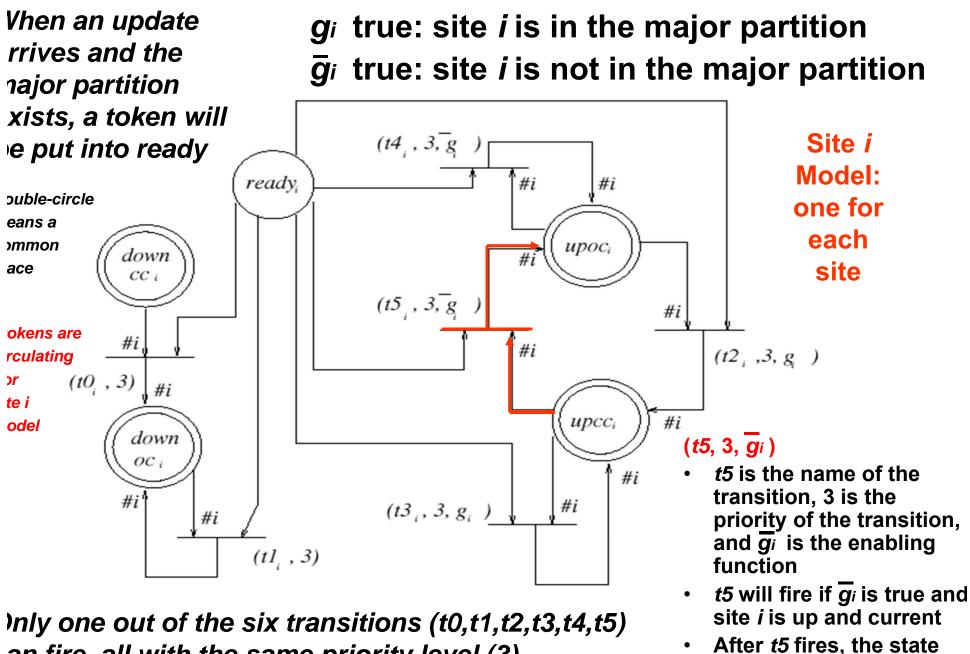
Case Study #3: Analysis of Replicated Data with Repair Dependency

Ing-Ray Chen and Ding-Chau Wang The Computer Journal Vol. 39, No. 9, 1996, pp. 767-779

Replicated data management

 Extend Case Study 1 by considering both node and link failures/recovery as well as the effect of repair dependency which occurs when many sites and links may have to share the same repairman due to repair constraints.


Dynamic voting for replicated data management

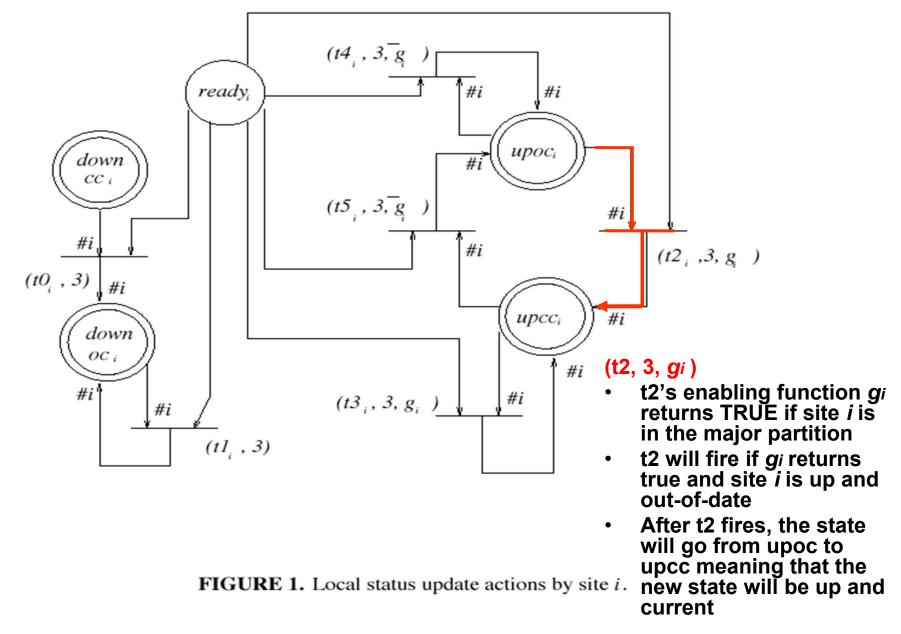
- Dynamic voting: Each site S_i maintains (VN_i, SC_i, DS_i) to understand if it is in the major partition
- Site *i* is in the major partition if:
 - the number of copies it can access is larger than one half of SCi
 - the number of copies it can access is exactly equal to one half of SCi and it can access the "distinguished site" indicated in DSi
- If a site is in the major partition, it can update locally. After an update is done, all copies in the major partition are updated with the new (VNi, SCi, DSi) value

