Single Queuing Systems

— service process is also a Poisson process (or the service time is exponentially distributed)

<u>advantage:</u> a mathematically tractable model with solutions applicable to a wide variety of situations.

Poisson process with an average arrival rate λ : λ is the proportionality constant

Pr(exactly 1 arrival in $[t,t+\Delta t]$) = $\lambda \Delta t$ Pr(no arrivals in $[t,t+\Delta t]$) = 1 - $\lambda \Delta t$

Analogy:

Coin flipping: results of coin flips are independent

Arrivals are also independent

Let $P_n(t) \equiv P$ (# of arrivals = n at time t) $P_{ij}(\Delta t) \equiv$ the prob. of going from i arrivals to j arrivals in a time interval of Δt seconds

$$\therefore P_n(t + \Delta t) = P_n(t)P_{n,n}(\Delta t) + P_{n-1}(t)P_{n-1,n}(\Delta t)$$

$$P_0(t + \Delta t) = P_0(t)P_{0,0}(\Delta t) = \lambda\Delta t$$

$$P_n(t + \Delta t) - P_n(t) = -\lambda P_n(t) + \lambda P_{n-1}(t)$$

$$\frac{P_n(t + \Delta t) - P_n(t)}{\Delta t} = -\lambda P_0(t)$$

$$\underbrace{0}_{\lambda} \underbrace{1}_{\lambda} \underbrace{2}_{\lambda} \underbrace{3}_{\lambda} \underbrace{3}_{\lambda} \underbrace{...}$$

66

Let $\Delta t \rightarrow 0$ then

$$\frac{dP_n(t)}{dt} = -\lambda P_n(t) + \lambda P_{n-1}(t) \quad (1)$$

$$\frac{dP_0(t)}{dt} = -\lambda P_0(t) \quad (2)^{\text{solution}} \Rightarrow P_0(t) = e^{-\lambda t}$$

From (1)

$$\frac{dP_1(t)}{dt} = -\lambda P_1(t) + \lambda e^{-\lambda t} \quad \therefore P_1 = \lambda t e^{-\lambda t}$$

$$\frac{dP_2(t)}{dt} = -\lambda P_2(t) + \lambda^2 t e^{-\lambda t} \quad \therefore P_2 = \frac{\lambda^2 t^2}{2} e^{-\lambda t}$$

Continuing, by induction,

The Poisson distribution

<u>Ex:</u> $\lambda = 100$ arrivals/min., what is the prob. of no arrivals in 5 sec.? $P_0(5 \text{ sec.}) = e^{-100 \cdot \left(\frac{1}{12}\right)} = 0.00024$ * the mean & the variance of the Poisson dist. are both equal to λt .

mean:

$$\overline{n(t)} = \sum_{n=1}^{\infty} nP_n(t) = \sum_{n=1}^{\infty} n \cdot \frac{(\lambda t)^n e^{-\lambda t}}{n!} = e^{-\lambda t} \cdot \sum_{n=1}^{\infty} \frac{(\lambda t)^n}{(n-1)!}$$
derivation is
based on

$$= e^{-\lambda t} \cdot \sum_{n=0}^{\infty} \frac{(\lambda t)^{n+1}}{n!} = e^{-\lambda t} \cdot \lambda t \cdot \sum_{n=0}^{\infty} \frac{(\lambda t)^n}{n!} = e^{-\lambda t} \cdot \lambda t \cdot e^{\lambda t} = \lambda t$$

$$e^{\lambda t} = \sum_{n=0}^{\infty} \frac{(\lambda t)^n}{n!} \quad \text{variance:} \quad [\sigma_n(t)]^2 = \sum_{n=0}^{\infty} n^2 P_n(t) - [\overline{n(t)}]^2 = \lambda t$$

$$\frac{\text{The inter-arrival time T}}{(1 + e^{-\lambda t})^n} \quad \text{variance:} \quad [\sigma_n(t)]^2 = \sum_{n=0}^{\infty} n^2 P_n(t) - [\overline{n(t)}]^2 = \lambda t$$

