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Abstract

We present the Stochastic Petri Net Package (SPNP), a versatile modeling
tool for performance, dependability, and performability analysis of complex systems.
Input models developed based on the theory of stochastic reward nets are solved by
e�cient and numerically stable algorithms. Steady-state, transient, cumulative tran-
sient, time-averaged, and \up-to-absorption" measures can be computed. Parametric
sensitivity analysis of these measures is possible. Some degree of logical analysis capa-
bilities are also available in the form of assertion checking and the number and types of
markings in the reachability graph. Advanced constructs available - such as marking-
dependent arc multiplicities, guards, arrays of places and transitions, and subnets -
reduce modeling complexity and enhance power of expressiveness of the package. The
most powerful feature is the capability to assign reward rates at the net level and sub-
sequently compute the desired measures of the system being modeled. The modeling
description language is CSPL, a C-like language, although no previous knowledge of
the C language is necessary to use SPNP.

1 ABOUT THIS MANUAL

This manual1 describes Version 4.0 of SPNP, running under the UNIX system on a wide array
of platforms (VAX, Sun 3 and 4, Convex, Gould, NeXT, CRAY), AIX system (RS/6000),
OS/2 system (PS/2), and VMS system (VAX). The description will apply mainly to UNIX-
based systems; Appendix A contains some minor di�erences for the VMS version.

A basic knowledge of the Stochastic Reward Net (SRN) [???] formalism and Markov
chains is assumed [29]. The SPN model we adopt is best described in [5, 6] [Ciardo, Blake-
more et al.], but it may be useful to consult [1]. The reader should consult [2, 23, 24, 25] if
unfamiliar with some Petri Net (PN) concepts. For further information on Markov chains,
performance modeling and reliability modeling see [29], while for performability modeling
see [27, 30] [May 91 IEEE Computer and the Chapter in Krishna&Lee]. Markov and Markov
reward model solution techniques are surveyed in [26]. A 6-hour long VHS tape for a course
on Putting Stochastic Petri Nets to Work, by K. Trivedi and G. Ciardo can be ordered
from USC-ITV by calling (213)-740-0119.

In the next section, we list some of the major features of the package. In the subsequent
section we explain how to describe a SRN to the package. The structure of the package and

1This manual was composed mainly based on texts extracted from [5, 10].
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format of the �les generated by SPNP is then presented, followed by the list of the available
options. In the conclusion we list future work planned on the package.

2 WHAT IS NEW IN SPNP VERSION 4.0

The salient features of SPNP Version 4.0 as it di�ers from SPNP Version 3.1 are:

� A new transient uniformization method which uses Fox-Glynn method for comput-
ing the poisson probabilities has been implemented for the instantaneous probabil-
ity computation. The new method can be invoked by setting IOP METHOD to
VAL FOXUNIF.

� You can switch o� steady-state detection in transient analysis by using the new switch
IOP SSDETECT. Set it to VAL YES for detection and VAL NO for no detection. The
default is VAL YES.

� The former \enabling" functions have now been renamed to \guard". For backward
compatibility, a 
ag has been de�ned so that previous CSPL �les can still be run with
the new SPNP 4.0.

� We can now set time to INFINITY while doing transient analysis. The code will
recognize that you wish to compute steady-state solution and does so automatically.
Use new 
ag IOP SSMETHOD to specify which steady-state solution method you wish
to use.

� Implemented the POWER method for steady-state computation. This method is guar-
anteed to converge while no such guarantee is available for SOR or Gauss-Seidel [Goyal,
Lavenberg & Trivedi paper]. On most problems, however, SOR will work and will con-
verge much faster. Therefore, power method should be considered as a backup. To
invoke power method, set IOP METHOD to VAL POWER.

3 THE SPNP PACKAGE

Reliability block diagrams and fault trees are commonly used for system dependability
analysis (reliability/availability). These model types allow a concise description of the
system under study and can be evaluated e�ciently, but they cannot represent dependencies
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ocurring in real systems. Markov models, on the other hand, are capable of capturing var-
ious kinds of dependencies that occur in reliability/availability models (these dependability
model types are compared in [Malhotra & Trivedi, to appear]).

Task precedence graphs can be used for performance analysis of concurrent programs with
unlimited system resources. System performance analysis using product-form queueing net-
works can instead consider contention for system resources. The product-form assumptions
are not satis�ed, however, when behaviors such as concurrency within a job, synchronization,
and server failures are considered. Once again, Markov models do provide a framework to
address all these concerns.

Traditionally, performance analysis assumes a fault-free system. Separately, dependability
analysis is carried out to study system behavior in the presence of component faults, dis-
regarding di�erent performance levels in di�erent con�gurations. Several di�erent types of
interactions and corresponding tradeo�s have prompted researchers to consider the com-
bined evaluation of performance and dependability. Most work on the combined evaluation
(sometimes called performability analysis) is based on the extension of Markov processes
to Markov reward processes [11, 27] [Smith & Trivedi chapter in Takagi book], where a
reward is attached to each state of the Markov process.

Markov reward processes have the potential to re
ect concurrency, contention, fault-tolerance,
and degradable performance. They can be used to obtain not only program/system perfor-
mance and system reliability/availabilitymeasures, but also combinedmeasures of performa-
bility.

The common solution for modeling dependability, performance, or performability would then
appear to be the use of Markov reward models, but one major drawback of Markov reward
models is the largeness of their state space. To address this problem we designed SPNP, a
versatile modeling tool for solution of SRN models [5, 6]. The SRN model can be used to
generate a (large) underlying Markov reward model automatically starting from a concise
description.

4 SPNP FEATURES

The input language for SPNP is CSPL (C�based Stochastic Petri net Language). A CSPL
�le is a C �le [17]; it is compiled using the C compiler and then linked with the precompiled
�les constituting SPNP. The full expressive power of the C programming language is available
to increase the 
exibility of the net description. Being a superset of the C language is an
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important feature of CSPL since its user can exploit C language constructs to represent a
large class of SRNs within a single CSPL �le. Although, most applications will only require
a limited knowledge of the C syntax, since prede�ned functions are available to de�ne SPNP
objects.

Other important characteristic of SPNP is the provision of a function to input a value at
runtime, before reading the speci�cation of the SRN. This input value can be used in SPNP
to modify the value of a scalar parameter as well as the structure of the SRN itself. Arrays
of places or transitions and subnets are two features of the package useful to exploit this
structural parametrization. A single CSPL �le is su�cient to describe any legal SRN,
since the user of SPNP can input at run-time the number of places and transitions, the arcs
among them, and any other required parameter. In practice, the class of SRNs described by
a single CSPL �le is more likely to represent only minor variations on a common structure,
so as to increase compactness and consistency. A single �le can be used to represent all the
SRNs corresponding to a given system under consideration, even when they di�er somewhat
in their structure. As a result, the numerical parameters used in the speci�cation of rates
and probabilities need to appear in only one �le, decreasing the risk of having inconsistent
de�nitions in di�erent �les.

The SPNP package allows the user to perform steady�state, transient, cumulative transient,
and sensitivity analysis of SRNs. A review of the solution techniques utilized is presented
in [5] [Ciardo,Blakemore et al.]. Steady-state analysis is often adequate to study the perfor-
mance of a system, but time-dependent behavior (transient analysis) is sometimes of greater
interest: instantaneous availability, interval availability, and reliability (for a fault-tolerant
system); response time distribution of a program (for performance evaluation of software);
computational availability (for a degradable system) are some examples. Sensitivity analysis
is useful to estimate how the output measures are a�ected by variations in the value of in-
put parameters, allowing the evaluation of alternatives during the design phase of a system.
Other important applications of sensitivity analysis are system optimization and bottleneck
analysis [Blake, Ribman & Trivedi].

Sophisticated steady-state and transient solvers are available in the SPNP package; cumu-
lative and up-to-absorption measures can be computed. In addition, the user is not limited
to a prede�ned set of measures: detailed expressions re
ecting exactly the measures sought
can be easily speci�ed. The measures are de�ned in terms of reward rates associated with
the markings of the SRN. The analytic solution methods provided in the package address
the stiffness problems that is often encountered in reliability and performance models.

A number of important Petri net constructs like marking dependency, variable cardinality
arc, guards, arrays of places and transitions, subnets, and assertions [5] [Ciardo, Blakemore
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et al.] facilitate the construction and debugging of models for complex systems.

Although model hierarchies are not built into SPNP, hierarchical SRN models can be ex-
ercised using a UNIX shell script �le (VMS :com �le) and submodels can communicate
information via �les that can be declared and opened inside individual submodel SPNP
input �les. Examples of papers using model hierarchies and �xed-point iteration include
[4, 7, 8, 16, 19, 21, 22, 28]. Also, the user can consult several papers that have appeared in
the literature where SPNP was used [4, 7, 9, 8, 13, 12, 14, 15, 16, 19, 22, 21, 28] [IEEE-TSE
Nov 93, Robertazi; Proc IEEE Jan 94, Agrarwal & Noe, ...]. See [Malhotra & Trivedi] for
the importance of reward de�nition at the net level.