System model

- Sites and links have independent failure rates λ_s and λ_i.
- A repairman can repair a failed site with rate μs and a failed link with rate μ.
- There is always an update (called an immediate update) after a failure or repair event since the update rate is much faster than the failure/repair rate

- Site subnet
 - A site can be in one of four states
 - up and current (upcc)
 - up and out-of-date (upoc)
 - down and current (downcc)
 - down and out-of-date (downoc)

an fire, all with the same priority level (3)


FIGURE 1. Local status update actions by site *i*.

will go from upcc to

is up and out of date

upoc meaning that site *i*

g_i true: site *i* is in the major partition \overline{g}_i true: site *i* is not in the major partition

(t0, 3)

• t0 will fire if site *i* is down and current

g_i true: site *i* is in the major partition *g_i* true: site *i* is not in the major partition

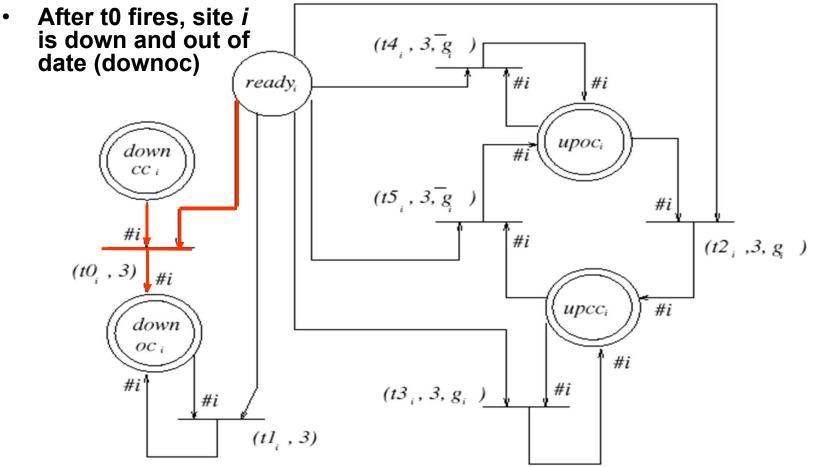
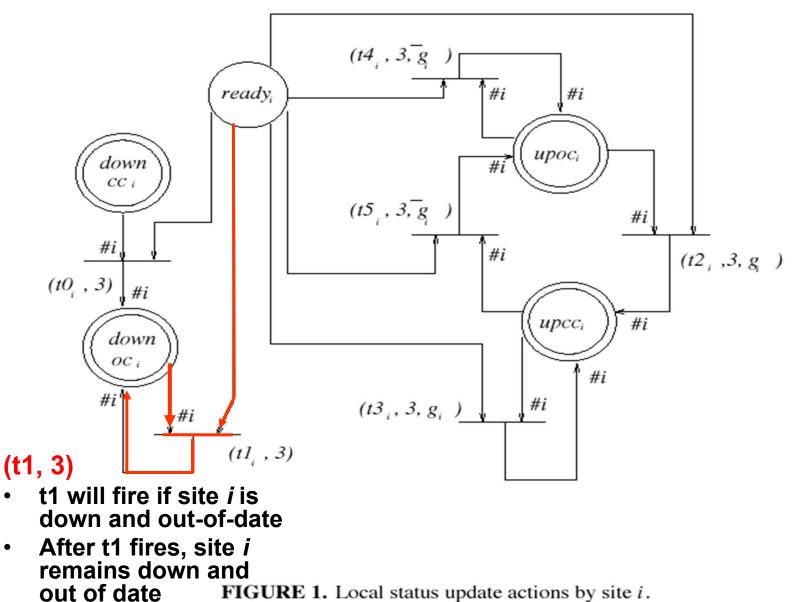