$$\frac{\text{The inter-arrival time cumulative dist. function(t)}{(1 + e^{-\lambda t})^n} \quad \text{cdf (t)}$$

$$= P \text{ (time between arrivals > t)} \quad \therefore \text{ no arrivals in a time interval of } t = P_0(t)$$

$$= 1 - P_0(t) \quad P_0(t)$$

$$\therefore \text{ inter-arrival time density (t)} = \frac{d(1 - e^{-\lambda t})}{dt} = \lambda e^{-\lambda t} \quad \text{ord} f(t)$$

$$\therefore \text{ T is an exponentially distributed r.v.}$$

$$\therefore \text{ T has a memory-less property} \qquad 69$$

state space.

$$M/M/1 \qquad (1-\lambda\Delta t)(1-\mu\Delta t) \qquad \lambda\Delta t \qquad \mu\Delta t$$

$$P_n(t + \Delta t) = P_n(t)P_{n,n}(\Delta t) + P_{n-1}(t)P_{n-1,n}(\Delta t) + P_{n+1}(t)P_{n+1,n}(\Delta t)$$

$$P_0(t + \Delta t) = P_0(t)P_{0,0}(\Delta t) + P_1(t)P_{1,0}(\Delta t)$$

$$\frac{dP_n(t)}{dt} = -(\lambda + \mu)P_n(t) + \lambda P_{n-1}(t) + \mu P_{n+1}(t)$$

$$\frac{dP_0(t)}{dt} = -\lambda P_0(t) + \mu P_1(t)$$

$$(0 + \mu)P_n(t) + \lambda P_{n-1}(t) + \mu P_{n+1}(t) + \mu P_{n+1}(t) + \mu P_{n+1}(t)$$

$$Probability flux (or flow):$$

$$(probability flux (or flow):$$

$$(probability of a state)*(transition rate originating from the state)$$

$$physical meaning: \frac{\# of times per second the event corresponding to}{P_{n+1}(t)}$$

the transition occurs.

Equilibrium state probabilities conservation of probability: $\sum_{i=0}^{\infty} P_i(\infty) = 1 \longrightarrow \text{normalization equation}$

Use local balance equations to solve the global balance equations 1. Local satisfies global

2. Local allows us to relate P_n with a reference state, e.g., P_0

Definition of local balance:

"the probability flow <u>into</u> a state due to an arrival to a queue equals the probability flow <u>out of</u> the same state due to a departure from the same queue"

$$P_{0}: P_{0} P_{1}: P_{0}\lambda = P_{1}\mu \implies P_{1} = \left(\frac{\lambda}{\mu}\right)P_{0}$$

$$P_{1}: P_{1}\lambda = P_{2}\mu \implies P_{2} = \left(\frac{\lambda}{\mu}\right)P_{1}$$

$$P_{n-1}\lambda = P_{n}\mu \implies P_{n} = \left(\frac{\lambda}{\mu}\right)P_{n-1}$$

$$P_{n} = \left(\frac{\lambda}{\mu}\right)^{n}P_{0}$$

applying the normalization ∴ equation

$$\therefore P_0 \sum_{n=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^n = 1 \qquad \sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \quad 0 \le x < 1$$
$$P_0 = \frac{1}{\sum_{n=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^n} = 1 - \left(\frac{\lambda}{\mu}\right) \quad \text{if } 0 \le \frac{\lambda}{\mu} < 1$$
$$\therefore P_n = \left(\frac{\lambda}{\mu}\right)^n \left(1 - \frac{\lambda}{\mu}\right)$$

74

Utilization: prob. that an M/M/1 queuing system is nonempty

Let
$$\frac{\lambda}{\mu} = \rho$$
, $P_n = \rho^n (1 - \rho)$
 P_n^n
 P_n for M/M/1 system when $\frac{\lambda}{\mu} = \rho = \frac{1}{2}$
 $\frac{1/4}{1/8}$
 $\frac{1/8}{1/16}$
 $\frac{1/16}{1/32}$
 $\frac{1/64}{1/6}$
 $P(0 \le n \le 3)$
 $\frac{1/4}{1/99999}$
 $\frac{1/4}{0.9596}$
 $\frac{1/4}{0.9596}$

* for a lightly loaded system, there are usually less than 4 customers in the system.