5 THE CSPL LANGUAGE

Modeling with the SPNP package implies that an input �le describing the system structure
and behavior must be written. The language designed to do so is named CSPL, a superset
of the C language [17]. What distinguishes CSPL from C is a set of prede�ned functions
specially developed for the description of SRN entities. Any legal C construct can be used
anywhere in the CSPL �le. All the C library functions, such as fprintf, fscanf, log, exp,
etc., are available and perform as expected. The only restriction to this generic rule is that
the �le should not have a main function.

In spite of being a programming language, CSPL enables the user to describe SRN models
very easily. To help a new user, example input �les are provided in the accompanying Ref-
erence Guide (i.e., example1.c, example2.c, etc.). There is no need to be a programmer
to fully exploit all the built-in features of the SPNP package. Just a basic knowledge of C is
su�cient to describe SRNs e�ectively. Although, for experienced programmers CSPL brings
the full power and generality of the C language.

A CSPL input �le has the following basic structure2:

/* begin of CSPL file */

parameters () {

......

}

net() {

......

2All the six functions listed must be present in the CSPL �le, even if their contents happen to be empty.
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}

assert() {

......

}

ac_init() {

......

}

ac_reach() {

......

}

ac_final() {

......

}

/* end of CSPL file */

Figure 1 shows the net for the running example that will be used to illustrate the syntax and
semantics of the functions to be presented3. Besides presenting the functions, the example
will be developed so as to suggest a general methodology of describing models using CSPL.

5.1 Parameters Function

The function parameters allows the user to customize the package. Several parameters
establishing a speci�c behavior can be selected (the whole set of parameters and default
values are visualized in table 14).

The options are selected by means of the following function calls:

void iopt(option,value)
int option,value;

void fopt(option,value)
int option;
double value;

double input(msg)
char *msg;

3The whole CSPL �le describing the example is presented in Appendix B
4For convenience the semantics of all the options available are collectively described in Appendix C.
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Figure 1: A generic Stochastic Reward Net
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type name values default

int IOP CUMULATIVE VAL YES; VAL NO VAL YES

int IOP DEBUG VAL YES; VAL NO VAL NO

int IOP ITERATIONS non-negative int 2000

int IOP MC VAL CTMC; VAL DTMC VAL CTMC

int IOP METHOD VAL SSSOR; VAL GASEI;

VAL TSUNIF; VAL FOXUNIF;

VAL POWER VAL SSSOR

int IOP OK ABSMARK VAL YES; VAL NO VAL NO

int IOP OK TRANS M0 VAL YES; VAL NO VAL YES

int IOP OK VANLOOP VAL YES; VAL NO VAL NO

int IOP PR FULL MARK VAL YES; VAL NO VAL NO

int IOP PR RGRAPH VAL YES; VAL NO VAL NO

int IOP PR RSET VAL YES; VAL NO;

VAL TANGIBLE VAL NO

int IOP PR MARK ORDER VAL CANONIC; VAL LEXICAL;

VAL MATRIX VAL CANONIC

int IOP PR MC VAL YES; VAL NO VAL NO

int IOP PR MC ORDER VAL FROMTO; VAL TOFROM VAL FROMTO

int IOP PR MERG MARK VAL YES; VAL NO VAL YES

int IOP PR PROB VAL YES; VAL NO VAL NO

int IOP SENSITIVITY VAL YES; VAL NO VAL NO

int IOP SSDETECT VAL YES; VAL NO VAL YES

int IOP USENAME VAL YES; VAL NO VAL NO

double FOP ABS RET M0 non-negative double 0.0

double FOP PRECISION non-negative double 0.000001

Table 1: Available options for the parameters function
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The function iopt (fopt) enables the user to set option to have the integer (double-precision

oating point) value. Any of the available options (listed in table 1) can be selected and
modi�ed. The user should always be sure to pass to these functions a value of the right type
(respectively int or double).

For example:

parameters() {

......

iopt(IOP_PR_MARK_ORDER,VAL_LEXICAL);

......

}

will cause the markings to be printed in lexical order (see Appendix C), instead of the
default canonical order, the order in which they are found.

The function input permits the input of parameters at run time, i.e., when parameters
is being executed. A message of the form Please type \msg" is displayed on the stderr
stream (usually assigned to the console), and the program waits for a double-precision 
oat-
ing point value from the stdin stream (usually assigned to the keyboard). The returned
value is a double, so an explicit type conversion to int or double may be needed. The
assigned value is printed in the \.out" �le, together with msg. This feature is useful to
relate the set of options selected to a particular running of a CSPL program.

For our example of Figure 1 let us assume the following parameters function:

int N, /* total number of processors in the cluster */

q; /* number of processors needed for quorum */

double c; /* coverage factor */

parameters() {

iopt(IOP_METHOD,VAL_TSUNIF);

iopt(IOP_PR_FULL_MARK,VAL_YES);

iopt(IOP_PR_MC,VAL_YES);

iopt(IOP_PR_MC_ORDER,VAL_TOFROM);

iopt(IOP_PR_RGRAPH,VAL_YES);

iopt(IOP_PR_RSET,VAL_YES);

fopt(FOP_PRECISION,0.00000001);
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N = input("Enter the total number of processors");

q = input("Enter number of processors needed for quorum");

c = input("Enter the coverage factor");

}

5.2 Net Function

The function net allows the user to completely de�ne the structure and parameters of a
SRN model. The functions that can be used inside the function net will be explained in the
following, grouped according their logical function in the language.

5.2.1 Specifying a Petri Net

The standard Petri net (PN) model [24] is de�ned by a set of places (drawn as circles), a
set of transitions (drawn as bars), and a set of directed arcs, which connect transitions to
places or places to transitions (see Figure 1). Places may contain tokens (represented by
integers). The state of the PN, called the PN marking, is de�ned by a vector enumerating
the number of tokens in each place.

The states of a PN can be used to represent various entities associated with a system - for
example, the number of functioning resources of each type, the number of tasks of each type
waiting at a resource, the number of concurrently executing tasks of a job, the allocations of
resources to tasks, and states of recovery for each failed resource. Transitions represent the
changes of states due to the ocurrences of simple or coumpound events such as the failure of
one or more resources, the completion of executing tasks, or the arrival of jobs.

A place is an input to a transition if an arc exists from the place to the transition. If an
arc exists from a transition to a place, it is an output place of the transition. A transition
is enabled when each of its input places contains at least one token. Enabled transitions
can �re, by removing one token from each input place and placing one token in each output
place. Thus the �ring of a transition may cause a change of state (producing a di�erent
marking) of the PN. The reachability set is the set of markings that are reachable from a
given initial marking. The reachability set together with arcs joining the marking indicating
the transition that cause the change in marking is called the reachability graph of the net.

The functions listed below allow the user to describe Petri nets:
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void place(name)
char *name;

void trans(name)
char *name;

void iarc(t name,p name)
char *t name,*p name;

void oarc(t name,p name)
char *t name,*p name;

void init(name,n)
char *name;
int n;

The function place (trans) de�nes a place (transition) with identi�er name. All names
must be distinct, i.e., the places/transitions in the Petri net should have distinct names5. A
place/transition name is legal if:

� its length is between 1 and MAXNAMELENGTH, as de�ned in the �le const.h6,
by default this constant has the value 20;

� it is composed of the characters f0..9,a..z,A..Z, g only;

� the �rst character is in fa..z,A..Zg.

If an arc is directed from a place p name to a transition t name then it is an input arc to
the transition and is described by the function iarc. If an arc is directed from a transition
t name to a place p name then it is an output arc to the transition and is described by the
function oarc.

The distribution of tokens in a marked Petri net de�nes the state of the net and is called its
marking. The initial marking of the Petri net is created by successive use of the function
init. With this function it is possible to initialize the number n of tokens in any place
identi�ed by its name. By default, places are otherwise initially empty (zero tokens).

5Note that the keywords automatically written by the package in the intermediate �les will always have
an underscore as �rst character, to avoid possible con
icts with legal names (and to allow an easy parsing
of the intermediate �les).

6The de�nitions in the �les const.h and type.h are always provided with the distribution of the package,
but they should be changed only if the source code is available, since they are included in the other source
�les, hence used at compile-time.
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As an illustration of the use of the �rst group of functions, we describe the underlying Petri
net of Figure 1 (starting from top to bottom and from left to right) by the following segment
of code:

net() {

/* places: */ /* initial markings: */

place("procup"); init("procup",N);

place("proctmp1");

place("procdn");

place("sysrb");

place("proctmp2");

place("sysup"); init("sysup",1);

place("systr");

/* transitions: */ /* input arcs: */ /* output arcs: */

trans("trpf"); iarc("trpf","procup"); oarc("trpf","proctmp1");

iarc("trpf","sysup");

trans("trpf2"); iarc("trpf2","procup"); oarc("trpf2","procdn");

trans("trp1"); iarc("trp1","proctmp1"); oarc("trp1","systr");

oarc("trp1","procdn");

trans("trp3"); iarc("trp3","proctmp1"); oarc("trp3","procdn");

oarc("trp3","s ysrb");

trans("trp2"); iarc("trp2","proctmp1"); oarc("trp2","procdn");

oarc("trp2","sysrb");

trans("trrs"); iarc("trrs","proctmp2"); oarc("trrs","procup");

trans("trpr"); iarc("trpr","procdn"); oarc("trpr","proctmp2");

trans("trrb"); iarc("trrb","sysrb"); oarc("trrb","sysup");

trans("trdn"); iarc("trdn","proctmp2"); oarc("trdn","systr");

iarc("trdn","sysup"); oarc("trdn","procup");

trans("trtr"); iarc("trtr","systr"); oarc("trtr","sysup");

...... /* other functions to be presented */

}

where N is de�ned elsewhere outside the net function.

