
161

Chap 7: Stochastic Petri Net Models
* A stochastic Petri net (SPN) consists of places, transitions, arcs, tokens
and a set of firing rules.



place

tokens
representing

jobs
arc

P1

P2

An arc’s multiplicity can
be 1 (default), >1, or a 
variable depending on
the state of the system

immediate 
transition

the transition time  
is zero 

timed 
transition

the transition time is 
exponentially distributed

Both are allowed in a generalized 
SPN model, or a GSPN model 

(SPNP is based on GSPN)

can be arbitrary distribution
in an extended SPN 

(ESPN) model
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* Firing rule: A transition is enabled if:

a) the # of tokens in each input place without an inhibitor arc is
at least equal to the multiplicity of the input arc from that place.

b) the # of tokens in each input place with an inhibitor arc is less 
than the multiplicity of the input inhibitor arc from that place.

c) the enabling function of the transition (if any is assigned) returns
TRUE — which is the default if not assigned.

Concept of a state in SPN:
Each distinct Petri net marking (as a result of tokens 

being distributed to various places) constitutes a separate state 
in the underlying Markov model.
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e.g.

••

• •

a b State
(2, 0)

(1, 1)


•
•P1

P2

c

d

•
•

P1

P2

c

d

P2

c
a
•• P1

d

b
e.g. State (a, c, d)

(2, 0, 0)

(1, 1, 0)

(1, 0, 1)

P1
P2
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Ex: draw an SPN corresponding to the following M/M/1/5 queue

5,0 4,1 1,4 0,53,2















2,3

•
•       •

•  •

a b


queuefree buffer

arrival



# of 
free buffer slots 

still available
# of jobs

in the system

* An inhibitor arc of multiplicity m from a place P to a transition t will
disable t when P contains at least m tokens.

* A transition can be associated with a priority, an enabling function
which can be state-dependent, and a rate function which can also be      
state-dependent.

* when both immediate and timed transitions are enabled in a marking,
only immediate transitions will fire.

m PtWhen there are many transitions enabled, 
the highest priority one will be fired first. (also called a guard)
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Q:

 •
2

3

P1

P2

P3
t1

t3 t2

1

2

3How many states will 
be generated based on 
this SPN?

* when a transition fires, the # of tokens removed in each of its input
places is equal to the multiplicity of the input arc, and the # of 
tokens deposited in each of its output places is equal to the 
multiplicity of the output arc.

Ans:
absorbing

state

3,0,1
6,0,0

0,0,2

4,1,0 2,2,0 0,3,0
11

1

2
2

2

3

3
3

1
1,1,1
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Q2: What is the 
underlying 
Markov model 
of this SPN?

Ans:

Reachability Graph:

* The above state diagram is called the reachability graph of the 
SPN model. 

* When the SPN model does not contain immediate
transitions, the reachability graph is a Markov chain.

 •
3

P1

P2

P3
t1

t3 t2

1

3

2

3,0,1

0,0,2

6,0,0

1

1

3

3

Q1: What is the reachability 
graph of this SPN?

Ans: same as the one on the 
previous page except 2
is replaced by infinity
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Ex: draw an SPN using inhibitor arcs for an M/M/m/b queue
with m=3 and b=5 

This example features an inhibitor arc and a transition rate function
which depends on the marking (state) of the system.

(# of tokens in 
place “ buf ”) × 

if # of tokens < m
m × 

if # of tokens   m 

service rate =

0 1 4 52

3


2


3
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  m
servers

buffer size
limitation



t2t1
b buf
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Ex: a M/M/1/6 with a bulk service center (e.g., an elevator) capable of 
servicing 3 jobs per service whenever there are 3 jobs to 
be serviced

0 1 4 52 


















3 6




Define an arc multiplicity function for the input 
arc from buf to t2 to return a value of

3                      if tokens(buf)  3
tokens(buf)     otherwise

Markov 
model

the corresponding SPN model
b



t2
buft1
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Stochastic “Reward” Petri Net

Assigning a reward to each “marking” of the system

Like a state in a Markov model

tangible:
a state that enables

no immediate transition

vanishing:
not tangible

absorbing:
a state that does not
enable any transition

(it is also tangible by definition)

vanishing markings are not shown as “states” in the corresponding Markov chain.
(they are shown in the reachability graph)
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Structure of an SPNP program: (no main procedure)

The following procedures must be included in an SPNP program:
1. parameters(){} for reading input parameters: 

double input(msg) can be called within.
*2. net(){} for defining the stochastic Petri net.
3. assert(){} for checking illegal markings