FIGURE 1. Local status update actions by site *i*.

g_i true: site *i* is in the major partition \overline{g}_i true: site *i* is not in major partition

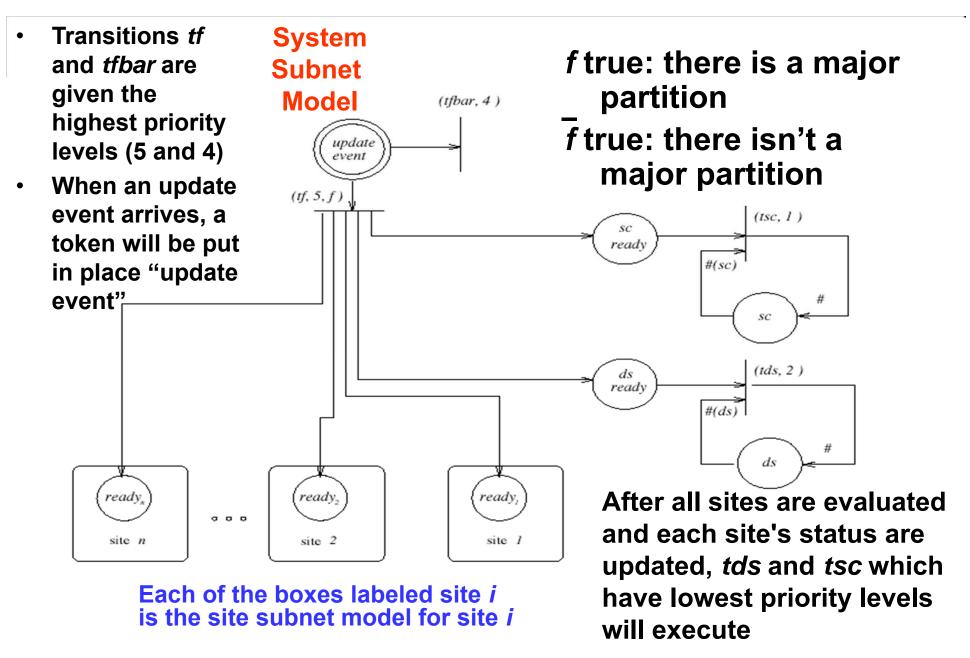
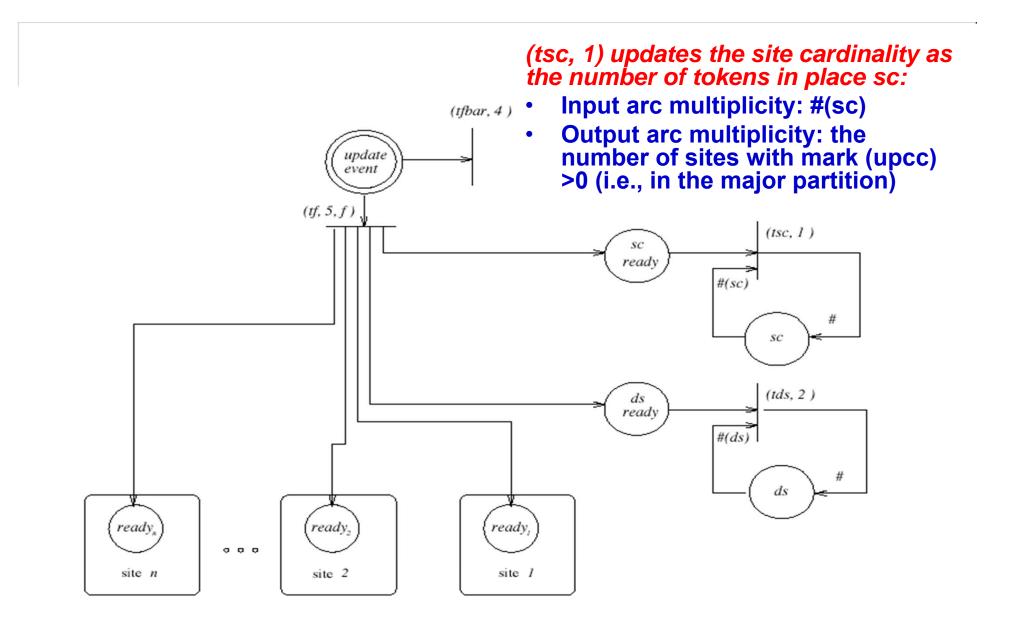



FIGURE 2. Global status-update actions triggered by an update operation.