After the original conception, some extensions of the original theory of PNs were proposed.
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The concept ofmultiple arcs was introducted: input and output arcs may have an associated
multiplicity factor. An arc with a multiplicity factor k is logically equivalent to k parallel
arcs. This construct increases the convenience of use of the PNs by allowing multiple arcs
between transitions and places to be represented in a compact form.

Inhibitor arcs, on the other hand, increase the fundamental modeling power or decision
power of ordinary Petri nets. An inhibitor arc from a place to a transition has a circle rather
than an arrowhead at the transition. The �ring rule for the transition is changed such that
the transition is disabled if there is at least one token present in the corresponding inhibiting
input place7.

The concept of arc multiplicity can also be applied to inhibitor arcs: an inhibitor arc with
multiplicity k needs at least k tokens in the corresponding input place to disable the tran-
sition.

Therefore, the following group of functions was included in the SPNP to add more power
and compactness to the PN models:

void harc(t name,p name)
char *t name,*p name;

void miarc(t name,p name,mult)
char *t name,*p name;
int mult;

void moarc(t name,p name,mult)
char *t name,*p name;
int mult;

void mharc(t name,p name,mult)
char *t name,*p name;
int mult;

The function harc allows the user to de�ne inhibitor arcs from transition t name to place
p name. The functions miarc, moarc, and mharc de�ne multiple input, output, and
inhibtor arcs, respectively, with multiplicity mult (a positive integer constant). Intuitively,
a multiple arc with multiplicitymult can be thought of as mult arcs having the same source
and destination. An inhibtor arc from place p to transition t with multiplicitym will disable
t in any marking where p contains at least m tokens.

7No tokens are moved along inhibitor arcs.
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We can now expand our previous description of Figure 1 with the following code:

net() {

...... /* previously presented functions */

/* inhibitor arcs: */

harc("trpf","systr");

harc("trpf2","systr");

/* multiple inhibitor arcs: */

mharc("trp3","procup",q);

mharc("trrs","procup",q);

...... /* other functions to be presented */

}

5.2.2 Guards and Priorities

There are a few additional extensions that are included in the package for the sake of user
convenience in de�ning more complex enabling and inhibiting conditions. The �rst extension
to be presented is the concept of guard, which attach logical conditioning functions or
enabling functions to the transitions.

A user can de�ne conditioning functions involving relational and numerical operators of the
number of tokens in various places and the enabled state of a transition. Such guards are
often used to reduce the graphical complexity of the Petri net. Guards can also used to
specify state truncation [5].

Still another way to de�ne inhibitions on the net is provided. A priority levelmay be de�ned
for each transition in the net, so that the set of transitions is partitioned by priority levels.
The �ring rule is then modi�ed such that a transition is inhibited if there is a higher priority
transition enabled, while the �ring of transitions with the same priority level follows the
standard rules.

Furthermore, priorities were also included in the package because we may often wish to
model the probabilistic outcome of an event represented by the �ring of a transition. If S
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is the set of transitions enabled in a marking and if the transition with the highest priority
among them is k, then any transition in S with priority lower than that of transition k will
be disabled8.

If we ignore timing, we can imagine an ordinary PN as a SRN where all transitions have
the same priority, where no inhibitor arcs are present, and where the guards are identically
equal to 1 (TRUE). We also can observe that guards and priorities enhance the power of
PNs by extending the �ring rules: Each transition t has an associated (boolean) guard e9.
The function is evaluated in marking M when \there is a possibility that t is enabled," that
is, when:

� no transition with priority higher than t is enabled in M ;

� the number of tokens in each of its input places is larger than or equal to the (variable)
cardinality of the corresponding input arc;

� the number of tokens in each of its inhibitor places is less than the (variable) cardinality
of the corresponding inhibitor arc. Only the e(M) is evaluated; t is declared enabled
in M i� e(M) = TRUE.

The ability to express complex enabling/disabling conditions textually is invaluable. With-
out it the modeler might have to add extraneous arcs or even places and transitions to the
SRN, to obtain the desired behavior.

The functions listed below provide additional constructs to selectively disable a transition
in a marking which would otherwise enable it:

void guard(name,efunc)
char *name;
enabling type (*efunc)();

void priority(name,prio)
char *name;
int prio;

8The use of priorities provide another way to disable a transition.
9By default transitions have the lowest priority (zero) and have no guards (their enabling function are

set to the constant TRUE).
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The function guard (priority) de�nes the enabling function (priority) for transition name
to be efunc (prio)10. The function passed as actual parameter to the guards must be de�ned
in the CSPL �le before being used.

To further expand the description of the model presented in Figure 1 we write:

net() {

...... /* previously presented functions */

/* guards: */

guard("trpf2",ensysr);

guard("trp1",enrstr);

guard("trp2",enrstr);

guard("trpr",enprcrp);

guard("trrb",enrstr);

guard("trtr",enrstr);

/* priorities: */

priority("trp1",10);

priority("trp3",10);

priority("trp2",10);

priority("trrs",10);

priority("trdn",10);

...... /* other functions to be presented */

}

where the enabling functions ensysr, enrstr, and enprcrp are described elsewhere outside
the net function.

10The following types are prede�ned, for the purpose of clarity: enabling type, probability type,
rate type, and reward type; the �rst type is an alias for the C type int (integer number), meant to
assume valuesVAL YES andVAL NO only; the others are aliases for the C type double (double-precision

oating point number).
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5.2.3 Probabilistic Behavior

We may often wish to model the probabilistic outcome of an event represented by the �ring of
a transition. SPNP provides random switches [1] for this purpose. A random switch consists
of a set of immediate transitions together with a set of (possibly marking dependent)
weights.

Whenever a subset of transitions controlled by a random switch is enabled, a probability of
�ring (normalized so that they sum to the unity) is de�ned for each enabled transition. The
particular transition to �re is then chosen according to this (discrete) probability distribution.
We require that the sets of transitions for each random switch be disjoint, thus we can further
assign a unique priority level to each random switch. This prioritizing of random switches
de�nes the outcome when transitions belonging to two random switches are simultaneously
enabled. (Any enabled transition that does not belong to a random switch will be considered
a random switch with one element). The choice of the random switch is made according to
the priority level of the switch; the choice of the transition within the chosen random switch
is made as if it were the only one active.

The following group of functions allows the description of random switches:

void probval(name,val)
char *name;
probability type val;

void probdep(name,val,pl)
char *name;
probability type val;
char *pl;

void probfun(name,func)
char *name;
probability type (*func)();

The functions probval, probdep, and probfun allow the assignment of �ring probabilities
to transitions. These functions de�ne respectively the probability of transition name as a
constant value val of type probability type, or as a constant value val times the number of
tokens in place pl (an in�nite server behavior), or as a general marking dependent function
func returning a probability type.

Immediate transitions are drawn as thin bars in our running example (Figure 1) and their
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�ring probabilities are described by the following code:

net() {

...... /* previously presented functions */

/* firing probabilities of immediate transitions: */

probval("trp1",c);

probval("trp3",1.0);

probval("trp2",1.0-c);

probval("trrs"1.0);

probval("trdn",1.0);

...... /* other functions to be presented */

}

where c is de�ned elsewhere outside the net function. An error occurs if 1 is used instead of
1:0, in the speci�cation of the constant rate for the second transition, because the procedure
call conventions of C do not provide automatic type conversion in this case. This kind of an
error is not caught by the C compiler (spnp command), but it is caught by lint (spnpcheck
command).

5.2.4 Timing of Events

Transitions in SPNP are allowed to belong to two di�erent classes: immediate and timed.
Immediate transitions have higher priority than timed transitions and once enabled �re
immediately. To the timed transitions are assigned random variables, called firing times,
characterized by a given cumulative distribution function11. The �ring time represents the
time needed to complete the activity associated with the transition in a speci�c marking.
Therefore, once a timed transition is enabled, an random amount of time elapses. After this
delay, if the transition is still enabled, it will then �re.

If more than one transition is enabled in a given marking we need to de�ne a set of rules
for choosing the one to �re. If there is an immediate transition among those enabled, it �res
�rst, with probability one. If more than one immediate transition is simultaneously enabled,

11Only exponential distribution is allowed currently.
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the one to �re is chosen according to random switch(es) that contain the transitions. If there
are only timed transitions enabled the most logical choice for the one to �re is that with the
minimum �ring time.

When specifying transitions the following rules should be considered:

� each de�ned transition must have one (and only one) function assigning a rate (timed
transitions), or a probability (immediate transitions) to it;

� transitions cannot be disabled by de�ning rates or probabilities that evaluate to zero
(0) in the marking. Instead, the user must explicitly disable transitions;

� the package exits with an error message if a non-positive rate or probability is found
for a transition which would be otherwise enabled.

