Chap 5: Product-Form Queuing Networks (QN)

Entities: 1) service centers — with different service disciplines
 2) customers (jobs) — single class
 — multiple classes
 (each/w a different workload)
 3) links connecting service centers
Service disciplines
1) FCFS
2) Priority — can be preemptive or non-preemptive
3) Round Robin (RR) — time-slot based
4) Processor Sharing (PS) — the server’s capability is equally divided among all jobs
5) Last-Come-First-Serve Preemptive Resume (LCFSPR) — stack push-pop style

Open vs. Closed QNM
Open: customers arrive from an external source, spend time in the system & finally depart.
Closed: # of customers circulating among the service centers is a constant, i.e., no external source of jobs & no departure.
What is a “product-form” solution for a QNM?
- The joint probability of the queue sizes in the network is a product of the probabilities of queue sizes in individual service centers.

e.g., a tandem queuing network with 2 servers

A Markov chain

A job arrives at server 1

A job leaves server 2

A job leaves server 1
By solving the steady-state **global balance equations** (one for each state), it can be shown that:

\[
P(n_1, n_2) = (1 - \rho_1)\rho_1^{n_1} (1 - \rho_2)\rho_2^{n_2} \text{ where } \rho_1 = \frac{\lambda_1}{\mu_1} \text{ & } \rho_2 = \frac{\lambda_1}{\mu_2}
\]

The **joint population probability** that there are \(n_1 \) jobs at server 1 & \(n_2 \) jobs at server 2 is the **product of the population probabilities** for two individual M/M/1 queues.
Product-Form Queuing Networks

A QN is said to have a product-form solution if

\[
P(n_1, n_2, \ldots, n_J) = \prod_{j=1}^{J} P_j(n_j)
\]

\(P_j(n_j) \) is a function only of the j-th center

This is true when the following characteristics hold (p. 93, text):

1. The routing of customers from one service center to the next must be history independent, i.e., memory less (or Markovian).
2. The queuing disciplines may be FCFS, PS (Processor Sharing), IS (Infinite Server) or LCFSPR (Last Come First Serve with Preemptive-Resume)
3. For an FCFS center, the service time distribution must be exponential; for other servers, the service time distribution does not have to be exponential but must be differentiable (w. r. t. time)
4. A product-form network may have multiple chains (multiple classes) of jobs and may be open with respect to some chains of jobs and closed with respect to others. External arrivals for all open chains must be Poisson.
Open product-form QNs:
All jobs arrive from an external source & depart to a sink.

Arrival rate to \(j \)

\[
\lambda_j = r_j + \sum_{k=1}^{J} \lambda_k q_{kj}
\]

- From the external source
- From other centers in the network

Ex:

\[
\lambda_1 = r_1 \\
\lambda_2 = \lambda_1 \times 1
\]

\[
\therefore \lambda_1 = \lambda_2 = r_1
\]

A general method to solve an open system QNM with a PF solution:
1) get input arrival rate for each center.
2) analyze each center separately.
3) get aggregate measures, e.g.,

\[
n = \sum_{k} n_k
\]
e.g. $r_1 = 0.5$, $\mu_1 = 1$ & $\mu_2 = 2 \implies \rho_1 = \frac{\lambda_1}{\mu_1} = 0.5$, $\rho_2 = \frac{\lambda_2}{\mu_2} = \frac{0.5}{2} = 0.25$

Evaluate each center independently

$$\bar{n}_1 = \frac{\rho_1}{1 - \rho_1} = \frac{0.5}{1 - 0.5} = 1; \quad \bar{n}_2 = \frac{\rho_2}{1 - \rho_2} = \frac{0.25}{1 - 0.25} = \frac{1}{3}$$

$$R_1 = \frac{\bar{n}_1}{\lambda_1} = \frac{1}{0.5} = 2; \quad R_2 = \frac{\bar{n}_2}{\lambda_2} = \frac{\frac{1}{3}}{0.5} = \frac{2}{3}$$

\[\therefore \text{time spent in the system by a customer:} \quad 1 + 1 + \frac{1}{6} + \frac{1}{2} = \frac{8}{3} \text{ time units} \]

