Single Queuing Systems

, A counting process {N(t),t>0}
M/M/1 queuing system —

representing the

# of events
— arrival process 1s a Poisson process (or the inter-arrival that have
time 1s exponentially distributed) occurred

up to time t

— service process 1s also a Poisson process (or the service
time 1s exponentially distributed)

advantage: a mathematically tractable model with solutions
applicable to a wide variety of situations.

64



Poisson process with an average arrival rate A: A is the proportionality
constant

t
S S I I J
At TAt TAETAE TAE T - titne

Pr(exactly 1 arrival in [t,t+At]) = AAt
Pr(no arrivals in [t,t+At]) = 1 - AAt

1 event event does not}
pr
occursat t+At| occuratt Analogy:
S Coin flipping: results of coin

} flips are independent
_I_

Arrivals are also independent
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Let P (t) =P (# of arrivals = n at time t)
P;;(At) = the prob. of going from 1 arrivals to j arrivals in a
time interval of At seconds

I-AAt
Py (t+ A = B, (DP, (A + P, , ()P, , (A1)
P, (t+At) = P, ()P, (A) = e
1-AAt

P (t+At)-— P.(t) _
At

P (t+At)-P,(t)
At

OraOsnOrnOrntt

AP (1) + AP _ (1)

= —-AP, (1)
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Let At >0 then

dl::;t(t) :_kpn(t)+}\‘Pn—l(t) - @

dF;t(t) 9P (t)— @solut:10>n O(t) e

From (1) 4P()
dt

242
RO __p (1) +Ate™ P = M oo
dt 2

=—AP(t)+re™ P =Aite™
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Continuing, by induction,

/ P (t) = (M') e ** |— Poisson distribution
n!

3 pn (t) — meaning: prob. .Of n arrivals
n=0 A 1n an interval of t seconds
10 P (t)
s (M) O
Z ( ') € =1 Py(t)
n=0 N! 0.5 PO  pyo
o0 X I «
> =e
n=0 N! >
4 8

The Poisson distribution

Ex: A =100 arrivals/min., what is the prob. of no arrivals in 5 sec.?
1

P, (5sec.)= e_mo'(”j =0.00024
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* the mean & the variance of the Poisson dist. are both equal to At.

. W - N —it . n
mean: A0 = S0P (1) = Son- (xt)'e e Y (At)
n=1 n=1 n! n=1 (n — 1)’
derivation 1s e ()t - (At) )
based on :e“-E)T:e ‘-kt-E_OT!:e Lt-eM = At
M e (Xt)n o -
© A variance: [o,(OF = £n2P,(t)— ] =t
n=0

The inter-arrival time T a random variable

Inter-arrival time cumulative dist. function(t) «—— cdf (1)
= P (time between arrivals <t)
= 1-P (time between arrivals > 1 )

_ 1 ~—
_ }_{:&(tt) Py(t)

. Inter-arrival time density (t) =

"* no arrivals in a time interval of t = P(t)

di-e™)
dt

. T 1s an exponentially distributed r.v.
. T has a memory-less property 69

et —— pdf(t)



e.g., 1

| | | | | | |
©0C [ I I I I I

|
an average of 1
mean interarrival time = 20 min. N

= mean interarrival time

The last train arrived 19 minutes ago.
What is thi:gpected time until the next train arrives?
\ '
x %gzl‘mn. prob.
N Y yes AAt

W
coin flipping explanation in At ~_

no 1-AAt
Memory-less property = Markov property
P(T>t,+t| T>t,)=P(T>t)
* Definition: a Markov chain i1s a Markov process with a discrete
state space.
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M/M/1 (1-LAt)(1-pAL) LAt LAt

K_H 4 A R\ 4 A R\
P.(t+A) =R MR, ,(A)+ R (OF_ ,(A)+ B, (DR, (A
B (t+ At =R (1R (At) + R ()P, (At)

1-AAt LAt
dl::;t(t) - _(}L + M)Pn (O + AP (1) +ub,, (1)

2O 1R 0+rR

A A A A A A A
u u u u u " "