Rates of timed transitions are de�ned using the following functions calls:

void rateval(name,val)
char *name;
rate type val;

void ratedep(name,val,pl)
char *name;
rate type val;
char *pl;

void ratefun(name,func)
char *name;
rate type (*func)();

The functions rateval, ratedep, and ratefun allow the assignment of rates to transitions.
These functions de�ne respectively the rate of transition name as a constant value val of
type rate type, or as a constant value val times the number of tokens in place pl (an in�nite
server behavior), or as a general marking dependent function func returning a rate type.

To illustrate the strength of marking dependency (function ratedep) let us consider the
CSPL segment below:

ratefun_type myval() {return(mark("left_place")*7.3);}



5 THE CSPL LANGUAGE 21

net() {

place("left_place");

place("right_place");

trans("from_left_to_right");

trans("from_right_to_left");

iarc("from_left_to_right","left_place");

iarc("from_right_to_left","right_place");

oarc("from_left_to_right","right_place");

oarc("from_right_to_left","left_place");

init("left_place",4);

ratefun("from_left_to_right",myval);

rateval("from_right_to_left",1.0);

}

The net function de�nes an SRN with two places, left place and right place, and two transi-
tions with exponentially distributed �ring times, from left to right and from right to left.
The rate of the �rst transition is determined by the function myval to be 7.3 times the num-
ber of tokens in place left place while the rate of the second transition is the constant 1.0.
Since the �rst transition has an in�nite-server behavior, we would have achieved the same
e�ect with

ratedep("from_left_to_right",7.3,"left_place");

which would have been more e�cient, and perhaps clearer. However, ratefun allows more
general marking dependency compared with ratedep.

In our running example (Figure 1) timed transitions are drawn as rectangles and their �ring
rules are described by the following code:

net() {

...... /* previously presented functions */

/* timed transitions: */

rateval("trpr",1.0/2.0);

rateval("trrb",6.0);

rateval("trtr",120.0);
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ratedep("trpf",1.0/5000.0,"procup");

ratedep("trpf2",1.0/5000.0,"procup");

...... /* other functions to be presented */

}

5.2.5 Variable Cardinality Arcs

SPNP allows variable cardinality input, output, and inhibitor arcs.

void viarc(t name,p name,func)
char *t name,*p name;
int (*func)();

void voarc(t name,p name,func)
char *t name,*p name;
int (*func)();

void vharc(t name,p name,func)
char *t name,*p name;
int (*func)();

The syntax to express marking dependency is a natural extension of the syntax to describe
marking independent behavior. The functions viarc, voarc, and vharc12 de�ne respectively
an input, output, and inhibitor arc from transition t name to place p name, with multiplicity
given by the marking dependent function func (returning an integer, which represents the
cardinality of the arc13).

A typical example of the power of expression of this construct is the case where all the tokens
from place p must be moved to place q when transition t �res. An input arc from p to t and
an output arc from t to q, both with marking dependent multiplicity equal to the number of
tokens in place p are enough to model this behavior. Without this construct, the reachability
graph would contain all the intermediate arcs and markings corresponding to the movement
of tokens, one by one.

12We chose to de�ne vharc for completeness, but it is usually more e�cient to use a guard instead.
13When the cardinality of the arc is zero, the arc is considered absent.
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Perhaps even more importantly, if t is a timed transition, the stochastic behavior will not
be the same, unless the SRN explicitly models this \
ushing" of tokens with an additional
immediate transition and possibly some control places. The variable cardinality should be
used only when really needed, because it may make the SRN harder to understand and it
requires more computation (in the reachability graph generation) that a standard or multiple
arc.

Using the concept of marking dependent arc cardinalities associated with timed transitions
might give rise to nonintuitive or unforeseen behaviors; for example, in the 
ushing of tokens
just described, t is enabled in any marking, even when p is empty, unless:

� other input arcs are de�ned for t;

� an enabling function is used to explicitly disable t when p is empty and possibly in
other cases as well; or

� the marking dependent arc multiplicity function for the arc from p to t returns a
positive value when p is empty (this is the most e�cient solution if the goal is to
enable t only when there are tokens to be 
ushed in p).

5.2.6 Modeling Marking Dependence

Perhaps the most important characteristic of CSPL is the ability to allow extensive marking
dependence. Parameters such as the rate of a timed transition, the cardinality of an input
arc, or the reward rate in a marking, can be speci�ed as complex functions of the number of
tokens in some (possibly all) places. Marking dependence can lead to more compact models
of systems. Very complex behavior can be modeled in this way; the complexity is re
ected
in the way in which places are combined together.

The following functions are available to specify marking dependence:

int mark(p name)
char *p name;

int enabled(t name)
char *t name;

When called the functionmark returns the number of tokens in place p name. The function
enabled returns 1 (TRUE) if transition t name is enabled, 0 (FALSE) otherwise.
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Using these functions we can use the full power of C to devise complex marking dependent
functions. For example, if the rate of transition t1 equals the number of tokens in place p1
timeMU1 (a constant) plus the number of tokens in place p2 timesMU2 (another constant),
we can de�ne the marking dependent function

probability_type rate1() {

return(mark("p1")*MU1 + mark("p2")*MU2);

}

and then use it in the speci�cation of the rate for transition t1:

trans("t1"); ratefun("t1",rate1);

To further expand the description of the model presented in Figure 1 we must write:

/* guards: */

int ensysr() {return(mark("sysrb");}

int enrstr() {return(mark("procup")>=q ? 1:0);}

int enprcrp() {

return(mark("procup")>=q && mark("systr")+mark("sysbr")>0 ? 0:1);

}

net() {

......

}

5.2.7 Arrays of Places and Transitions

Some features implemented in CSPL are particularly powerful and, unfortunately, complex.
Marking dependency, for example, can be di�cult to master and exploit at the beginning,
especially when applied to input and output arcs. Another feature we have already at least
partially discussed is the ability to de�ne at run-time certain characteristics of the SRN, even
the presence of a place or the priority of a transition, using the input function. This can be
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stretched to the point where a single CSPL �le can actually represent a class of SRNs, not
a single one (maybe CSPL should be called a meta-SRN language).

Every place and transition is considered as a two-dimensional array. An ordinary place, for
example, is considered a 1 � 1 array; a unidimensional array of transitions, for example,
is considered a n � 1 array. Every prede�ned function is implemented as working on two-
dimensional arrays of places and/or transition. For example,

place("p");

is translated (see �le \user.h") into

Cplace("p",1,1);

Most functions described in the previous section have a corresponding 0- 1- and 2-dimensional
form, obtained by adding a \ 0", \ 1", or \ 2" to the basic function. For example, the
following are all legal and semantically equivalent:

place("p");

place_0("p");

place_1("p",1);

place_2("p",1,1);

To de�ne an array of 4 � 5 places, with names \a.0.0" through \a.3.4" use

place_2("a",4,5);

Note that, to indicate a single place in the array, the name and the indexes are used sepa-
rately:

init_2("a",1,1,3);

will set the initial number of tokens in place \a.1.1" to 3.

Sometimes a function may need to be applied to all the elements of an array. A possible
solution is to use the for construct of C, as in



5 THE CSPL LANGUAGE 26

trans_1("t",30);

for (i = 0; i < 30; i++)

priority_1("t",i,7);

but a simpler way is

trans_1("t",30);

priority_1("t",ALL,7);

which achieves the same result and it is both more clear and more e�cient.

The speci�cation of input, output, or inhibitor arcs is particularly complex. First of all,
there are nine possible cases, according to the dimensionality of both the transition and the
place arrays. So, for example,

miarc_2_1("t",4,5,"p",2,3);

speci�es an input arc with multiplicity 3 from \p.2" to \t.4.5". Another di�culty is the
inadequacy of the ALL keyword, shown in the following example:

trans_2("t",6,7);

place_1("p",6);

place_0("q");

place_2("m",6,7);

iarc_2_1("t",3,ALL,"p",3);

iarc_2_0("t",ALL,ALL,"q");

iarc_2_2("t",ALL,ALL,"m",ALL,ALL);

The �rst \iarc" statement de�nes seven input arcs, from \p.3" to \t.3.0" through \t.3.6".
The second \iarc" statement de�nes 42 input arcs, from \q" to \t.0.0" through \t.5.6". The
third \iarc" statement de�nes 1764 input arcs, from each of \m.0.0" through \m.5.6" to each
of \t.0.0" through \t.5.6", while probably the intended behavior was to de�ne 42 arcs only,
from \m.i.j" to \t.i.j", for all the legal values of i and j, which should have been speci�ed as

for (i = 0; i < 6; i++)

for (j = 0; j < 7; j++)

iarc_2_2("t",i,j,"m",i,j);
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Clearly the range of possible connection patterns between places and transitions is so large
that the only general approach is to require explicit declaration, arc by arc, often using the
for loop of C. The ALL keyword can be used in the cases where it represents the intended
behavior.

Two issues connected with the arrays arise in the de�nition of the marking dependent func-
tions. The �rst is the need to specify the behavior of a whole array of transitions (e.g.
rate) with a single function, since the purpose of allowing arrays would be at least partially
defeated if a di�erent function had to be de�ned for each transition in the array. Yet, each
transition in the array may have a slightly di�erent behavior. The solution is to pass to the
function itself the indeces of the transition in the array. For example:

trans_2("t",3,4);

ratefun_2("t",ALL,ALL,fun);

declares that the 12 transitions in the array have a marking dependent rate given by fun,
but, more precisely, the rate of \t.0.0" is given by fun(0,0), the rate of \t.0.1" is given by
fun(0,1), and so on. The de�nition of fun could be:

rate_type fun(i,j) {

int a,b;

if (i == 0) {

return(mark_1("p",j) * 3.2);

} else {

a = mark_1("a",j);

b = mark_1("b",j);

return((a > b) ? a * 2.6 : b * 1.2);

}

}

which of course assumes that 1-dimensional arrays of places \p", \a", and \b" exists and
have dimension at least 4.