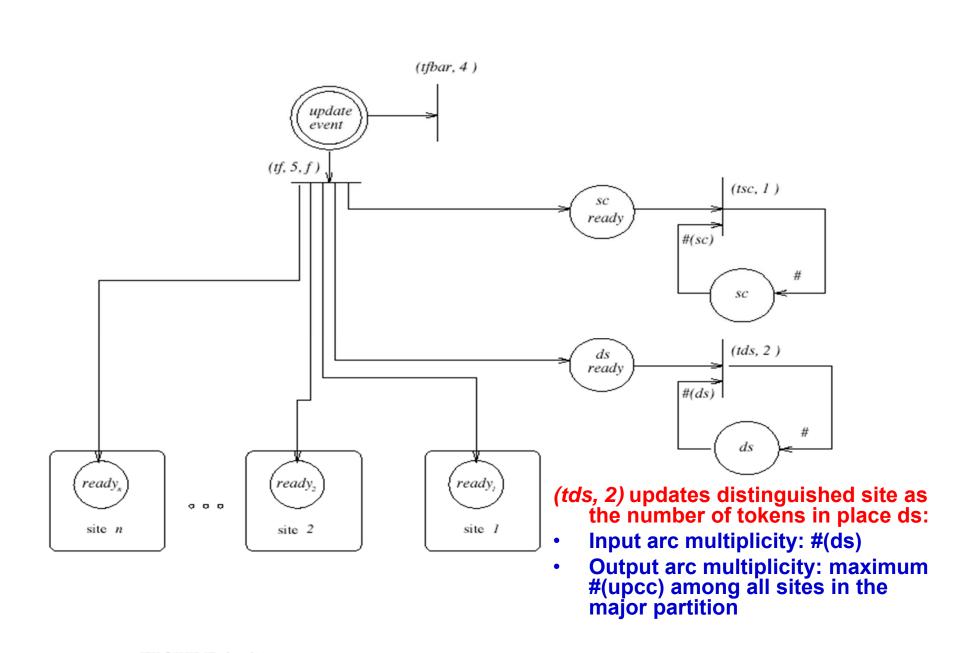


FIGURE 2. Global status-update actions triggered by an update operation.

Independent Repairman Model

- This subnet describes the effect of site *i*'s failure and repair on the system state
- site *i* can only be in one state at a time, so only one transition out of these two subnets is possible at any time.

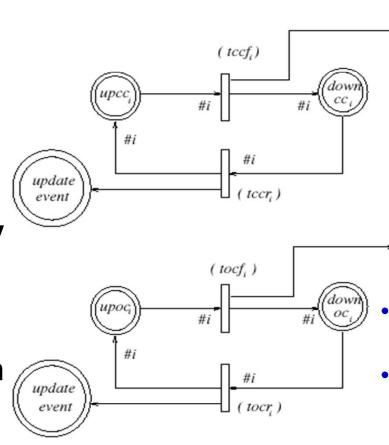


FIGURE 3. Site failure/repair events.

