Case Study 1: Replicated File Management

Source: S. Jajodia & D. Mutchler,
“Dynamic voting algorithms for maintaining the consistency of a replicated database”

one copy: ← if failed, then it is not accessible

Availability

\[
A(\infty) \equiv \text{Availability} = \frac{\mu}{\lambda + \mu}
\]

\[
A(t) \equiv P_1(t) = \frac{\mu}{\mu + \lambda} + \frac{\lambda}{\lambda + \mu} e^{-(\mu+\lambda)t}
\]

\[
1 - A(t) \equiv P_0(t) = \frac{\lambda}{\mu + \lambda} - \frac{\lambda}{\lambda + \mu} e^{-(\mu+\lambda)t}
\]
Can we use replicated copies to improve availability?
consider **only the update operations**: suppose we have 7 copies

Cannot update just one copy and leave the others unchanged
→ will create inconsistency problems

Must maintain **one-copy** illusion to the user
Consistency algorithms for replicated data:

Static: n copies
(simple voting) *can do update if a majority of n copies can be reached & updated

Communication failure

This partition can do update

This partition cannot do update

A write quorum
Another write quorum

No partition can do any update

This partition can still do update
Dynamic voting:

can do update if a majority of current (up-to-date) copies
(since the last update) can be found and updated. These majority
copies are called in the “major partition”.

Each copy is associated with a set of local variables:
1) version number (VN): to tell if the local copy is current
2) site cardinality (SC): to tell how many copies are current, e.g., if in
the last update, 5 copies were updated, then SC = 5

![Diagram showing dynamic voting example]

No failure

Communication failure

This partition can do update
because 4 is a majority
** All copies within the major partition are updated & the new SC is set to the # of copies in the major partition.

This partition can do update because 2 is a majority of SC=3

No partition can do update. System halts & must wait for repairs to occur.
Reunion Scenarios

No major partition exists

Still not a major partition because the # of copies with the highest version # (i.e. 4) is 1 which is not a majority of 2 (the SC associated with the current copy)

A major partition now

No major partition exists

Repair of network partitioning and node failure
Availability modeling:

Site-failure only model: there is only one partition

System models:

1) failure rate of each site is \(\lambda \)
2) repair rate of each site is \(\mu \)
3) updates are frequent and there is always an update immediately following a failure/repair.

Static voting: system is available as long as \(k \) out of \(n \) are available, so the “site availability” is given by:

\[
A(\infty) = \sum_{k=\lceil \frac{n}{2} \rceil+1}^{n} \frac{k}{n} \binom{n}{k} \left(\frac{\mu}{\lambda + \mu} \right)^k \left(1 - \frac{\mu}{\lambda + \mu} \right)^{n-k}
\]

\[\frac{k}{n} = \text{prob}\left\{ \text{an update request arrives at one of } k \text{ sites in the major partition} \right\}\]
Dynamic voting: no simple probability expression exists

Resort to Markov modeling

Petri net modeling

state representation

(X, Y, Z)

X of Y current copies are alive

\[\therefore Y-X \text{ of } Y \text{ current copies are down} \]

Y = current site cardinality (SC) or # of current copies

Z of the n-Y other sites are alive but out-of-date

n: # of initial copies (e.g., n=7)
Site Availability: \[A(\infty) = \sum_{i=2}^{n} \left\{ \text{prob}\{(i, i, 0)\} \times \frac{i}{n} \right\} \]

repair of a current copy in the major partition

repair of an out-of-date copy in the major partition

* in state (1,2,0): no update can be performed because 1 is not a majority of 2.
Site availability comparison results:

* static voting is better than dynamic voting when $n=3$

Update is permitted in static voting but not permitted in dynamic voting

* when $n>3$ dynamic voting is better