Waiting time at center 1,

$$w_1 = R_1 - \frac{1}{\mu_1} = 2 - \frac{1}{1} = 1$$

Waiting time at center 2,

$$w_2 = R_2 - \frac{1}{\mu_2} = \frac{2}{3} - \frac{1}{2} = \frac{1}{6}$$
Ex: open product-form QNM with feedback

\[
\begin{align*}
\lambda_1 &= r_1 + \lambda_2 + \lambda_3 \\
\lambda_2 &= \lambda_1 P_2 \\
\lambda_3 &= \lambda_1 P_3
\end{align*}
\]

\[
\therefore \lambda_1 = r_1 + \lambda_1 P_2 + \lambda_1 P_3
\]

or \[
\lambda_1 = \frac{r_1}{1 - P_2 - P_3} = \frac{r_1}{P_1}
\]

Q: X, n, R?

\[
X = \lambda_1 P_1 = \left(\frac{r_1}{P_1} \right) \times P_1 = r_1
\]

n = n1 + n2 + n3

R = n/X
Closed Product-Form Networks

A network with a set of jobs circulating indefinitely or a network in which a job leaving the network will be replaced instantly by a statistically identical new job. e.g.,

\[
N = 4
\]

In general, consider a network with J service centers serving N jobs:

Visit count to center j

\[
V_j = \sum_{k=1}^{J} V_k \times q_{kj}
\]

probability that a job leaving center k moves to center j

A particular center’s visit count is set to one based on the model’s physical meaning.
Solution Technique: **Mean Value Analysis Algorithm** — it yields the average values of performance measures.

In a closed system with \(N \) jobs, when a job arrives, it actually sees only \((N-1)\) jobs distributed in the system.

Notation:
- \(\mu_j \): service rate at center \(j \)
- \(\bar{n}_j(k) \): average number of jobs at center \(j \) when \(k \) jobs are in the system
- \(\bar{r}_j(k) \): average response time of a job at center \(j \)
 - when there are \(k \) jobs in the system
- \(\bar{T}(k) \): system throughput
- \(\bar{t}_j(k) \): throughput at center \(j \)
Formulas:

\[
\overline{r}_j(k) = \frac{1}{\mu_j} \left(1 + n_j(k - 1)\right)
\]

\(r_j(k)\) is estimated just like in M/M/1 except that population is one less

\[
\overline{T}(k) = \frac{k}{\overline{R}} = \frac{k}{\sum_{j=1}^{J} v_j \cdot \overline{r}_j(k)}
\]

by Little's Law

\[
\overline{t}_j(k) = v_j \cdot \overline{T}(k)
\]

\[
\overline{n}_j(k) = \overline{t}_j(k) \cdot \overline{r}_j(k)
\]

by Little's Law

Recursion:

Given

\[
\mu_j \quad \text{for all } j, \quad 1 \leq j \leq J
\]

\[
\nu_j \quad \text{for all } j's
\]

\[
k=0 \quad n_j(0) = 0 \rightarrow r_j(k) \rightarrow \overline{R} = \sum_{j=1}^{J} v_j \overline{r}_j(k) \rightarrow \overline{T}(k) \rightarrow \overline{t}_j(k) \rightarrow \overline{n}_j(k)
\]

\[
k=k+1 \text{ until } k=N
\]

A particular center’s visit count is set to one based on the model’s physical meaning.
e.g.,

\[
\begin{align*}
\mu_1 &= 2, \\
\mu_2 &= 1
\end{align*}
\]

Set \(v_1 \) to 1 then \(v_2 = 1 \)
(\(\therefore \) relative visit count is the same for both centers in this example)

P.100, text

\[\begin{align*}
k=0 & \quad \text{Starting with } n_1(0) = 0; n_2(0) = 0 \\
 r_1(1) &= \frac{1}{2}(1+0) = \frac{1}{2}; \quad r_2(1) = \frac{1}{1}(1+0) = 1 \\
 R(1) &= \frac{1}{2} + 1 = \frac{3}{2} \\
 T(1) &= \frac{1}{3} = \frac{2}{3} \quad \text{(Little’s Law)} \\
 t_1(1) &= \frac{2}{3} \quad \text{&} \quad t_2(1) = \frac{2}{3} \quad (\therefore \quad v_1 = v_2 = 1) \\
 n_1(1) &= \frac{2}{3} \quad \text{&} \quad n_2(1) = \frac{2}{3} \times 1 = \frac{2}{3}
\end{align*}\]