4. ac_init(){} called before starting the reachability graph 
construction: normally empty 
(pr_net_info() can be called within)

5. ac_reach(){} called after the reachability graph is
constructed: normally empty 
(pr_rg_info() can be called within)

*6. ac_final(){} for calculating & reporting performance results.

return(RES_NOER)
return(RES_ERROR)

Output to .out file*introduced later in detail
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Frequently-used SPNP built-in functions:

1. Within net() for defining a stochastic Petri net:
• place(char *name)
• trans(char *name)
• init(name, n)      the initial # of tokens in place “name” is n
• priority(char *name, int priority)    priority of transition “name”
• guard(char *name, func)  

enabling_type(*func)();  

• rateval(char *name, rate_type val)
• ratefun(char *name, func)

• probval(char *name, probability_type val) 
• probfun(char *name, func)

“func” can be a marking-dependent function

associating 
an enabling
function to 
transition 
“name”

for a timed
transition

for an 
immediate
transition

rate_type(*func)();

probability_type(*func)();

Default: 
- priority=0 (lowest priority)
- no enabling function
(or a function always returning TRUE)

Use mark(p_name) to return # of tokens in place p_name,
& enabled(t_name) to see if transition t_name is enabled
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iarc(char *t_name, char *p_name);

oarc(char *t_name, char *p_name);

harc(char *t_name, char *p_name);

iarc

harc

oarcwith arc
multiplicity

=1

with arc 
multiplicity = constant

with arc 
multiplicity defined

by a function

miarc(t_name, p_name, mult)
moarc(t_name, p_name, mult)
mharc(t_name, p_name, mult)

viarc(t_name, p_name, func)
voarc(t_name, p_name, func)
vharc(t_name, p_name, func)

int int (*func)()
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2. within ac_final for reporting the final analysis results:

A. For calculating
E[Z()]              pr_expected(msg, function)

expected(function)

Printing/returning
the expected 
reward defined
by “function”
which assigns
rewards to states

reward_type (*function)();

char *msg; 

double

e.g.,

reward_type util(){if mark (“P1”) return 1;
else return (0);}

reward_type X(){if enabled (“t1”) 
return rate (“t1”);

else return (0);}

t1P1
this will
assign a

reward to
every state of 

the system

Use mark(p_name) to return # of tokens in place p_name,
& rate(t_name) to return the transition rate of transition t_name
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B. For calculating E[Z(t)]: expected reward at time t

expected(function)
must call time_value(double t) prior to calling expected(function) in ac_final()
must call para(IOP_METHOD, VAL_TSUNIF) in parameters() for transient 

analysis
C. For calculating E[Y()]: cumulative expected reward until absorption
cum_abs(function)

D.  For calculating E(Y(t)]: cumulative expected reward over [0, t]

cum_expected(function)
must call time_value(double t) prior to calling cum_expected(function) in 
ac_final()
must call para(IOP_METHOD, VAL_TSUNIF) in parameters()

See p.13  SPNP reference guide v.3.1; TSUNIF stand for 
“Transient Solution using Uniformization”; 
if not set, the default is VAL-SSSOR (Steady State SOR)

reward_type(*function)()

reward_type(*function)()

reward_type(*function)()
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(a variable rate)

1

m




b

M/M/m/b

Stochastic
Petri net
model

Example:

#include “user.h”
double lambda;
double mu;
int b;
int m;

parameters()
{

lambda = input(“enter lambda”);
mu = input(“enter mu”);
b = input(“enter b”); /*b=5 in this example*/
m = input(“enter m”); /*m=3 in this example*/

}

The underlying Markov model of M/M/3/5

0 1 4 52

3


2


3





33



trservtrin
b buf
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rate_type rate_serv()
{

if ( mark(“buf”)< m) return ( mark(“buf”)*mu);
else return (m*mu);

}
net()
{

place (“buf”);
trans (“trin”);
trans (“trserv”);
rateval (“trin”, lambda);
ratefun (“trserv”, rate_serv)
oarc (“trin”, “buf”);
iarc (“trserv”, “buf”);
mharc (“trin”, “buf”, b)

}

fixed transition rate
variable transition rate



trservtrin
b buf

(a variable rate)
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assert()
{

if (mark(“buf”) > b)  return (RES_ERROR);
else return (RES_NOERR);

} 
ac_init() {pr_net_info();}
ac_reach() {pr_rg_info();}
/* reward assignment functions for calculating performance metrics */
reward_type population() {return (mark(“buf”));}
reward_type util() {return (enabled(“trserv”));} /* or return mark(“buf”) > 0 */
reward_type tput() {return (rate(“trserv”));}
reward_type probrej() {if (mark(“buf”)==b) return (1.0); else return (0.0);}
ac_final()
{

printf(“average population = %f\n”, expected (population)); /*output to screen*/
pr_expected (“average throughput”, tput); /* output to *.out */
pr_expected (“average utilization”, util);
pr_expected (“rejection probability”, probrej);
pr_value (“response time”, expected (population)/expected (tput)); 

}

0 1 b2
..

