Case Study 2

Dynamic Quota-Based Admission Control With Subrating in Multimedia Servers

Sheng-Tzong Cheng, Chi-Ming Chen and Ing-Ray Chen

ACM/Springer Journal on Multimedia Systems, Vol. 8, No. 2, 2000, pp. 83-91.

Background

Reservation-based admission control

Allocates a fraction of the server capacity for a new request based on certain criteria. The allocated server capacity is reserved for the specific request until it leaves the system.

Problem: A new request may be rejected if no available resource is left to serve the request. In such a case, the system incurs a loss due to the rejected request.

Background (Cont.)

Possible ways of reservation-based admission control Deterministic approach

* using the worst-case scenario to provide absolute Quality of Service (QoS) guarantee

* resources are under-utilized

Best-effort approach

* based on statistical or average estimations of the required data rate

* no absolute QoS guarantee

Subrating Mechanism

Quota-based Reservation

Partition the server capacity into several partitions (or quotas)

Subrating mechanism

Reduce the QoS of low-priority clients to accept a new high-priority client with an <u>objective</u> to achieve a higher ``system value''.

Notation

- λ_h Arrival rate of high-priority clients (HPCs)
- λ_1 Arrival rate of low-priority clients (LPCs)
- μ Departure rate of clients
- v_h Reward of a HPC if the client is serviced successfully
- v₁ Reward of a LPC if the client is serviced successfully
- q_h Penalty of a HPC if the client is rejected on admission
- q₁ Penalty of a LPC if the client is rejected on admission
- N Total number of server capacity slots for servicing clients
- \mathbf{n}_{h} Number of slots reserved for HPC only, 0<= \mathbf{n}_{h} <=N

- \mathbf{n}_1 Number of slots reserved for LPC only, $0 \le \mathbf{n}_1 \le \mathbf{N}$ and also $\mathbf{n}_h + \mathbf{n}_1 \ge 0$
- \mathbf{n}_{m} Number of slots that can be used to service either type of clients, $\mathbf{n}_{m} = \mathbf{N} - \mathbf{n}_{h} - \mathbf{n}_{l}$
- X_h Throughput of HPC
- X1Throughput of LPC
- X_{ld} Throughput of degraded LPC
- M_h Rejection rate of HPC
- M₁ Rejection rate of LPC
- α Number of LPC to be degraded to accommodate a new HPC

System Model

System Model (cont.)

- A high priority client does not degrade its QoS, while a low priority client has a range of QoS requirements (Qmax, Qmin) with Qmin = (1- 1/α) Qmax
- A low priority client in the common pool area can degrade its QoS once by $1/\alpha$ (to Qmin) if necessary; if it departs in degraded service mode, the system only receives $(1-1/\alpha) v_1$
- If the common pool area is all occupied, α low-priority clients (if available) each degrade their QoS by $1/\alpha$ to make room to accommodate an arriving high-priority client
- A degraded low priority client can raise its QoS level to Qmax when a client in the common pool area departs 193

Payoff Function

- **Definition**: The average *system value* received by the server per time unit
- The payoff function is given by:

 $X_h v_h + X_l v_l + X_{ld} [v_l (1 - 1/\alpha)] - M_h q_h - M_l q_l$

A Class of Quota-Based Admission Control Algorithms

• Free-quota scheme

$$n_h = 0$$
, $n_l = 0$, and $n_m = N$

• Fixed-quota scheme

 $n_m = 0$

- Dynamic quota scheme: (n_h, n_m, n_l)
 - with subrating
 - With no subrating

SPN Model for Dynamic Quota with No Subrating

Figure 1. SPN Model for Quota-Based Admission Control with No Subrating (NoSUB)

SPN Model for Dynamic Quota with No Subrating (cont.) Places:

(In the high priority partition)

RH: *mark*(RH) indicates the number of available slots for high-priority clients

H: mark(H) indicates the number of high-priority clients being served $(mark(RH) + mark(H) = n_h)$

(In the low priority partition)

RL: *mark*(RL) indicates the number of available slots for low-priority clients

L: mark(L) indicates the number of low-priority clients being served $(mark(RL) + mark(L) = n_l)$

(In the common pool partition)

- RS: *mark*(RS) indicates the number of available slots
- SH: mark(SH) is the number of high-priority clients using the common pool part
- SL: mark(SH) is the number of low-priority clients using the common pool part ($mark(RS) + mark(SH) + mark(SL) = n_m$) 197

SPN Model for Dynamic Quota with No Subrating(cont.)