\[\begin{align*}
k=1 & \quad \frac{2}{3} \quad \text{&} \quad \frac{2}{3} \quad (\therefore \quad v_1 = v_2 = 1) \\
 r_1(2) &= \frac{1}{2}(1+\frac{1}{3}) = \frac{2}{3}; \quad r_2(2) = \frac{1}{1}(1+\frac{2}{3}) = \frac{5}{3} \\
 R(2) &= \frac{2}{3} + \frac{5}{3} = \frac{7}{3} \\
 T(2) &= \frac{2}{7} = \frac{6}{7} \\
 t_1(2) &= \frac{6}{7} \quad \text{&} \quad t_2(2) = \frac{6}{7} \\
 n_1(2) &= \frac{6}{7} \quad \text{&} \quad n_2(2) = \frac{6}{7} \times \frac{5}{3} = \frac{10}{7}
\end{align*}\]
\(k=3 \) \[
\begin{align*}
\bar{r}_1(3) &= \frac{1}{2} \left(1 + \frac{4}{7} \right) = \frac{11}{14} \\
\bar{r}_2(3) &= \frac{1}{1} \left(1 + \frac{10}{7} \right) = \frac{17}{7} \\
\bar{R}(3) &= \frac{11}{14} + \frac{17}{7} = \frac{45}{14} \\
\bar{T}(3) &= \frac{3}{45/14} = \frac{14}{15} \\
\bar{t}_1(3) &= \bar{t}_2(3) = \frac{14}{15} \\
\bar{n}_1(3) &= \frac{14}{15} \times \frac{11}{14} = \frac{11}{15} \\
\bar{n}_2(3) &= \frac{14}{15} \times \frac{17}{7} = \frac{34}{15}
\end{align*}
\]
\(k=4 \) \[
\begin{align*}
\bar{r}_1(4) &= \frac{1}{2} \left(1 + \frac{11}{15} \right) = \frac{13}{15} \\
\bar{r}_2(4) &= \frac{1}{1} \left(1 + \frac{34}{15} \right) = \frac{49}{15} \\
\bar{R}(4) &= \frac{13}{15} + \frac{49}{15} = \frac{62}{15} \\
\bar{T}(4) &= \frac{4}{62/15} = \frac{60}{62} = \frac{30}{31} \\
\bar{t}_1(4) &= \bar{t}_2(4) = \frac{30}{31} \\
\bar{n}_1(4) &= \frac{30}{31} \times \frac{13}{15} = \frac{26}{31} \\
\bar{n}_2(4) &= \frac{30}{31} \times \frac{49}{15} = \frac{98}{31}
\end{align*}
\]
(last iteration)
Using sharpe to solve closed QNMs

There are 6 types of service centers in a closed QNM which can be specified in a sharpe program:

1. FCFS — Syntax: station-name fcfs rate
2. IS — Syntax: station-name is rate — there are infinite # of servers in the center
3. MS — Syntax: station-name ms #servers rate — there are multiple servers in the center, each with the identical service rate
4. LCFSPR — Syntax: station-name lcfspr rate
5. PS — Syntax: station-name ps rate — all n jobs present at the center share one server with each job seeing the server speed reduced by a factor of n
6. LDS (Load-dependent server) — Syntax: station-name lds rate1, rate2, … — all jobs at the center again share one server but the service rate of the server is load dependent (i.e., depending on the # of jobs present in the center)

Q: how to calculate $r_j(k)$ for a IS center?

Automatically computed by sharpe

Must be specified in the sharpe code
Program structure for single-chain (or single class) product-form queuing networks (for a closed system)

\begin{verbatim}
pfqn {(para-list)}
* section 1: station-to-station probabilities
 < station-name station-name expression>
end
* section 2: station types & parameters
 < station-name station-type expression, …>
end
* section 3: number of customers per chain (or per class)
 < chain-name expression>
end
\end{verbatim}
144

CPU

P1 = 0.667
P2 = 0.233

disk 1

30 ms

disk 2

42.9 ms

P0 = 0.1

25 s

20 ms

Terminals

M

* central server model
bind
P1 0.667
P2 0.233
end
pfqn csm
CPU disk1 P1
CPU disk2 P2
CPU terminals 1-P1-P2
terminals CPU 1
disk1 CPU 1
disk2 CPU 1
end