The other issue relates to the use of the functions mark and enabled. It is easy to imagine
situations where it would be desirable to de�ne these function as having a meaning when
applied to the whole array, rather than to a single element, similarly to what the ALL
keyword allows. Three keywords have been de�ned, to be used in this context: SUM,
MAX, and MIN. For example,
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mark_2("p",SUM,SUM);

evaluates to the total number of tokens in the array \p", while

mark_2("p",MIN,MAX);

evaluates to the minimum over i of the maximum over j of mark 2("p",i,j). When applied
to enabled, the keywords have the same meaning, just remember that, while the application
of enabled to a single transition can only return 0 or 1, the application of the same function
to a whole array can return an arbitrary non-negative integer if the keyword SUM is used.
For example,

enabled_1("t",SUM);

will return the count of the enabled transitions in the array \t".

Using the for construct of C and the input function to decide at run-time the size of the
array, a very large class of SRNs can be represented by a single CSPL �le.

5.2.8 Sensitivity Analysis

Sensitivity analysis is useful to estimate how the output measures of a system model are af-
fected by variations of its input parameters. It is then very attractive to evaluate alternatives
during the design phase of a system, when exact values for all the input parameters may not
be known yet. Other important applications of sensitivity analysis are system optimization
and bottleneck analysis. An SRN model lends itself to sensitivity analysis at various levels.
The SPNP package o�ers the possibility of computing sensitivity measures by analyzing the
underlying Markov process. Sensitivity analysis of Markov and Markov reward models is
discussed in [3] and the sensitivity analysis of SRN models is discussed in [18].

When sensitivity analysis is needed, both the probability function (rate) and its derivative
need to be speci�ed:

PROBABILITY DERIVATIVE:
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void sprobval(name,val,dval)
char *name;
probability type val,dval;

void sprobdep(name,val,dval,pl)
char *name;
probability type val,dval;
char *pl;

void sprobfun(name,func,dfunc)
char *name;
probability type (*func)(),(*dfunc)();

RATE DERIVATIVE:

void srateval(name,val,dval)
char *name;
rate type val,dval;

void sratedep(name,val,dval,pl)
char *name;
rate type val,dval;
char *pl;

void sratefun(name,func,dfunc)
char *name;
rate type (*func)(),(*dfunc)();

These functions specify the derivative of probability functions (rates), and are exclusive
with the others functions describing the properties of transitions (i.e., you cannot use both
simultaneously to describe the same transition).

5.3 Assert Function

The function assert allows the evaluation of a logical condition on a marking of the SRN14.
Assert is especially useful with large and complex SRNs, where it greatly reduces the time
to discover simple errors, such as a missing arc or an incorrect cardinality speci�cation.

14The check on the legality of a marking is performed using the same functions used to achieve marking
dependency, namely mark and enabled.
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The fundamental principle is to verify general assertion(s) that are believed to hold in any
marking of the reachability set.

Assert is called during the reachability graph construction, to check the validity of each
newly found marking. It must returnRES ERROR if the marking is illegal orRES NOERR
if the marking is (thought to be) legal15. If RES ERROR is returned, the execution then
halts, the present marking is displayed, and the partially generated reachability graph is
written to a �le for debugging purposes. If the illegal marking is caused by an unforeseen
sequence of transition �rings, �nding that sequence using the output information is usually
a fast process even in large reachability graphs (tens of thousands of markings). This check
is turned o� by setting the function identically equal to RES NOERR.

The check is by its own nature incomplete, since it is not usually feasible to specify all the
conditions that must hold (or not hold) in a marking, but the more accurate the set of
conditions is, the more con�dence you should have in the correspondence of the reachability
graph with the real system behavior.

For example, the assert de�nition

assert() {

if(mark("p2")+mark("p3") != 4 || enabled("t11") && enabled("t7"))

return(RES_ERROR);

else

return(RES_NOERR);

}

will stop the execution in a marking where the sum of the number of tokens in places p2 and
p3 is not 4, or where t11 and t7 are both enabled.

This type of check is limited, since it helps detect the presence of illegal markings or �ring
sequences, but it cannot detect the absence of legal markings or �ring sequences (which
relates to the reachability set, or graph, as a whole, and cannot be checked while the reach-
ability graph is being built). It is important to be able to perform checks of illegality as
soon as possible, typically to debug bounded nets. The examination of the whole (in�nite)
reachability graph is out of the question since the program will terminate printing a message
for insu�cient memory.

For the running example (Figure 1) we devised the following assert function:

15RES ERROR and RES NOERR are prede�ned values
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assert() {return(RES_NOERR);}

5.4 Ac init Function

The function ac init is called before starting the reachability graph construction. The
function pr net info can be used in it, to output data about the SRN in the \.out" �le
(see section about intermediate �les). This is especially useful when the number of places or
transitions is de�ned at run time (otherwise it is merely a summary of the CSPL �le).

For the example of Figure 1 we wrote the following ac init function:

ac_init() {fprintf(stderr,"\nProcessor Cluster Model\n\n");}

5.5 Ac reach Function

The function ac reach is called after the reachability graph construction is completed. The
function pr rg info can be used in it, to output data about the reachability graph in the
\.out" �le (this does not a�ect the generation of the \.rg" �le).

For the running example (Figure 1) we left this function empty:

ac_reach() {}

5.6 Ac �nal Function

The function ac �nal is called after the solution of the Continuous Time Markov Chain
(CTMC) has completed, to allow user-requested outputs. Table 5.6 presents a list of generic
functions that can be used inside the ac �nal function.

Transient analysis of the underlying CTMC is dependent on the initial state probability
vector. When the initial marking is tangible, the state corresponding to this marking has
the initial probability of 1 and all the other states have an initial probability of 0. If the
initial marking is vanishing, the initial probability vector over the states of the CTMC is
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name and syntax behavior

pr mc info(); Output of data about the CTMC and its

solution.

set prob init(fnc) Allows the user to define the initial

reward type (*fnc)(); probability vector over the markings of

the SRN.

rate type rate(t name) Express the marking dependent rate of

char *t name; transition t name (defined as 0 when

the transition is not enabled in the

marking).

pr value(str,expr) Prints the string str and the value of

char *string; expression expr.
double expr;

pr message(str) Allows the user to print an arbitrary

char *str; message (str) in ".out" file.

Table 2: Generic functions to be used inside the ac �nal function

automatically computed by the program. The user is also allowed to de�ne the initial prob-
ability vector over the markings of the SRN using the function set prob init. At present,
user-de�ned initial probability vector is allowed only over the set of tangible markings.

Sometimes the user may desire to print values of functions that cannot be expressed as a
simple reward de�nition, but as a function of the expected values of several reward functions.
To facilitate this, SPNP provides a special function called pr value. The expression to be
printed could be any one which evaluates to a 
oating point number.

For example, if we wish to compute the ratio of two expected values expected(qlength)
and expected(tput) and print the result in the output �le, we can specify the following:

pr_value("Expected Response Time",expected(qlength)/expected(tput));

This would print the following in the output �le:

VALUE: Expected Response Time = 15.7

In addition, desired output measures of the transient analysis may be requested in this
function. Table 5.6 lists prede�ned functions available in SPNP to print information about
each place and transition, or to allow the speci�cation of user-de�ned measures.
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name and syntax outputs (written on the \.out" �le)

pr std average(); For each place:

. probability that it is not empty;

. its average number of tokens.

For each timed transition:

. probability that it is enabled;

. its average throughput.

pr std average der(); Derivatives of all the above standard

measures.

pr expected(str,fnc) The string str and the expected value

char *str; of function fnc.
reward type (*fnc)();

pr der expected(str,fnc,dfnc) The string str and the derivative

char *str; dfnc of the expected value of the

reward type (*fnc)(),(*dfnc)(); function fnc with respect to the

parameter �.

pr sens expected(str,fnc,dfnc) The string str, the expected value of

char *str; the function fnc, and its derivative

reward type (*fnc)(),(*dfnc)(); dfnc with respect to the parameter �.

reward type expected(fnc) The expected value of function fnc.
reward type (*fnc)();

reward type der expected(fnc,dfnc) The derivative dfnc of the expected

reward type (*fnc)(),(*dfnc)(); value of the function fnc with respect

to the parameter �.

Table 3: Available options for especi�cation of output measures for steady state analysis
COMMENTS:

� The average throughput E[T a] for transition a is de�ned as

E[T a] =
X

i2R(a)

p(i) � �(a; i)

where R(a) is the subset of reachable markings that enable transition a, p(i) is the
probability of marking i, and �(a; i) is the rate of transition a in marking i.

� fnc should be a marking dependent reward function.