Site failure/repair subnets for site *i*

subscript *i* refers to site *i*

update

event

- failure events: upcci \rightarrow dwcci and upoci \rightarrow dwoci with rate of λ_s
- repair events:
 dwcci→ upcci and
 dwoci→ upoci with
 rate of µs 217

Independent Repairman Model

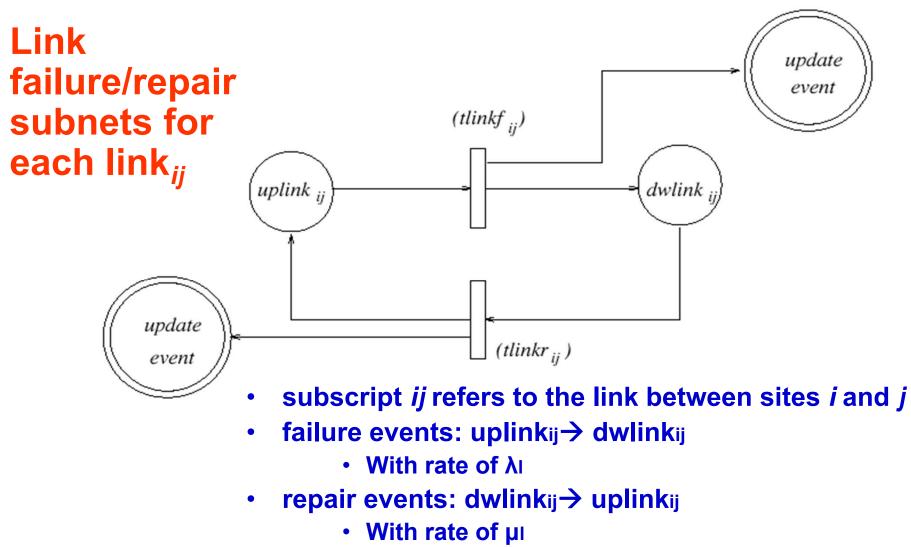


FIGURE 4. Link failure/repair events.

TABLE 1. Meanings of places.

Place	Meaning	
upcc _i	$Copy_i$ is up and current	
$downcc_i$	$Copy_i$ is down and current	
$upoc_i$	$Copy_i$ is up and out of date	
$downoc_i$	$Copy_i$ is down and out of date	
uplink _{ij}	$Link_{ij}$ is up	
$dwlink_{ij}$	$Link_{ij}$ is down	
update_event	An update is initiated	
sc_ready	An SC is initiated	
SC	#(sc) indicates the SC	
ds_ready	A DS change is initiated	
ds	#(ds) indicates the ID of the DS	
ready _i	A local update at site <i>i</i> is in process	

TABLE 2. Arc multiplicity functions.		
Arc	Multiplicity	
$sc \rightarrow tsc$	#(sc)	
$tsc \rightarrow sc$	# of sites in the major partition with mark($upcc$) > 0	
$ds \rightarrow tds$	#(ds)	
$tds \rightarrow ds$	Max #(<i>upcc</i>) among all sites in the major partition	

TABLE 4. Enabling functions.

Tr.	Enabling function
-----	-------------------

```
tf
       fO
        {IF \exists a partition \mathcal{M} with sum equal to
         # of sites in \mathcal{M} with mark(upcc) > 0;
         AND IF (sum > \#(sc)/2) OR
             (sum = #(sc)/2 AND
               mark(upcc_{\#(ds)}) AND site \#(ds) \in \mathcal{M})
        THEN RETURN 1;
        ELSE RETURN 0}
t2_i
       g_i()
        {Look at mark(uplink_{jk}) \forall j \forall k to
              determine site i's partition;
       IF site i's in the major partition \mathcal{M}
       THEN RETURN 1;
       ELSE RETURN 0}
t3_i
       g_i()
t4_i \quad \bar{g}_i \bigcirc \{1 - g_i \bigcirc \}
     \bar{g}_i()
t5_i
```

FIFO repairman model (one repairman)

- We can make use of the independent repairman model and modify the repair rates to account for repair dependency.
- The repair rate is "deflated" by the total number of failed sites and links to account for the effect of repair resource sharing
- If a state has 3 failed entities: two failed sites and one failed link,
 - For the independent repairman model, repair rates are μ_s , μ_s and μ_i
 - For the FIFO repairman model, repair rates are μ_s / 3, μ_s / 3 and μ_1 / 3.