..m

2

..
..m




m
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An M/M/N/K queue with server failure & repair
For an M/M/1/10 queue with server failure/repair, we have:
0,1 1,1

9,0

9,1

10,0

10,1

0,0 2,0

2,1

1,0







 




 









         
… The state             

representation is (a, b)

# of servers buffer space

# of jobs

# of alive servers
P.235, text

We can study any (N, K) easily with an SPN without having to
recreate a Markov model for each (N, K) pair.  

•
•       •

•  •

N

server_down


t3 t4

server_up

variable rate:
mark(“server_up”)*
where  is the per-
server failure rate

job
K

t1

enabling function:
if mark(“server_up”)

return true;

service rate: Depending on # of jobs, 
i.e., mark(“job”), and # of alive 
servers, i.e., mark(“server_up”)

…

is a fixed 
repair rate of 
one facility

t2
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* number of digits after decimal point set to 8
format 8
loop t, 0, 100, 50

expr R(t)
expr exrt(t,TMR)

end
expr mean(TMR,F)
expr mean(TMR)
end
========== output ============
* The following loop prints the
* reliability as a function of t

t=0.000000
R(t):   1.00000000e+00
exrt(t,TMR):   1.00000000e+00

t=50.000000
R(t):   9.93096301e-01
exrt(t,TMR):   9.93096301e-01

t=100.000000
R(t):   9.74555818e-01
exrt(t,TMR):   9.74555818e-01

-------------------------------------------
mean(TMR,F):   8.33333333e+02

-------------------------------------------
mean(TMR):   8.33333333e+02

* An example to illustrate how to 
* calculate reliability and 
* mean time to failure of a TMR
* system using a Markov model
markov TMR
3 2   3 * lambda
2 F   2 * lambda
reward
3 1
2 1
end
* initial probability
3 1
end

bind
lambda 0.001

end
* value(t; system, state) or 
* tvalue(t; system, state) returns the
* probability of the system in “state” at time t
func R(t)   1 - value(t; TMR, F)

echo The following loop prints the
echo reliability as a function of t

3 2 F
3 2
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/* An example to illustrate how to calculate reliability 
and mean time to absorption of a TMR system using SPNP */

#include <stdio.h>
#include "user.h"
#define LAMBDA 0.001

parameters(){
iopt(IOP_METHOD,VAL_TSUNIF); /* for transient analysis */ } 
assert() {} 
ac_init() { pr_net_info();}

ac_reach(){
fprintf(stderr,"\nThe reachabiliity graph has been generated \n");
pr_rg_info();

}
rate_type failure_rate(){
return(LAMBDA * mark("p_sites"));

}
net(){
place("p_sites");
init("p_sites", 3);
trans("t_failure");
ratefun("t_failure", failure_rate);
iarc("t_failure","p_sites");

} 

See p.13  SPNP reference guide v.3.1; TSUNIF stand for 
“Transient Solution using Uniformization”; 
if not set, the default is VAL-SSSOR (Steady State SOR)


p_sites

t_failure

variable
failure

rate

reward_type reliability(){
if (mark("p_sites") >= 2) return(1.0);
else return(0.0);

}
ac_final(){
double t;
for (t=0; t<=100; t += 50){
time_value(t);
pr_expected("Reliability at this time = ", reliability);

}
pr_mtta("mean time to absorption = ");

}

Must call time_value() 
before calling expected() for 
transient analysis
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============= output ===============
NET:
=================================

places: 1
immediate transitions: 0
timed transitions: 1
constant input arcs: 1
constant output arcs: 0
constant inhibitor arcs: 0
variable input arcs: 0
variable output arcs: 0
variable inhibitor arcs: 0

=================================
RG:
=================================

tangible markings: 4 (1 absorbing)
vanishing markings: 0
marking-to-marking transitions: 3

=================================
=================================

TIME :   0.000000000000
=================================
EXPECTED: Reliability at this time  = 1

=================================
TIME :   50.000000000000

=================================
EXPECTED: 

Reliability at this time  = 0.993096301257
================================= 

TIME :   100.000000000000
=================================
EXPECTED: 