	(light) *p=0.1	ρ=0.5	(heavy) ρ=0.9
P(0≤n≤3)	0.9999	0.9375	0.3439
P(4≤n≤7)	10-4	0.0586	0.2256
P(8≤n≤11)	10 ⁻⁸	0.0366	0.1480
P(n≥12)	10 ⁻¹²	0.000249	0.2825

check $\rho = 1 - P_0$? $\rho = 1 - P_0 = 1 - (1 - \frac{\lambda}{2}) = \frac{\lambda}{2}$ * $\rho \leq 1$ otherwise $\lambda > \mu$ and the queuing system would no longer be in equilibrium \rightarrow i.e., unstable. Q1:throughput? Q2: Average # of customers in the queuing system? $x = \sum_{n=0}^{\infty} P_n * \mu \qquad \left| n = \sum_{n=0}^{\infty} n P_n \right| = \sum_{n=0}^{\infty} n \cdot \rho^n (1-\rho) = (1-\rho) \sum_{n=0}^{\infty} n \cdot \rho^n = (1-\rho) \cdot \rho \sum_{n=0}^{\infty} n \cdot \rho^{n-1}$ $= \mu \cdot \sum_{n=1}^{\infty} P_n$ $= \mu(1-P_0)$ $= \mu \cdot \frac{\lambda}{n} = \lambda$ $= \frac{\rho}{1-\rho}$ $\lambda = \frac{1}{2}\mu$ $\lambda = \frac{2}{3}\mu$ $\begin{vmatrix} \overline{n} = \frac{\rho}{1 - \rho} \\ \therefore \rho = \frac{\lambda}{\mu} \\ \vdots \rho = \frac{2}{3} \\ - 2 \checkmark$ because when there is no customer, there is no $=\frac{\frac{1}{2}\mu}{\mu}=\frac{1}{2}$ $\overline{n}=\frac{\frac{2}{3}}{\frac{1}{3}}=2$ contribution to throughput. $n = \frac{1}{2} = 1$ 76

Let R be the mean response time per customer Q3: R? _____

since $n = \lambda R$ by little's law (to be discussed later)

$$R = \frac{n}{\lambda} = \frac{\rho}{(1-\rho)\lambda} = \frac{\frac{1}{\mu}}{(1-\frac{\lambda}{\mu})} \longrightarrow$$
When $\rho=1$ system is unstable

M/M/1/N Queuing system: the finite buffer case

Following the previous derivation for $M/M/1/\infty$,

an arriving customer is "lost" or "turned away" when there are already N customers in the system.

Q1: the prob. that the queuing system is full? P_N Q2: how fast are customers lost? $P_N \times \lambda$

	λ			
	μ	$P_N = P_5$ (blocking probability)		
when N=5	0.1	9* 10 ⁻⁶	apr	lving L'Hopital's rule
	0.5	0.016	11	
	0.75	0.072	5	$6 \qquad 5 \dots^4 6 \dots^5$
	1.00	0.166	$-\lim_{x \to \infty} \frac{x - x}{x}$	$-\frac{4}{5} \lim \frac{5x^2 - 6x}{5} = 0.166$
	2.00	0.508	$x \rightarrow 1$ $1 - x^{\circ}$	$x \rightarrow 1$ $-6x^{3}$
Q3: population?	5.00	0.800		
	$\overline{n} = \sum_{n=1}^{N} n \cdot P_n$			
O4: throughput?	n=0			
	$x = \sum_{n=1}^{N} \mu \cdot P_n$	$= \mu \cdot \sum_{n=1}^{N} P_n$	$= \mu(1 - I)$	$(P_0) = \mu \rho < \lambda$
Q5: Utilization?	1	$1 - \frac{\lambda}{\mu}$	$\frac{1}{2}$ λ	o is utilization
	$\rho = 1 - P_0 =$	$= 1 - \frac{\lambda}{1 - \left(\frac{\lambda}{\mu}\right)^{l}}$	$\frac{1}{N+1} < \frac{1}{\mu}$	F

M/M/m/m

m servers with a single queue having a buffer space of m (when all servers are busy, a customer walks away), e.g., a telephone switching system.