� pr std average der and pr der expected can be used i� steady-state sensitivity is
performed.
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Examples of speci�cations of output measures:

� The function

pr_expected("utilization",util);

will print on the \.out" �le:

EXPECTED: utilization = 3.2

if the expected value of the reward function util16 is 3.2.

� Apparently similar operations have di�erent stochastic interpretations, hence di�erent
results, if performed at the event or at the expected value level. Continuing the previous
example,

reward_type ep1() { return(mark("p1")); }

reward_type ep3() { return(mark("p3")); }

reward_type ep7() { return(mark("p7")); }

.......

ac_final() {

x = expected(ep1)*expected(ep7)+expected(ep3)*1.2;

printf("%f",x);

}

will produce a di�erent result from the one computed using util, because of the
dependence existing (in general) between the number of tokens in p1 and p3.

When transient analysis or transient sensitivity analysis is required, ac �nal is called before
the solution of the CTMC. For performing transient analysis and transient sensitivity anal-
ysis, a time point needs to be speci�ed. This can be done through the function time value
in ac �nal, de�ned as:

time value(t)
double t;

16The reward function util, returning a reward type, or double-precision 
oating point number, must
have been de�ned prior to its usage in pr expected, using the functions mark and enabled to express
marking dependency.
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name and syntax outputs (written on the \.out" �le)

pr time avg expected(fnc) The time-averaged expected value of

reward type (*fnc)(); function fnc.

pr mtta(str) The string str and the mean time to

char *str; absorption for the SRN. This function

should be used only when the underlying

CTMC has absorving states.

pr cum abs(str,fnc) The string str and the expected

char *str; accumulated reward until absorption for

reward type (*fnc)(); a CTMC with absorbing states. To use

this function the corresponding reward

rate should be specified

cum abs(fnc) The expected accumulated reward until

reward type (*fnc)(); absorption.

Table 4: Available options for especi�cation of output measures for transient analysis

Whenever this function call is encountered, transient (transient sensitivity) analysis is per-
formed on the CTMC. All the user-requested outputs following this function call are com-
puted for the speci�ed time t, until a new call to time value is encountered.

Besides the expected values of the functions de�ned earlier, transient analysis also allows
the computation of the expected accumulated values over the interval [0; t) where t is the
time point of interest. The corresponding functions are:

� pr std cum average, pr std cum average der for computing the expected accu-
mulated values and their derivatives for standard measures; and

� pr cum expected, pr der cum expected and pr sens cum expected for com-
puting the expected accumulated value and its derivative for user-de�ned functions.

As an example, consider the following:

reward type avail() { ... }

ac_final() {

double time_point;
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time_value(15.05);

pr_expected("Inst. Availability",avail);

pr_cum_expected("Total jobs lost", jobslost);

for (time_point = 10.0;time_point <= 100.0;time_point += 10.0){

time_value(time_point);

pr_time_avg_expected("Interval Availability",avail);

}

pr_mtta("Mean time to failure");

}

Here, the instantaneous availability and total jobs lost is computed with time t = 15:05. The
for loop computes the interval availability in the interval [0; t), with t varying from 10 to 100
in increments of 10.

The following function ac �nal was written for the running example (Figure 1):

reward_type availab() {return(mark("sysup"));}

reward_type ppower() {return(mark("procup")*mark("sysup"));}

ac_final() {

int i;

for(i = 1; i <= 10, i++) {

time_value((double)i);

pr_expected("Availability",availab);

pr_time_avg_expected("Availability",availab);

pr_expected("Processing Power",ppower);

pr_cum_expected("Processing Power",ppower);

}

}

5.7 Specialized Output Functions

SPNP was initially aimed at the steady-state solution of SRNs whose underlying CTMC is
ergodic. There are a number of measures which could be considered \unusual", but closely
related to steady-state. In particular, they do not require the implementation of a new
solver; they can be computed either from the steady-state probabilities, or by solving a
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slightly di�erent linear system. These measures were de�ned and implemented to perform
decomposition{iteration techniques allowing the approximate solution of SRNs whose state-
space is too large to be studied directly [7, 8].

The specialized set of output functions provided by SPNP are:

reward type accumulated(function)
reward type (*function)();

void pr accumulated(string,function)
char *string;
reward type (*function)();

void set prob0(function)
reward type (*function)();

void scale prob0(function)
reward type (*function)();

void hold cond(cond,times)
boolean type (*cond)();
double times[2]

void pr hold cond(string,cond)
char *string;
boolean type (*cond)();

Accumulated and pr accumulated respectively return and print the expected value of
the \accumulated reward up to absorption", according to the given initial state probability
distribution, reward rate assignment, and absorbing marking de�nition. The initial state
probability distribution must be speci�ed by calling set prob0 or scale prob0 �rst. The
reward rate assignment is speci�ed, as usual, by function. The speci�cation of the absorb-
ing markings requires some attention. Since the SRNs normally managed by the package
are ergodic, no absorbing markings may be present. The underlying stochastic process is
then modi�ed (for the computation of this measure only) so that markings whose reward
is null are assumed absorbing (their outgoing arcs in the Markov chain are ignored). If
absorbing markings do indeed exist in the original SRN, function must evaluate to zero in
them (otherwise the accumulated reward would be in�nite). Each call to accumulated (or
pr accumulated) requires the solution of a linear system having as many variables as the
non-zero-reward markings, so it can be expensive.
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Set prob0 and scale prob0 are used to set the initial state probability for the computation
of the accumulated reward up to absorption.

Let's de�ne �i as the value returned by function in marking i and �i as the steady-state
probability for marking i (�i = 0 if marking i is vanishing). A call to set prob0 de�nes the
initial state probability for state i to be proportional to �i:

�(0)i =
�iP
j �j

A call to scale prob0 de�nes the initial state probability for state i to be proportional to
�i�i:

�(0)i =
�i�iP
j �j�j

The de�nition of this second function may at �rst seem arbitrary; it is instead both useful
and intuitive. Assume that, given an ergodic SRN in steady-state, we want to know how long
we need to wait before a token arrives in place p: the following portion of CSPL accomplishes
this:

reward_type one() { return(1.0); }

reward_type empty() { return( mark("p") > 0 ? 0.0 : 1.0 ); }

reward_type full() { return( mark("p") > 0 ? 1.0 : 0.0 ); }

.......

ac_final() {

scale_prob0(empty);

pr_accumulated("Wait time",full);

scale_prob0(one);

pr_accumulated("Wait time",full);

}

The �rst output gives the waiting time given that no token is in p, while the second output
gives the unconditional waiting time (that is, including the possibility that a zero waiting
time is required, when a token is already in p).

Functions hold cond and pr hold cond respectively compute and print the expected time
a condition holds true or false in steady-state. The function cond must be a marking-
dependent function returning VAL YES if the condition holds in the marking, VAL NO
otherwise. On return, times[VAL YES] and times[VAL NO] respectively contain the ex-
pected length of time the condition holds or does not hold in steady-state. The idea behind
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this measure is to be able to condense a large Markov chain into a two-state process. Nor-
mally the process is not a Markov chain, but the two-state Markov chain whose transition
rates are 1=times[VAL YES] and 1=times[VAL NO] can at least be considered an approx-
imate representation of it. The description of how this measure is computed gives additional
insight.

De�ne Sy and Sn to be the sets of markings where the condition is true and false respectively
and de�ne T to be the set of tangible markings. If IOP MC has value VAL CTMC,
times[VAL YES] and times[VAL NO] are computed respectively as

X
k2Sy\T

�k

X
i2Sy\T;j2Sn\T

�i�i;j
and

X
k2Sn\T

�k

X
i2Sn\T;j2Sy\T

�i�i;j

where �i;j is the transition rate from marking i to marking j. If IOP MC has value
VAL DTMC, times[VAL YES] and times[VAL NO] are computed respectively as

0
@ X
k2Sy\T

�k

1
A
0
@X

k2T

pkhk

1
A

X
i2Sy;j2Sn

pi�i;j

and

0
@ X

k2Sn\T

�k

1
A
0
@X

k2T

pkhk

1
A

X
i2Sn;j2Sy

pi�i;j

where �i;j is the transition probability from marking i to marking j, pj is the steady-state
probability of marking j for the DTMC, and hk is the holding time in state k for the CTMC.

It is interesting to note that DTMC and CTMC solution may give di�erent results for this
measure. The reason is intrinsic to the di�erent approach, is not due to an error nor to
numerical roundo� or truncation. If the condition holds in tangible markings m1 and m3

and it does not hold in vanishing marking m2, a path (m1;m2;m3) in the reachability graph
is treated di�erently by the two approaches. The DTMC solution considers the holding time
as terminated and restarted every time the path is traversed, while the CTMC solution does
not know that the condition stops holding, even if for a null amount of time, when a transition
from m1 to m3 occurs (this information is discarded together with m2 when eliminating the
vanishing markings). The holding time computed by the DTMC solution can be shorter
than the one computed by the CTMC solution. In practically all interesting applications,
the condition holds or does not hold for a positive amount of time with probability one, so
no inconsistencies can arise.
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6 HOW TO INSTAL AND RUN SPNP

The package is distributed as a \tar"ed, \compress"ed, and \uuencode"d directory structure,
with root directory spnp. If you receive the package by e-mail, save the message to �le
\spnp distr.tar.Z.uu" and save the aditional �le that you will receive as OUT and make it
executable (i.e., change its mode to allow execution of the �le).