Section 1

For other service disciplines see p.362, text

* station types & parameters
 terminals IS 1/25
 CPU fcfs 1000/20
disk1 fcfs 1000/30
disk2 fcfs 1000/42.9
end

Section 2

* number of jobs
 chain1 M
end

Section 3

Service time per visit
These are rate parameters

e.g., p.222 & p.102
qlength returns per-center population

* (continued)
* reporting per center (CPU) measures
loop i, 2, 10, 2
 bind M i
 expr tput (csm, CPU)
 expr util (csm, CPU)
 expr qlength (csm, CPU)
 expr rtime (csm, CPU)
end
* calculate the system response time
* by applying Little’s Law
 * $R = \frac{n}{x}$, where
 * n: population in the central system
 * x: throughput of the central system

\[
\text{func } x() \triangleq tput (csm, CPU) \ast (1-P_1-P_2)
\]
\[
\text{func } nbar() \triangleq qlength (csm, CPU) + \backslash
 qlength (csm, disk1) + \backslash
 qlength (csm, disk2)
\]
bind M 10
* calculate the average response time per
* terminal user once it enters the central
* system when M=10 in the terminal center
expr nbar()/x()
end
/* end the entire program */

Apply MVA to this closed system and set the visit count to 1 for the terminals center. You should get the same output. Note: set $r_{terminals} = 25s$ because it is an IS center.
Multiple-chain product-form queuing networks (for a closed system)

```
mpfqn  {(parameter-list)}
* section 1: station to station probabilities for each chain.
<chain  chain-name
  <station-name station-name expression>
  :
  end>
end
* section 2: station types & parameters
<<station-name  station-type expression, …>
<chain-name  expression, …>
  :
  end>
end
* section 3: number of jobs per chain
<chain-name  expression>
end
```
Example:

Two classes:
chain A: 2 jobs
chain B: 1 job

Service time (service demand)
\[D_{A,CPU} = 2; \quad D_{A,disk} = 1 \]
\[D_{B,CPU} = 3; \quad D_{B,disk} = 2 \]

Performance measures of interest?
— Response time of a job (system)
— Response time of a class A job (per class)
— Response time of a class B job in the CPU center (per center per class)
— Throughput of the CPU center for class A jobs (per center per class)
— Utilization of the CPU center for class B jobs (per center per class)
* An example of using sharpe for solving a multiple-class product form queuing network
* Two classes: A and B; assume visit count is 1 for each center
* number of jobs: (2A, 1B)
* number of stations: 2 -- cpu and disk
* \(D_{A,cpu} = 2 \)
* \(D_{A,disk} = 1 \)
* \(D_{B,cpu} = 3 \)
* \(D_{B,disk} = 2 \)
* want to know \(R_A, X_A, (n_{A,cpu}), (U_A,cpu) \)

mpfqn simple
* section1: station to station transition probabilities

```plaintext
chain A
  cpu disk 1
  disk cpu 1
end
chain B
  cpu disk 1
  disk cpu 1
end
end
```

\(D_{A,CPU} = 2; \ D_{A,disk} = 1 \)
\(D_{B,CPU} = 3; \ D_{B,disk} = 2 \)
*section 2: station types and parameters

cpu ps
A 1/2
B 1/3
end
disk ps
A 1/1
B 1/2
end

*section 3: number of customers in each chain
A 2
B 1
end

Per-center per class-> per class measures
Summation applies to population only
Per-class measures -> system measures
Summation applies to population and throughput
Once you know population and throughput You can know the response time by Little’s Law

*In general need to calculate $R_A = n_A / X_A$.
*But for the simple system here, we can calculate $R_A = R_{A,cpu} + R_{A,disk}$
expr mrttime(simple,cpu,A) + mrttime(simple,disk,A)

* $X_A = X_{A,cpu}$ for this simple system
expr mtput(simple,cpu,A)

*population of class A at CPU: $n_{A,cpu}$
expr mqlength(simple,cpu,A)

*utilization of class A at CPU: $U_{A,cpu}$
expr mutil(simple,cpu,A)

end

Output:
mrttime(simple,cpu,A) + mrttime(simple,disk,A): 6.3478e+00
mtput(simple,cpu,A): 3.1507e-01
mqlength(simple,cpu,A): 1.4795e+00
mutil(simple,cpu,A): 6.3014e-01