Case Study 1: Replicated File Management

one copy: ← if failed, then it is not accessible

Availability

\[
A(\infty) \equiv \text{Availability} = \frac{\mu}{\lambda + \mu}
\]

\[
A(t) \equiv P_1(t) = \frac{\mu}{\mu + \lambda} + \frac{\lambda}{\lambda + \mu} e^{-(\mu+\lambda)t}
\]

\[
1 - A(t) \equiv P_0(t) = \frac{\lambda}{\mu + \lambda} - \frac{\lambda}{\lambda + \mu} e^{-(\mu+\lambda)t}
\]
Can we use replicated copies to improve availability? consider only the update operations: suppose we have 7 copies

Cannot update just one copy and leave the others unchanged → will create inconsistency problems

Must maintain one-copy illusion to the user
Consistency algorithms for replicated data:

Static: \(n \) copies
(simple voting) *can do update if a majority of \(n \) copies can be reached & updated

Communication failure

This partition can do update

This partition cannot do update

A write quorum

Another write quorum

No partition can do any update

This partition can still do update
Dynamic voting:

can do update if a **majority of current (up-to-date) copies** (since the last update) can be found and updated. These majority copies are called in the “**major partition**”.

Each copy is associated with a set of local variables:
1) version number (VN): to tell if the local copy is current
2) site cardinality (SC): to tell how many copies are current, e.g., if in the last update, 5 copies were updated, then SC = 5

![Diagram showing the concept of dynamic voting and majority rule](image-url)
** All copies within the major partition are updated & the new SC is set to the # of copies in the major partition.

This partition can do update because 2 is a majority of SC=3

No partition can do update. System halts & must wait for repairs to occur.
Reunion Scenarios

Still not a major partition because the # of copies with the highest version # (i.e. 4) is 1 which is not a majority of 2 (the SC associated with the current copy).

Repair of network partitioning

A major partition now

Repair of network partitioning and node failure

No major partition exists

No major partition exists
Availability modeling:

Site-failure only model: there is only one partition

System models:

1) failure rate of each site is λ
2) repair rate of each site is μ
3) updates are frequent and there is always an update immediately following a failure/repair.

Static voting: system is available as long as k out of n are available, so the “site availability” is given by:

$$A(\infty) = \sum_{k=\lceil \frac{n}{2} \rceil + 1}^{n} \frac{k}{n} \binom{n}{k} \left(\frac{\mu}{\lambda + \mu} \right)^k \left(1 - \frac{\mu}{\lambda + \mu} \right)^{n-k}$$

\[k = \text{prob} \left\{ \text{an update request arrives at one of } k \text{ sites in the major partition} \right\} \]
Dynamic voting: no simple probability expression exists

Resort to Markov modeling or Petri net modeling

State representation

\((X, Y, Z) \)

- \(X \): \# of initial copies (e.g., \(n=7 \))
- \(Y \): current site cardinality (SC) or \# of current copies
- \(Z \): \# of other sites that are alive but out-of-date

\(X \) of \(Y \) current copies are alive

\(Y - X \) of \(Y \) current copies are down

\(\therefore Y - X \) of \(Y \) current copies are down
Site Availability: \[A(\infty) = \sum_{i=2}^{n} \left\{ \text{prob}\{(i, i, 0)\} \times \frac{i}{n} \right\} \]

repair of a current copy in the major partition

repair of an out-of-date copy in the major partition

* in state (1,2,0): no update can be performed because 1 is not a majority of 2.
Site availability comparison results:

* static voting is better than dynamic voting when $n=3$

Update is permitted in static voting but not permitted in dynamic voting

* when $n>3$ dynamic voting is better