 11
I 12,
01 02 |,
* memory repair
22 32y,
12 22 p,
02 12 pu,
21 31
11 21 p,
or 11 p,

expected
reward

(throughput) |

at time t=20

* prob{Y () <r}
* is not meaningful in this case
* Print expected cumulative # of clients
* served at t=50 as E[Y(50)]
cexrt (50; 3mem-2proc)
* print E[Z(20)]
— exrt (20; 3mem-2proc)
* print E[Z(20)] again based on
* the definition of E[Z(1)], i.e.,

" EIZ(0]= S, 7y (0)

expr sum(i, 1, 3, sum(j, 1, 2\
(sreward(3mem-2proc, $(1)$(j))*\
value(20;3mem-2proc, $(1)$(j)))))

* reward assignment for availability

* Reward assignment is the
* service rate in state (i, j)

bind
132
122
r12
r31
121
rll

end

15/9
3/2
1

1
1
1

bind 32 1

bind rl1l1 1
%k
* print A(t) at t=20 as E[Z(t=20)];

expr exrt(20; 3mem-2proc)
%

* When repair exists & Markov chain is
* irreducible, E[Z(0)] exists; it is

* the steady state availability in this case
expr exrss (3mem-2proc)

end
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