Reliability at this time  = 0.97455581787
MTTA: 

mean time to absorption  = 1833.33333333

Because the absorbing state is 0, not 1.
To model a true TMR system,
add guard(“t_failure”, t_efunc) in net(){}
where t_efunc is defined as:

enabling_type t_efunc()
{

if  (mark(“P_sites”) >= 2)
return 1;

else return 0;
}

3 2 1 0
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* number of digits after decimal point is set to 4
format 4

echo ===============================
echo The following loop prints the cumulative
echo expected reward, i.e., the total number of jobs 
echo having been serviced, over (0,t)
loop t, 0, 100, 50
* print cumulative expected reward over (0,t)

expr cexrt(t; mp)
end

echo
echo
echo ===============================
echo The following loop prints the probability
echo that cumulative reward is less than a specified
echo value r (i.e., the probability that less than r jobs 
echo have been serviced) when the system fails
loop r, 2000, 0, -1000
* print probability that the cumulative reward is less 
* than r when the system fails

expr rvalue(r; mp)
end

* An example to illustrate how to 
* calculate the performability of a 1
* out of 4 processor system using sharpe
bind
lambda 0.001
* assume that one processor is able to process 
* one job per time unit
mu 1
end 

markov mp readprobs
4 3   4 * lambda
3 2   3 * lambda
2 1   2 * lambda
1 F   lambda
* reward is throughput
reward
4 4*mu
3 3*mu
2 2*mu
1 mu
end
* initial probability
4 1
end

4 3 2
4 3 1 F

2 
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echo
echo
echo ==============================
echo how to compute the cumulative expected
echo reward (number of jobs serviced) until 
echo absorption ????
end

=============== output =============
===============================
The following loop prints the cumulative 
expected reward, i.e., the total number of jobs 
having been serviced, over (0,t)

t=0.000000
cexrt(t;mp):   0.0000e+00

t=50.000000
cexrt(t;mp):   1.9508e+02

t=100.000000
cexrt(t;mp):   3.8065e+02

===============================
The following loop prints the probability that 
the cumulative reward is less than a specified value 
r (i.e., the probability that less than r jobs have 
been serviced) when the system fails
-------------------------------------------

r=2000.000000
rvalue(r; mp):   1.4288e-01

r=1000.000000
rvalue(r; mp):   1.8988e-02

r=0.000000
rvalue(r; mp):   0.0000e+00

===============================
how to compute the cumulative expected 
reward (number of jobs serviced) until 
absorption ????
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/* An example to illustrate how to calculate 
the performability of a 1 out of 4 
processor system using SPNP */

#include <stdio.h>
#include "user.h"

#define LAMBDA 0.001
#define MU 1

parameters(){
iopt(IOP_METHOD,VAL_TSUNIF); 

/* Transient analysis */
}
assert() {}
ac_init() { pr_net_info();} 
ac_reach(){
fprintf(stderr,”\nThe reachabiliity graph 

has been generated \n");
pr_rg_info();

}
rate_type failure_rate(){
return(LAMBDA * mark("p_sites"));

}

net(){
place("p_sites");
init("p_sites",4);
trans("t_failure");
ratefun("t_failure", failure_rate);
iarc("t_failure","p_sites");

}
reward_type job_service_rate(){
if (mark("p_sites")) 

return(mark("p_sites")*MU);
else return(0.0); /* reward is throughput */

}
ac_final(){
double t; 
for (t=0; t<=100; t += 50){
time_value(t);
pr_cum_expected ("Expected cumulative 

number of jobs serviced from (0,t) ",
job_service_rate);

}
pr_cum_abs("Expected cumulative number 

of jobs serviced until absorption",
job_service_rate);

}

.
p_sites

t_failure

variable
failure

rate
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=================================
TIME :   0.000000000000

=================================
Expected cumulative number of jobs serviced
from (0,t)  = 0
=================================

TIME :   50.000000000000
=================================
Expected cumulative number of jobs serviced 
from (0,t)  = 195.082301997
=================================

TIME :   100.000000000000
=================================
Expected cumulative number of jobs serviced 
from (0,t)  = 380.650327856
Expected cumulative number of jobs serviced
until absorption = 4000

============== output ==============
NET:
=================================

places: 1
immediate transitions: 0
timed transitions: 1
constant input arcs: 1
constant output arcs: 0
constant inhibitor arcs: 0
variable input arcs: 0
variable output arcs: 0
variable inhibitor arcs: 0

=================================
RG:
=================================

tangible markings: 5 (1 absorbing)
vanishing markings: 0
marking-to-marking transitions: 4

=================================