You must make two decisions at this point:

� the directory where the root directory spnp will be installed on your system, let's call
it Ddd;

� the platform you will use to run spnp, let's call it Ppp (you actually made that decision
when you requested spnp).

For example, Ddd could be /usr/local/packages or /home/me and Ppp could be sparc or
next. Then, do the following:

� move the distribution �le to the correct directory

mv spnp_distr.tar.Z.uu Ddd

� go to the correct directory

cd Ddd

� execute the command

OUT spnp_distr

At this point, all the distribution �les are in place. You should have:

Ddd/spnp/READ_ME (a copy of this file)

Ddd/spnp/Makerun (a makefile needed to run spnp)

Ddd/spnp/src/*.h ("include" files needed to compile your model)

Ddd/spnp/src/testcase1.c (a "c" file needed to check your model)

Ddd/spnp/Ppp/*.o (compiled files forming the core of the package)

Ddd/spnp/doc (SPNP manuals)
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Now, de�ne the following aliases in your \.cshrc" �le (remember to source your \.cshrc" �le
if you want the aliases to become e�ective right away):

alias spnp "make -f Ddd/spnp/Makerun DIR=Ddd PLATFORM=Ppp SPN=\!^"

alias spnpcheck "make -f Ddd/spnp/Makerun lint DIR=Ddd PLATFORM=Ppp SPN=\!^"

Finally, to run spnp on an input �le \testcase1.c" (example supplied), you just need to type

spnp testcase1

Or, to check the consistency of your input �le, you can type

spnpcheck testcase1

If inconsistencies exist between the de�nition of the prede�ned functions and their usage,
they will be discovered.

Several intermediate �les are generated by the package17 and the �nal results will be in the
directory where �lename.c is (and where you issued the command). Files have di�erent
extensions, according to the kind of information they carry. If your CSPL �le is named
test.c, then the following �les can be generated:

� test.o contaning the object module when compiling test.c.

� test.rg containing the reachability graph information: composition of each marking,
description of the transition �rings between them, etc. (generated only if IOP PR RG
has value VAL YES or if IOP MC has value VAL CTMC).

� test.mc containing the (numerical) CTMC/DTMC corresponding to the SRN (gener-
ated only if IOP PR MC has value VAL YES).

� test.prb containing the (numerical) results of the analysis of the underlying CTMC:
the probabilities for each tangible marking. Currently, only the steady-state probabil-
ities for irreducible CTMC can be obtained (generated only if IOP PR PROB has
value VAL YES).

� test.out containing the requested output (according to what is speci�ed in test.c
using the provided functions).

17Appendix D explains how to interpret the data in the intermediate �les generated during the analysis
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� test.spn executable �le obtained by linking the package object �les together with
test.o.

� test.log contains all the output messages produced by the package during model so-
lution.
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APPENDIX A: VMS Installation

The version running under the VMS operating system uses exactly the same source code,
hence it has the same features as the UNIX version. Di�erences exist at the command
language level, though. First of all, two �les \.COM" are provided, instead of \make�les".
The �rst �le, SPNPINST.COM, is used to compile all the C �les composing the package.
Since it does not use the \make" facility, all the �les are recompiled, even if some of them
do not need to be recompiled. Type @SPNPINST to execute it.

The second �le, SPNP.COM, is used to run the package. It requires a �lename without
extension, as in the UNIX version. For example @SPNP TEST will run the package on the
CSPL �le TEST.C, which must exist. The interaction that follows is slightly di�erent from
the one in UNIX, again because the \make" facility is not used. First of all, if a �lename is
not speci�ed, a message will prompt the user to input one. Then the user is asked whether
the compilation of the CSPL has to take place or not, to avoid needlessly repeating it. If,
for example, the user wants to run again the SRN with di�erent run-time parameters, the
compilation does not have to be performed again, only analysis phase must be run.

A third �le, SPNPTEST.COM, is provided, to run the examples provided with the package
(EXAMPLE1.C, : : : ) on prede�ned input �les (EXAMPLE1.INP, : : : ).
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APPENDIX B: Complete Example of CSPL File

/* This is a VAX-cluster model of processor cluster system */

/* global variables: */

int N, /* total number of processors in the cluster */

q; /* number of processors needed for quorum */

double c; /* coverage factor */

/* guards: */

int ensysr() {return(mark("sysrb");}

int enrstr() {return(mark("procup")>=q ? 1:0);}

int enprcrp() {

return(mark("procup")>=q && mark("systr")+mark("sysbr")>0 ? 0:1);

}

/* rewards: */

reward_type availab() {return(mark("sysup"));}

reward_type ppower() {return(mark("procup")*mark("sysup"));}

net() {

/* places: */ /* initial markings: */

place("procup"); init("procup",N);

place("proctmp1");

place("procdn");

place("sysrb");

place("proctmp2");

place("sysup"); init("sysup",1);

place("systr");

/* transitions: */ /* input arcs: */ /* output arcs: */

trans("trpf"); iarc("trpf","procup"); oarc("trpf","proctmp1");

iarc("trpf","sysup");

trans("trpf2"); iarc("trpf2","procup"); oarc("trpf2","procdn");

trans("trp1"); iarc("trp1","proctmp1"); oarc("trp1","systr");

oarc("trp1","procdn");

trans("trp3"); iarc("trp3","proctmp1"); oarc("trp3","procdn");
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oarc("trp3","s ysrb");

trans("trp2"); iarc("trp2","proctmp1"); oarc("trp2","procdn");

oarc("trp2","sysrb");

trans("trrs"); iarc("trrs","proctmp2"); oarc("trrs","procup");

trans("trpr"); iarc("trpr","procdn"); oarc("trpr","proctmp2");

trans("trrb"); iarc("trrb","sysrb"); oarc("trrb","sysup");

trans("trdn"); iarc("trdn","proctmp2"); oarc("trdn","systr");

iarc("trdn","sysup"); oarc("trdn","procup");

trans("trtr"); iarc("trtr","systr"); oarc("trtr","sysup");

/* initial marking: */

init("procup",N);

init("sysup",1);

/* inhibitor arcs: */

harc("trpf","systr");

harc("trpf2","systr");

/* timed transitions: */

ratedep("trpf",1.0/5000.0,"procup");

ratedep("trpf2",1.0/5000.0,"procup");

rateval("trpr",1.0/2.0);

rateval("trrb",6.0);

rateval("trtr",120.0);

/* firing probabilities of immediate transitions: */

probval("trp1",c);

probval("trp3",1.0);

probval("trp2",1.0-c);

probval("trrs"1.0);

probval("trdn",1.0);

/* multiple inhibitor arcs: */

mharc("trp3","procup",q);

mharc("trrs","procup",q);

/* guards: */

guard("trpf2",ensysr);

guard("trp1",enrstr);
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guard("trp2",enrstr);

guard("trpr",enprcrp);

guard("trrb",enrstr);

guard("trtr",enrstr);

/* priorities: */

priority("trp1",10);

priority("trp3",10);

priority("trp2",10);

priority("trrs",10);

priority("trdn",10);

}

assert() {return(RES_NOERR);}

ac_init() {fprintf(stderr,"\nProcessor Cluster Model\n\n");}

ac_reach() {}

ac_final() {

int i;

for(i = 1; i <= 10, i++) {

time_value((double)i);

pr_expected("Availability",availab);

pr_time_avg_expected("Availability",availab);

pr_expected("Processing Power",ppower);

pr_cum_expected("Processing Power",ppower);

}

}

parameters() {

iopt(IOP_METHOD,VAL_TSUNIF);

iopt(IOP_PR_FULL_MARK,VAL_YES);

iopt(IOP_PR_MC,VAL_YES);

iopt(IOP_PR_MC_ORDER,VAL_TOFROM);

iopt(IOP_PR_RGRAPH,VAL_YES);

iopt(IOP_PR_RSET,VAL_YES);

fopt(FOP_PRECISION,0.00000001);
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N = input("Enter the total number of processors");

q = input("Enter number of processors needed for quorum");

c = input("Enter the coverage factor");

}
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APPENDIX C: Available Options

The following is a list of available options, their legal values, and their type: particular care
must be taken when specifying the value, since, for example, 10 and 10.0 are di�erent
constants, and only one of them will be correct (10 for iopt, 10.0 for fopt). Use the
spnpcheck command to discover these errors.

� IOP PR MARK ORDER speci�es the order in which the markings are printed.
With VAL CANONIC order, markings are printed in the order they are found, in a
breadth-�rst search starting from the initial marking, and in increasing order of enabled
transition indices. It is the most natural order and it is particularly helpful when
debugging the SRN. With VAL LEXICAL order, markings are printed in increasing
order, where marking are compared as words in a vocabulary, the possible number of
tokens being the alphabet, and the order of the \letters" in a \word" being given by
the order of the non-empty places in the marking: for example (2 T 3:2 4:1 5:1) comes
before (3 A 3:2 4:3 6:1). This order may be useful when searching for a particular
marking in a large \.rg" �le, although an editor with search capabilities used with the
VAL CANONIC order is usually adequate for the purpose. With VAL MATRIX
order, markings are printed in the same order as the states of the two Markov chains
built internally: the DTMC corresponding to the vanishing markings, and the CTMC
corresponding to the tangible markings. This corresponds to the following ordering:
vanishing, tangible non-absorbing, and tangible absorbing, each of these group ordered
in canonical order.