Probability flux (or flow):
(probability of a state)™(transition rate originating from the state)

+1,n

physical meaning: # of times per second the event corresponding to
the transition occurs.
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M e Lo — flows into state (n)
n-1 " Y - ntl) . flows out of state (@
dp, ()
=—(A+p) P,(t)+ 7‘~Pn—1 (t)+ ul., (t)
dt N - y N i Y,
flows out of state n flows into state n
Study:
: : dP, (1)
— transient behavior " # 0

— equilibrium behavior 9n® _ 9. © _  _dR®) _

dt gt dt
this yields

Global balance equations: a set of linear equations for t—oo

0
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Equilibrium state probabilities

> R0 =1

conservation of probability:
normalization equation

A 4

Use local balance equations to solve the global balance equations
1. Local satisfies global

2. Local allows us to relate P, with a reference state, e.g., P,

Definition of local balance:
“the probability flow into a state due to an arrival to a

queue equals the probability flow out of the same state due to a
departure from the same queue”

A A A A A A

@ Dok Ded(3) kDD

u u u u u u
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applying the

normalization ..

equation

o ©

igk =P,u = P = (%)Po
PA=Pu  =p = (2 )p;
Pk . P = P/n = (%)P/Kl
P, = (TR,
Poéo(g)nz éx”:ﬁ 0<x<l
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Utilization: prob. that an M/M/1 queuing system is nonempty

A

Let_:pa Pn:pn(l_p)
P H
12t . 1
P, for M/M/1 system when —=p=
1/4 / H
1/8 (light) (heavy)
*A— — —
1 1/\16 132 | p=0.1 | p=0.5 p=0.9
LT | posns<3) | 09999 | 0.9375 | 0.3439
o 1 2 3 4 51
P(4<n<7) 10 0.0586 | 0.2256
* for a lightly loaded system, p
there are usually less than P@<n<il)) 10 0.0366 ) 0.1480
4 customers in the system. | pm>12) | 102 | 0.000249 | 0.2825
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mﬂ—%:L%LJQ:&

woou
* p <1 otherwise A > u and the queuing system would no longer

be 1n equilibrium — 1.e., unstable.
QI:throughput? | Q2: Average # of customers in the queuing system?

0 —

ngbpn *UoooIn= gonPn = Zon-p”(l—p)=(1—p)§0n'p” =(1—p)-pn§)lﬂ'p”‘1

/ & d = d 1 1
P (1-p) P 2p =(1-p)-p dp(l_p) (I-p)-p o)
=u-F) P
A =— e.g., e.g.,
== l1-p
u
L h=3 h=5p
v — . _ . _;
because when there is no n= P P = P =3
customer, there is no l1-p ﬁ _ ¥/ )

S |

I

= v T > =
X EfE

I

[E—

[\.)l»—-t
W |—

contribution to throughput.
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Let R be the mean response time per customer
Q3:R? _
since N =AR by little’s law (to be discussed later)
N __ P _ %t . When p=1

N .
A (- p)?u (1- - system 1s unstable

service time

E: o M/M/1 \ - /waiting time
R=(1+n)-D

ek
I

©

T

0.5 1 1 1
M/M/1: average # of customers n e P (
as a function of p -



M/M/1/N Queuing system: the finite buffer case

A A A
O Do D(d)

an amvmg customer

Following the previous derivation for M/M/1/o0, 1S “IOSt r“turned
away When there are
A n already N customers
P = £_j P, in the system.
u
&
L1 1-(2)
0 N - N +1 N +1
Sepo1-G =)
=0 1— (ﬁ) no restriction on the range of —
)
N n
P S il (&j 1;/7|7| II’)N;
’ n . & N +1 H N
- (2 u
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Q1: the prob. that the queuing system 1s full? Py
Q2: how fast are customers lost? Py xA

A
n P, = P, (blocking probability)
when N=5 0.1 9*10° applying L’Hopital’s rule
0.5 0.016
0.75 0.072 . s s
1.00 0166 lim* %X L1y X ~% _ 146
2.00 0.508 ol 1=xT et —6X
Q3: population? >-00 0-800
—_ N
n=>>n-P,
n=0
Q4: throughput? . q
X=2pu-P=p- 2P =pd-PF)=pp<Aa
n=1 n=1
Q5: Utilization? ] -~ 2 \ lipats
pZI—POZI— 0 <= P 1S utilization
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Q1: throughput? A