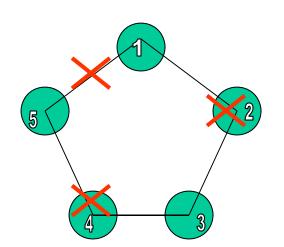
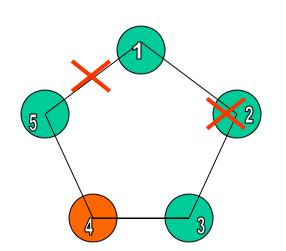

	•
Timed Tr.	Rate value
$tccf_i$ $tccr_i$	$\frac{\lambda_s}{\sum_{j,k,k\neq j} \#(downcc_j + downoc_j + dwlink_{jk})}$
$tocf_i$ $tocr_i$	$\frac{\lambda_s}{\sum_{j,k,k\neq j} \#(downcc_j + downoc_j + dwlink_{jk})}$
tlinkf _{ij} tlinkr _{ij}	$\frac{\lambda_l}{\sum_{j,k,k\neq j} \#(downcc_j + downoc_j + dwlink_{jk})}$

TABLE 5. Rates of timed transitions for FIFO repair.

Linear-order repairman model (one repairman)


- Repairing failed site/link in a prescribed order
- Creating a new enabling function associated with each repair transition
- Only one enabling function at any state returns TRUE based on the prescribed linear order and all others return FALSE

Linear-order repairman model

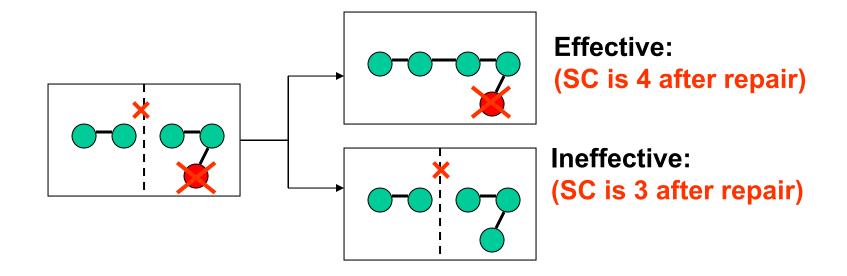
- A 5-site ring topology with the linear repair order being sites 5,4,3,2,1 followed by links 45,51,43,32,21
- If sites 4 and 2, and link 51 are down, then site 4 is chosen to be repaired first

Linear-order repairman model

 Enabling functions associated with sites 4 and 2 and link 51 will return TRUE, FALSE and FALSE, respectively, meaning that site 4 will be repaired first over site 2 and link 51.

TABLE 6. Enabling functions for linear-order repair.

Transition	Enabling function	
$tccr_i, tocr_i$	$h1_{site}(i)$	
	{IF site <i>i</i> failed and the repair rank of	
	site <i>i</i> is higher than those of other	
	failed sites or links in the linear order	
	THEN RETURN TRUE;	
	ELSE RETURN FALSE}	
tlinkr _{ij}	$h1_{link}(i, j)$	
-	{IF link <i>i j</i> failed and the repair rank of	
	link <i>i j</i> is higher than those of other	
	failed sites or links in the linear order	
	THEN RETURN TRUE;	
	ELSE RETURN FALSE}	

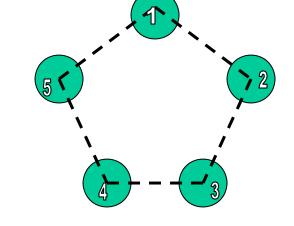

Best-first repairman model (one repairman)

- Preference is given to a failed site or link whose repair can lead to the existence of a major partition with respect to the current state
- If there are more than one failed sites or links whose repair would lead to the existence of a major partition, then a tie-breaker rule will be applied to select one to be repaired next.

Best-First Repair Strategy Tie-Breaker Rules

- Choosing a failed entity such that after repair it will result in more current copies (i.e., a large SC) in the major partition (i.e., the more upcc sites in the major partition, the better)
- Choosing a site (among failed sites) with the highest linearly ordered site ID, so it has a higher chance to become the **DS**
- Choosing a failed entity that will stay alive for a longer time after repair. That is, choose one with a lower failure rate and a higher repair rate. For example, when choosing between a failed site vs. a failed link, if $\mu_{s}/\lambda_{s} > \mu_{l}/\lambda_{l}$, then repair the failed site, otherwise repair the failed link 229