Transition:	Rate Function:	Enabling function:
T1:	λ_h	true
T2:	$mark(H) * \mu$	true
T3:	λ_l	true
T4:	$mark(L) * \mu$	true
T5:	λ_h	mark(RH) == 0
T6:	$mark(SH) * \mu$	true
T7:	λ_l	mark(RL) == 0
T8:	$mark(SL) * \mu$	true

SPN Model for Dynamic Quota with Subrating

SPN Model for Dynamic Quota with Subrating (cont.) Places:

(In the high priority partition) -- Each slot is represented by 1 token

- RH: mark(RH) indicates the number of available slots for high-priority clients
- H: mark(H) indicates the number of high-priority clients being served $(mark(RH) + mark(H) = n_h)$

(In the low priority partition) -- Each slot is represented by 1 token

RL: mark(RL) indicates the number of available slots for low-priority clients

L: mark(L) indicates the number of low-priority clients being served $(mark(RL) + mark(L) = n_l)$

(In the middle partition) -- Each slot is represented by α tokens

- RS: mark(RS) indicates the number of tokens available in the middle partition
- SH: mark(SH) indicates the number of tokens held by $mark(SH) / \alpha$ high-priority clients
- SL: mark(SL) indicates the number of tokens held by $mark(SL) / \alpha$ low-priority clients
- SLL: mark(SLL) is the number of tokens held by $mark(SSL) / (\alpha -1)$ degraded lowpriority clients 200

 $(mark (RS) + mark (SH) + mark (SL) + mark (SLL) = \alpha * n_m)$

SPN Model for Dynamic Quota with Subrating (cont.)

Transition:	Rate Function:	Enabling function:
T1:	λ_{h}	mark(RH) == 0
T2:	λ_1^{-}	mark(RL) == 0
T3:	$mark(SH) / \alpha * \mu$	true
T4:	$mark(SL) / \alpha * \mu$	true
T5:	<i>mark</i> (SLL) /(α -1) * μ	true
T6:	$\lambda_{ m h}$	mark(RH) == 0 && mark(RS) == 0
T7:	(immediate transition)	true
T8:	λ_{h}	true
Т9:	$mark(H) * \mu$	true
T10:	λ_1	true
T11:	$mark(L) * \mu$	true

SPN Model for Dynamic Quota with Subrating (cont.)

Arc:	Multiplicity function:
RS -> T1	α
T1 -> SH	α
RS -> T2	α
T2 -> SL	α
SH -> T3	α
T3 -> RS	α
SL -> T4	α
T4 -> RS	α
SLL -> T5	α - 1
T5 -> RS	α - 1
SL -> T6	$\alpha * \alpha$
T6 -> SH	α
T6 -> SLL	α * (α - 1)
SLL -> T7	α - 1
T7 -> SL	α

Calculating System Value Payoff

The pay-off rate for dynamic quota with subrating can be obtained by the following steps:

1. Calculate the values of X_h , X_b , X_{ld} , M_h , and M_l from SPNP (by associating proper rewards with markings of the system) **What is the reward assignment to calculate** X_h ? return rate("T3") + rate("T9");

What is the reward assignment to calculate M_h ? if (mark("RH") == 0 && mark("RS") == 0 && !enabled("T6"))return λ_h ; else return 0;

2. Compute the pay-off rate by:

 $X_h v_h + X_l v_l + X_{ld} [v_l^*(\alpha - 1)/\alpha] - M_h q_h - M_l q_l$

203

Analysis Result

System Parameters	No Subrating		Subrating	
(for N = 16)	(by SPNP)		(by SPNP)	
$(\lambda_b,\lambda_1,\mu,\nu_b,\nu_1,q_b,q_1,\alpha)$	Quota	Optimal	Quota	Optimal
	(n_h, n_m, n_i)	pay-off rate	(n_h, n_m, n_i)	pay-off rate
A=(5,10,1,2,1,2,1,2)	2,14,0	14.25	0,16,0	16. 0 7
B =(10,10,1,2,1,2,1,2)	9,7,0	13.59	0,16,0	18.14
C=(15,10,1,2,1,2,1,2)	16, 0,0	11.32	0,16,0	14.34
D=(5,10,1,5,1,2,1,2)	5,11,0	27.77	8,8,0	34.32
E=(10,10,1,5,1,2,1,2)	13,3,0	40.26	8,8,0	49.64
F=(15,10,1,5,1,2,1,2)	16,0,0	49.82	10,6,0	50.68
G=(5,10,1,10,1,2,1,2)	7,9,0	51.28	0,16,0	56.01
H=(10,10,1,10,1,2,1,2)	15,1,0	87.67	0,16,0	92.90
I=(15,10,1,10,1,2,1,2)	16,0,0	113.97	16,0,0	113.97

Figure 5. Optimal Pay-off Rates and Quota Values for N = 16.

Analysis Result (cont.)