Variations of M/M/1 Q2: response time? 1/u
1 . . Q3: population? A /p
M/M/o0: 52 infinite # of servers by Little’s law
o Q3 - . 0 00 (}\‘ . L)n e_}vﬁ N
FIEE SN
@ n=I n=l1 n! H

A A A

H ( l)u np  (ntl)u
P :(ﬁij.po :l(&j P,
|=1|M n' [l
A n
ey re b N )
ii & e " / n n! u
n=on!\ p a Poisson process

with mean n=2
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M/M/m

m servers
€.g., a system with m processors

L]
DO

(DDt Des(3) -
1 2p 3p

-l)u “mp

Solution: "
Pn - 1 n—m ( . ] ' PO
m!m

can be obtained by

consider 2 cases w11 ()" i
separately where Po =14+ > —| — 4+
L
mu

_{nu 0<n<m

my n=m where p =

Q1: what is the probability that all servers are busy? Ans: z P

Q2: throughput? Ans: A

81
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M/M/m/m

(D m servers with a single queue having a
12 m @ buffer space of m (when all servers are
A— I > busy, a customer walks away), e.g., a
(m) telephone switching system.
O DDl el
u 2u 3u @@
" n
1 (X 1 1 (L
P = —| — PO - P — & P — ni \p
n' 0 m n m
-\ M > L (A )” > L L)'
nt\p n! \u

Q1. Prob. that all m servers are busy (e.g., 1n a telephone switch

company)? P +—— The expression for P_ is called Erlang’s B formula.
Q2. Mean # of calls turned away per time unit? P_xA
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A Client-Server System

=

— Service rate of
Request arrival rate | —
N ey the server system
Ir user : = '
per use N ' with one server: |
&/
A @ m users
1L/

Response time: the time spent by a user at the system between
submitting the request & the return of the response

State Description: one state component representation

n: a number representing the # of users in the server system

e

. # of users still thinking (1.e., not 1ssuing requests) =m - n

(m-DA _ (m-2)A

A
Dt D Do)
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Recall . n A(M—i+1)
in M/M/1 | - Fn = (H jPo
: = H - 1
A where P, =
i :(_j ft n ! ’ = N m!
- or P, = r m P, EO[(%) W]
w) (m-—n)!

Q1: Avg. # of users 1n the server system?ﬁ — in: n-P

n=1

Q2: Avg. # of users still thinking (not issuing requests)? m—n
Q3: System throughput? X = i n-P = (1 — PO)- 1
n=1

Q4: Response time per user?
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What happens if the server system has m servers, each with
a service rate of u?

~H
A U m servers
: n
N O
QH
m users
(m-DA _ (m-2)A A

Do Do AT 437 (Do

m

Q1: Throughput? X = Z(Pn * n“)

n=1

Q2: Response time?
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Fundamental Laws: algebraic relationships among
performance measurement quantities.

arrivals departures

A = arrival rate = A/T e.g.,
C = # of completions

100 arrivals
1 hr

x =C/T throughput

B = total system busy time

D = B/C average service time per request
p = B/T utilization of the system

P

X * D

utilization law
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Little’s law Consider response time per customer

|

avg. # of customers

P ?(t)
# of arrivals A(t) 4]
or 2 — W x
# of departures D(t) ] D(t)
1 | I | | | | | | | I
0 1 5 10
(n) Consider # of customers per time unit

# of customers
in the system

IIII}

L |2 ] 2

P> time

OO-bWP—*}
= © v g

the shaded

/ region

W
Tv\
observation
period

* A meaning of W 1is the total time spent by all customers in the

system. .. R=W/C

* Another meaning of W 1s the total population accumulated

(in queue & in service) over T time units. .. n=—

X

W
T

_ =
Algebraically p — ¥ — % % % = R=*X

. n=RX
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