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Single Queuing Systems

M/M/1 queuing system

— arrival process is a Poisson process (or the inter-arrival
time is exponentially distributed)

— service process is also a Poisson process (or the service 
time is exponentially distributed)

advantage: a mathematically tractable model with solutions
applicable to a wide variety of situations.

A counting process {N(t), t  0}

representing the 
# of events
that have 
occurred 

up to time t
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Poisson process with an average arrival rate :  is the proportionality 
constant

t t tt t …. time
t

Pr(exactly 1 arrival in [t,t+t]) = t
Pr(no arrivals in [t,t+t]) = 1 - t

Analogy: 
Coin flipping: results of coin 
flips are independent

Arrivals are also independent
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Let  Pn(t)    P (# of arrivals = n at time t)
Pij(t)  the prob. of going from i arrivals to j arrivals in a 

time interval of t seconds
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Let t 0 then
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Continuing, by induction,
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meaning: prob. of n arrivals 
in an interval of t seconds

Ex:  = 100 arrivals/min., what is the prob. of no arrivals in 5 sec.?
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* the mean & the variance of the Poisson dist. are both equal to t.
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based on

mean:

Inter-arrival time cumulative dist. function(t)
= P (time between arrivals  t )
= 1-P (time between arrivals > t )
= 1-P0(t)
= 1-e-t

The inter-arrival time T a random variable
cdf (t)

P0(t)

 inter-arrival time density (t) = 

 T is an exponentially distributed r.v.

 no arrivals in a time interval of t = P0(t)
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 T has a memory-less property
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e.g.,

an average of 
mean interarrival time = 20 min. 

 = mean interarrival time

The last train arrived 19 minutes ago.
What is the expected time until the next train arrives?

1 20 min.
coin flipping explanation in t

Memory-less property  Markov property
P ( T > t0+t | T > t0 ) = P ( T > t )

* Definition: a Markov chain is a Markov process with a discrete 
state space.

t
prob


.
yes

no  1-t
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Probability flux (or flow): 
(probability of a state)*(transition rate originating from the state)

physical meaning: # of times per second the event corresponding to
the transition occurs.

 

)()()(

)()()()(
)()()()()(

)()()()()()()(

10
0

11

0,110,000

,11,11,

tPtP
dt

tdP

tPtPtP
dt

tdP
tPtPtPtPttP

tPtPtPtPtPtPttP

nnn
n

nnnnnnnnnn













0 1 n-1 n2















3 …. 


n+1



(1-t)(1-t) t t

1-t t

M/M/1



72
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flows into state
flows out of state

n
n

flows out of state n flows into state n

Study:
— transient behavior 0)(
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Global balance equations: a set of linear equations for t
this yields
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Equilibrium state probabilities

1)(
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conservation of probability:
normalization equation

Use local balance equations to solve the global balance equations
1. Local satisfies global
2. Local allows us to relate Pn with a reference state, e.g., P0

Definition of local balance:
“the probability flow into a state due to an arrival to a

queue equals the probability flow out of the same state due to a 
departure from the same queue”
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P0: P0
P1: P0 = P1 
P2: P1 = P2 
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Utilization: prob. that an M/M/1 queuing system is nonempty

)1(     ,Let  

 n

nP

(light)
*=0.1 =0.5

(heavy)
=0.9

P(0n3) 0.9999 0.9375 0.3439

P(4n7) 10-4 0.0586 0.2256

P(8n11) 10-8 0.0366 0.1480

P(n12) 10-12 0.000249 0.2825

Pn for M/M/1 system when     ==


2
1

* for a lightly loaded system, 
there are usually less than 
4 customers in the system.

Pn
1/2

1/4

1/8
1/16 1/32 1/64

n0 1 2 3 4 5
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check
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*   1 otherwise  >  and the queuing system would no longer 
be in equilibrium  i.e., unstable.

Q2: Average # of customers in the queuing system?















   






















1
   

)1(
1)1()

1
1()1()1(   

)1()1()1(

2
0

0

1

000

d
d

d
d

nnnnPn

n

n

n

n

n

n

n

n

n
n

Q1:throughput?




















   

)1(   

   

0

1

1

P

P

Px

n
n

n
n

because when there is no 
customer, there is no 
contribution to throughput.





1

n

e.g.,

1   

      

2
1

2
1
























n

2
3
1

3
2













n

e.g.,



77

Let R be the mean response time per customer
Q3: R? 

since Rn  by little’s law (to be discussed later)
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M/M/1/N Queuing system: the finite buffer case
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away” when there are
already N customers
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Q1: the prob. that the queuing system is full?     PN
Q2: how fast are customers lost?     PN×

when N=5 0.1 9*10-6

0.5 0.016
0.75 0.072
1.00 0.166
2.00 0.508
5.00 0.800
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applying L’Hopital’s rule

Q3: population?

Q4: throughput? 

Q5: Utilization?
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Variations of M/M/1

M/M/:

:
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Q1: throughput? 
Q2: response time? 1/
Q3: population?  /

by Little’s law
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M/M/m
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Q1: what is the probability that all servers are busy? Ans:
Q2: throughput? Ans: 
Q3: response time?
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consider 2 cases
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M/M/m/m
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m
:

m servers with a single queue having a 
buffer space of m (when all servers are 
busy, a customer walks away), e.g., a 
telephone switching system.

Q1. Prob. that all m servers are busy (e.g., in a telephone switch
company)? Pm

Q2. Mean # of calls turned away per time unit? Pm×
The expression for Pm is called Erlang’s B formula.


1 2 m
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A Client-Server System

Request arrival rate 
per user : 

Response time: the time spent by a user at the system between 
submitting the request & the return of the response

Service rate of 
the server system
with one server: μ

State Description: one state component representation

n: a number representing the # of users in the server system

 # of users still thinking (i.e., not issuing requests) = m - n

cpu

1
2

m
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 m users
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0 1 m-1 m2
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3
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Q2: Avg. # of users still thinking (not issuing requests)?

Q3: System throughput?    
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Q4: Response time per user?
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Q2: Response time?



:






m users

What happens if the server system has m servers, each with
a service rate of ?

m servers

Q1: Throughput? 

0 1 m-1 m2
(m-1)

2
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3

m





m
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Fundamental Laws: algebraic relationships among 
performance measurement quantities.

mathematically
Dx

C
B

T
C

T
B

       

utilization law

 = arrival rate = A/T  e.g.,
C = # of completions
x = C/T   throughput
B = total system busy time
D = B/C  average service time per request
 = B/T  utilization of the system

hr
arrivals
 1

 100

A1 A2 A3 A4

C1 C1 C1

...

...

system departuresarrivals
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Little’s law

4

2

0 1051

W

A(t)

D(t)

A D
1 2 
3 5 
4 9 
8 10

 

 

# of arrivals A(t)
or

# of departures D(t)

# of customers 
in the system

(n)

time1 1 2 1 2 1

Consider # of customers per time unit

* A meaning of W is the total time spent by all customers in the
system.  R = W/C

* Another meaning of W is the total population accumulated 
(in queue & in service) over T time units. 

Algebraically xRn T
C

C
W

T
W 

x

xRn 

T
Wn 

the shaded 
region

observation
period

avg. # of customers

Consider response time per customer

T
Wn 