Best-First Repair Example

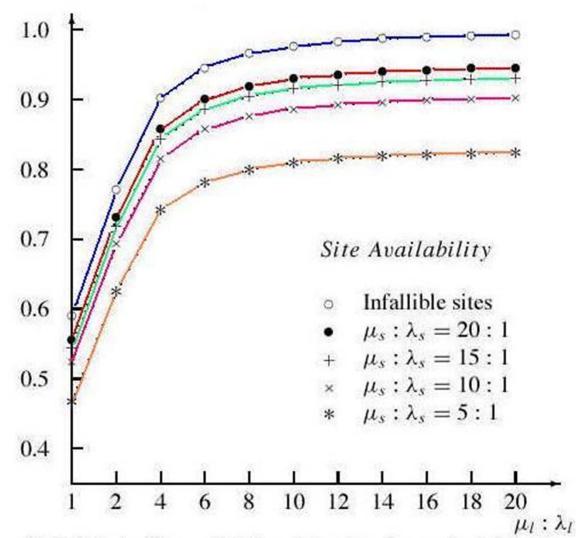


Transition	Enabling function	
tccr _i , tocr _i	h1 _{site} (i) {IF site i failed and the hypothetical site availability after repairing site i is higher than those of other failed sites or links in the system THEN RETURN TRUE; ELSE RETURN FALSE}	
tlinkr _{ij}	h1 _{link} (i, j) {IF link ij failed and the hypothetical site availability after repairing link ij is higher than those of other failed sites or links in the system THEN RETURN TRUE; ELSE RETURN FALSE}	

TABLE 7. Enabling functions for best-first repair.

Evaluation

- Tested with a 5-site ring topology
 - Four repairman models:
 - Independent repair
 - Dependent repair (one repairman)
 - FIFO
 - Linear-order
 - Best-first

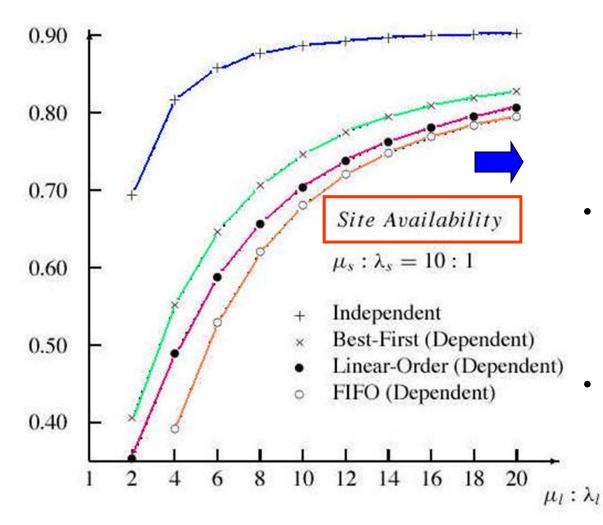

Model complexity: number of states

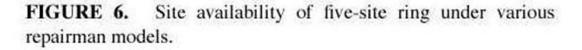
	Independent	FIFO	Linear- order	Best-first
# of states in the underlying Markov model	8674	8674	5429	3821

Performance metrics and reward assignments for calculation

	Definition	Reward Assignment
System Availability	The steady-state probability that a major partition exists	Reward rate = 1 for those states in which enabling function $f()$ is evaluated to TRUE. Reward rate = 0, otherwise
Site Availability	The probability that an update arriving at an arbitrary site will succeed	Reward rate = 1*k/n for those states in which enabling function f() is evaluated to TRUE where k is the number of up and current copies in the major partition. Reward rate = 0, otherwise

k: # of 'up and current' (upcc) sites in the major partition in a particular state
 n: total number of sites in a system (n=5 in a 5-site ring topology)


FIGURE 5. Site availability of five-site ring under independent repairman model.


Results:

independent repairman model

 $\mu_{l}:\lambda_{l}\uparrow$ site availability \uparrow $\mu_{s}:\lambda_{s}\uparrow$ site availability \uparrow

Site failure only assumption (as in Case Study 1) will **overestimate** the site availability unrealistically.

Results: Comparison of repairman models

- Site availability under independent repair is much higher than that under dependent repair
 - Among dependent repair:
 - Best-first > Linear-Order > FIFO