Chap 11: Hierarchical Models

Objective: to avoid large models so as to improve solution efficiency.


```
P.265
             <u>relgraph</u>
                       rbridge (v1, v2, v3, v4, v5)
Partial
                       \exp(v1)
                 Х
             W
sharpe
                    exp(v2)
                 Ζ
             Χ
code
                     exp(v4)
                 У
             W
shown
                      \exp(v5)
                 Ζ
             y
             bidirect
                       \exp(v3)
             Х
                 У
             end
                      rel-in-block
             <u>block</u>
                      11
                           exp (u11)
             comp
                      12 \exp(u12)
             comp
                           exp (u13)
                      13
             comp
                      14
                           exp (u14)
             comp
                           exp (u15)
                      15
             comp
                      bridge1 cdf (rbridge; u1, u2, u3, u4, u5)
             comp
                      bridge2 cdf (rbridge; u6, u7, u8, u9, u10)
             comp
             <u>parallel</u>
                      C 12 13
                      D bridge1 11 C
             series
                      E 14 bridge2 15
             series
                      top D E
             <u>parallel</u>
             end
             eval (rel-in-block) 0 50000 500
             end
```

Ex2: A queuing model with resource constraints

r				
* low-level model				
(inner(n)		
		disk1		
		disk2		
	CPU	CPU	$1 - P_1 P_2$	
	disk1	CPU	1	
	disk2	CPU	1	
	end			
Ň	CPU	<u>fcfs</u>	1000/20	
	disk1	fcfs	1000/30	
	disk2	<u>fcfs</u>	1000/42.9)
	end			
	chain1	n		
	end		central	(lds)
	end			
			\leq	
* high-level model				term
	_	outer(M		25 sec
	<u> </u>	central		think
		term		time
	end			
I				

*station types term is 1/25central <u>lds</u> X(1), X(2), X(3), X(4)end chain1 Μ end * define function for lds throughput X(n) <u>func</u> X(n) tput(inner,CPU;n)*(1-P1-P2) * can also be obtained as * (1000/20 * util(inner,CPU;n))*(1-P1-P2) * by Little's Law, i.e., $x_{CPU} = \mu_{CPU} * \rho_{CPU}$ bind Service Utilization P1 0.667 rate of of CPU P2 0.233 CPU end * reporting each terminal user's response time in * the central system as the number of users (M) * increases <u>loop</u> i, 0, 4, 1 <u>expr</u> $5^{*}(2^{i})$ <u>expr</u> rtime(outer, central; $5^{*}(2^{i})$) end 153 end

- * performance measures of interest: response time & queue length at CPU.
- * not in product-form because of priority scheduling.

Approximation solution: suppose u_2 is the utilization of the CPU dedicated to class 2 jobs. Then the CPU service rate for class 1 jobs is slowed down by a factor of $(1-u_2)$

* we don't know u_2 since it is an output, but we need it as an input for class 1 jobs.

: use iterative technique

Create two CPUs, one for class 1 & the other for class 2, with the CPU service rate to class 1 jobs reduced by a factor of $(1-u_2)$

* we don't know what the initial value of
$$u_2$$
 is,
* so make a guess $u_2=0$ initially
bind u_2 mutil (iter, CPU2, 2; 3, 4, 0)
rame station mame chain 2
* continue this for a sufficient # of iterations
until u_2 converges \Rightarrow try 5 times
loop i, 1, 5, 1
bind u_2 mutil (iter, CPU2, 2; 3, 4, u_2)
end
* i=1 $u_2 \leftarrow 0.659839$
* i=3 $u_2 \leftarrow 0.659839$
* i=2 $u_2 \leftarrow 0.659839$
* i=2 $u_2 \leftarrow 0.659839$
* i=2 $u_2 \leftarrow 0.659839$
* i=3 $u_2 \leftarrow 0.659838$
* i try starting u_2 with another initial value,
* say $u_2 = 0.9$
bind u_2 0.9
loop 1, 1, 5, 1
bind u_2 mutil (iter, CPU2, 2; 3, 4, u_2)
end
M1=3; M2=4 & u_2 is equal to the u_2 in the previous iteration
157

Ex4: M/M/1/k queue with server failure & repair

P.233, text & p.294

1-level model

 γ : failure rate λ : job arrival rate τ : repair rate μ : job service rate

te representation (a, b) # of jobs $\begin{cases} 1 & alive \\ 0 & failed \end{cases}$

> prob {idle server} = $prob_{(0,0)} + prob_{(0,1)}$ rejection probability = $prob_{(10,0)} + prob_{(10,1)}$

Two-level model

observation: job arrivals/services are much faster than server failures/repairs

- "the set of states (0,1) (1,1)(9,1) (10,1) whose transitions are job arrivals and departures will reach equilibrium between the times when a failure/repair occurs."
- \Rightarrow isolate out the fast recurrent set of states from the 1-level model, analyze it for steady-state probabilities & replace it by a single state in the original model.

Low-level:

$$(0,1) \xrightarrow{\lambda} (1,1) \xrightarrow{\mu} (2,1) \xrightarrow{\lambda} (1,1) \xrightarrow{\mu} (2,1) \xrightarrow{\mu} (1,1) \xrightarrow{\mu$$

 $Prob \{idle \ server\} = prob(high-model, 0, 0) \\ + prob(high-model, 1) * prob(low-model, 0, 1)$

Rejection prob = prob(high-model,(10,0)) + prob(high-model,(1)) * prob(low-model,(10,1))