� IOP PR MERG MARK speci�es whether the tangible and vanishing markings
should be printed together, or two separate lists should be printed.

� IOP PR FULL MARK speci�es whether the markings are printed in long format
(a full matrix indicating, for each marking, the number of tokens in each place, possibly
zero), or short format (for each marking, a list of the number of tokens in the non-
empty places). VAL YES looks good only when the SRN has a small number of
places.

� IOP PR RSET and IOP PR RGRAPH specify whether the reachability set and
graph is to be printed. VAL TANGIBLE speci�es that only the tangible markings
are to be printed; it cannot be used for IOP PR RGRAPH.

� IOP PR MC speci�es whether the \.mc" �le is generated or not.
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� IOP PR MC ORDER speci�es whether the transition rate matrix (ifVAL FROMTO)
or its transpose (if VAL TOFROM) is printed in the \.mc" �le.

� IOP PR PROB speci�es whether the \.prb" �le is generated or not.

� IOP MC speci�es the solution approach. Using VAL CTMC will transform the
SRN into a CTMC. Using VAL DTMC will use an alternative solution approach,
where the vanishing marking are not eliminated and a DTMC is instead solved. In
this case, the �rst index in the \.mc" �le is �n, if there are n vanishing markings. The
package performs transient and sensitivity analysis by reducing the SRN to CTMC.
Hence this option should be set to VAL CTMC when these types of analyses are
needed.

� IOP OK ABSMARK, IOP OK VANLOOP, and IOP OK TRANS M0 spec-
ify respectively whether absorbing markings, transient vanishing loops, and a transient
initial marking are acceptable or not. If VAL NO is speci�ed, the program will stop
if the condition is encountered. If VAL YES is speci�ed, the program will signal such
occurrences, but it will continue the execution.

� IOP METHOD allows the user to set the numerical solution method for the Markov
chain, VAL SSSOR stands for Steady State SOR, VAL GASEI stands for Steady
State Gauss-Seidel, VAL TSUNIF stands for Transient Solution using Uniformiza-
tion. Note that there are cases where SOR does not converge, while Gauss-Seidel
converges, and vice versa. VAL SSPOWER speci�es the power method for steady
state solution that is guaranteed to converge. However, it is usually slow

� IOP CUMULATIVE speci�es whether cumulative probabilities should be computed.

� IOP SENSITIVITY speci�es whether sensitivity analysis should be performed.

� IOP ITERATIONS speci�es the maximum number of iterations allowed for the
numerical solution.

� IOP DEBUG causes the output (on the \stderr" stream) of the markings as they
are generated, and of the transitions enabled in them. It is extremely useful when
debugging a SRN.

� IOP USENAME speci�es whether the names must be used to indicate the places and
transitions involved when printing the reachability set and graph, instead of the index
(a small integer starting at 0). Using names generates a larger \.rg" �le and prevents
its subsequent parsing (in the current version), but it is useful when debugging a SRN.
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� FOP ABS RET M0 speci�es the value of the rate from each absorbing marking back
to the initial marking. If this rate is positive, these markings will not correspond to
absorbing states in the CTMC. This is useful to model a situation that would otherwise
require a large number of transitions to model this \restart". Of course the numerical
results will depend on the value speci�ed for this option.

� FOP PRECISION speci�es the minimum precision required from the numerical so-
lution. The numerical solution will stop either if the precision is reached, or if the
maximum number of iterations is reached. Both the reached precision and the actual
number of iterations are always output in the \.prb" �le, so you can (and should) check
how well the numerical algorithm performed.



REFERENCES 53

APPENDIX D: Format of the Intermediate Files

This appendix explains how to interpret the data in the intermediate �les generated during
the analysis of a SRN.

\.rg" �le

This �le describes the reachability graph corresponding to the SRN. The format of the
information is the following:

_nplace = <number of places>;

_ntrans = <number of transitions>;

_places =

<pl>: <place name>;

.................

<pl>: <place name>;

_transitions =

<tr>: <transition name>;

.....................

<tr>: <transition name>;

_ntanmark = <number of tangible non-absorbing markings>;

_nabsmark = <number of (tangible) absorbing markings>;

_nvanmark = <number of vanishing markings>;

_nvanloop = <number of transient loops>;

_nentries = <number of arcs in the reachability graph>;

_reachset =

<mk><lbl> <pl>:<tk> ... <pl>:<tk>;

....................................

<mk><lbl> <pl>:<tk> ... <pl>:<tk>;

_reachgraph =

<mk> <mk>:<tr>:<val> ... <mk>:<tr>:<val>;

....................................

<mk> <mk>:<tr>:<val> ... <mk>:<tr>:<val>;

where <mk> is the integer index of a marking (non-negative for tangible markings, negative
for vanishing markings) and <lbl> is a code ( T for tangible, non-absorbing; A for tangible,



REFERENCES 54

absorbing; V for vanishing marking not in a loop; L for vanishing marking in a transient
loop); <pl> is the non-negative integer internally assigned to each place (in the same order
of de�nition in the CSPL �le); <tr> is the non-negative integer internally assigned to each
transition (in the same order of de�nition in the CSPL �le); <tk> is the (positive) number
of tokens in a place; and <val> is the transition rate or probability in the marking. So, for
example, this row in the reachability set speci�cation

3_A 0:1 6:5;

means that marking 3, an absorbing tangible marking, has one token in place 0 and �ve
tokens in place 6, while this row in the reachability graph speci�cation

-4 4:2:0.7 -6:5:0.3;

means that marking -4, a vanishing marking, goes to marking 4 by �ring transition 2 with
probability 0.7, and to marking -6 by �ring transition 5 with probability 0.3 (of course both
transitions are immediate). If the option IOP PR FULL MARK is turned on, the format
for the description of the reachability set is instead

_reachset =

# <place1> <place2> ... <placeN>

<mk><lbl> <tk> <tk > ... <tk>

....................................

<mk><lbl> <tk> <tk > ... <tk>

\.mc" �le

If IOP MC has value VAL CTMC, this �le describes the CTMC derived from your SRN;
the vanishing markings are absent and only numerical rates appear. The format is:

_firstindex = 0;

_nstates = <number of states>;

_nentries = <number of arcs in the CTMC>

_order = <_FROMTO or _TOFROM>;
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_matrix =

<state> <state>:<rate> ... <state>:<rate>;

..................................................

<state> <state>:<rate> ... <state>:<rate>;

[_dermatrix =

<state> <state>:<rate> ... <state>:<rate>;

..................................................

<state> <state>:<rate> ... <state>:<rate>;]

_method = <requested solution method>;

_precision = <requested precision>;

[_initstate =

<state>:<prob> ... <state>:<prob>

.........................................

<state>:<prob> ... <state>:<prob>;]

[_iterations = <maximum number of iterations>;

_solve = _ALL;]

[_time = <time_point>;

_solve = _ALL;]

...................

[_time = <time_point>;

_solve = _ALL;]

All entries enclosed in square brackets ([...]) are optional. The transition rate matrix is
described by rows. If FROMTO is in e�ect,

7 5:0.4 8:1.2 12:100;

means that the transition rate from state 7 to state 5 is 0.4, to state 8 is 1.2, to state 12 is
100.0. The �rst index is 0, so if the number of states is 15, they will be identi�ed as 0,2,...,14.
If the order is TOFROM, the transpose of the transition rate matrix will be printed. In
our example, there will be rows

5 ... 7:0.4 ...;

8 ... 7:1.2 ...;

12 ... 7:100 ...;

The matrix order, the method for the solver, the precision, and the maximum number of
iterations can be changed by using the appropriate options in the CSPL �le.
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If IOP MC has value VAL DTMC, this �le describes the DTMC derived from your SRN,
the vanishing markings are still present and probabilities are given instead of rates (the
matrix is stochastic).

\.prb" �le

This �le describes the steady-state probability for each tangible marking; it corresponds to
the result of the CTMC solution (even when the actual solution method used a DTMC).
The format is the following:

_firstindex = 0;

_nstates = <same value as in input>;

_method = <method actually used>;

_totaltime = _STEADYSTATE;

_steptime = _NONE;

_precision = <the reached precision>;

_iterations = <the actual number of iterations>;

_time = <_STEADYSTATE>|<time_point>;

_probabilities =

<state>:<prob> ... <state>:<prob>

...................................

<state>:<prob> ... <state>:<prob>;

[_derprobabilities =

<state>:<prob> ... <state>:<prob>

...................................

<state>:<prob> ... <state>:<prob>;]

[_cumprobabilities =

<state>:<prob> ... <state>:<prob>

...................................

<state>:<prob> ... <state>:<prob>;]

[_dercumprobabilities =

<state>:<prob> ... <state>:<prob>

...................................

<state>:<prob> ... <state>:<prob>;]

The method may be changed automatically, so its value in this �le re
ects the actual choice,
possibly di�erent from the one declared in the \.mc" �le. In the current implementation
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of the steady-state solver provided within the package, SSSOR is changed automatically
into GASEI when the maximum number of iterations is reached (and the iteration count
is reset to 0). Uniformization is the only transient solution method available at the present.