Q1. Prob. that all m servers are busy (e.g., in a telephone switch company)? P_m ← The expression for P_m is called Erlang's B formula.
Q2. Mean # of calls turned away per time unit? P_m×λ

A Client-Server System

Request arrival rate per user : λ

Service rate of the server system with <u>one server</u>: µ

Response time: the time spent by a user at the system between submitting the request & the return of the response

State Description: one state component representation
n: a number representing the # of users <u>in the server system</u>
∴ # of users still thinking (i.e., not issuing requests) = m - n

$$\underbrace{0}_{\mu} \underbrace{1}_{\mu} \underbrace{1}_{\mu} \underbrace{2}_{\mu} \underbrace{3}_{\mu} \underbrace{3}_{\mu} \underbrace{1}_{\mu} \underbrace$$

$$\begin{array}{c} \begin{array}{c} \text{Recall} \\ \text{in M/M/1} \\ P_n = \left(\frac{\lambda}{\mu}\right)^n P_0 \end{array} \therefore P_n = \left(\prod_{i=1}^n \frac{\lambda(m-i+1)}{\mu}\right) P_0 \\ \text{or } P_n = \left(\frac{\lambda}{\mu}\right)^n \frac{m!}{(m-n)!} P_0 \end{array} \qquad \text{where } P_0 = \frac{1}{\sum_{n=0}^m \left[\left(\frac{\lambda}{\mu}\right)^n \frac{m!}{(m-n)!}\right]} \end{array}$$

Q1: Avg. # of users in the server system? $\overline{n} = \sum_{n=1}^{m} n \cdot P_n$

Q2: Avg. # of users still thinking (not issuing requests)? $m - \overline{n}$

Q3: System throughput? $x = \sum_{n=1}^{m} \mu \cdot P_n = (1 - P_0) \cdot \mu$

Q4: Response time per user?

What happens if the server system has m servers, each with a service rate of μ ?

$$\underbrace{0}_{\mu} \underbrace{1}_{2\mu} \underbrace{0}_{3\mu} \underbrace{0}_{3\mu} \underbrace{0}_{m\mu} \underbrace{1}_{m\mu} \underbrace{0}_{m\mu} \underbrace{0}_$$

Q1: Throughput? $x = \sum_{n=1}^{m} (P_n * n\mu)$ Q2: Response time?

<u>Fundamental Laws</u>: algebraic relationships among performance measurement quantities.</u>

$$\begin{split} \lambda &= \text{arrival rate} = A/T \quad \text{e.g.}, \frac{100 \text{ arrivals}}{1 \text{ hr}} \\ C &= \# \text{ of completions} \\ x &= C/T \quad \text{throughput} \\ B &= \text{total system busy time} \\ D &= B/C \quad \text{average service time per request} \\ \rho &= B/T \quad \text{utilization of the system} \end{split}$$

mathematically

$$\frac{B}{T} = \frac{C}{T} * \frac{B}{C} \qquad \rho = x * D$$

utilization law

- * A meaning of W is the total time spent by all customers in the system. $\therefore R = W/C$
- * Another meaning of W is the total population accumulated (in queue & in service) over T time units. $\therefore \overline{n} = \frac{W}{T}$

Algebraically
$$\overline{n} = \frac{W}{T} = \frac{W}{C} * \frac{C}{T} = R * x$$
 $\therefore \overline{n} = R x$

87

v