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LDTS: A Lightweight and Dependable Trust System
for Clustered Wireless Sensor Networks

Xiaoyong Li, Feng Zhou, and Junping Du

Abstract—The resource efficiency and dependability of a trust
system are the most fundamental requirements for any wireless
sensor network (WSN). However, existing trust systems devel-
oped for WSNs are incapable of satisfying these requirements
because of their high overhead and low dependability. In this
work, we proposed a lightweight and dependable trust system
(LDTS) for WSNs, which employ clustering algorithms. First,
a lightweight trust decision-making scheme is proposed based
on the nodes’ identities (roles) in the clustered WSNs, which is
suitable for such WSNs because it facilitates energy-saving. Due
to canceling feedback between cluster members (CMs) or between
cluster heads (CHs), this approach can significantly improve
system efficiency while reducing the effect of malicious nodes.
More importantly, considering that CHs take on large amounts
of data forwarding and communication tasks, a dependability-en-
hanced trust evaluating approach is defined for cooperations
between CHs. This approach can effectively reduce networking
consumption while malicious, selfish, and faulty CHs. Moreover,
a self-adaptive weighted method is defined for trust aggregation
at CH level. This approach surpasses the limitations of traditional
weighting methods for trust factors, in which weights are assigned
subjectively. Theory as well as simulation results shows that LDTS
demands less memory and communication overhead compared
with the current typical trust systems for WSNs.

Index Terms—Reputation, self-adaptivity, trust management,
trust model, wireless sensor network.

I. INTRODUCTION

F OR cluster wireless sensor networks (WSNs) such as
LEACH [1], EEHC [2], EC [3], and HEED [4], clustering

algorithms can effectively improve network scalability and
throughput. Using clustering algorithms, nodes are grouped
into clusters, and within each cluster, a node with strong com-
puting power is elected as a cluster head (CH). CHs together
form a higher-level backbone network. After several recursive
iterations, a clustering algorithm constructs a multilevel WSN
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structure. This structure facilitates communication and enables
the restriction of bandwidth-consuming network operations
such as flooding only to the intended clusters [5].
Establishing trust in a clustered environment provides nu-

merous advantages [6]–[8], such as enabling a CH to detect
faulty or malicious nodes within a cluster [9]. In the case of
multihop clustering [4], a trust system aids in the selection of
trusted routing nodes through which a cluster member (CM)
can send data to the CH. During intercluster communication, a
trust system also aids in the selection of trusted routing gateway
nodes or other trusted CHs through which the sender node will
forward data to the base station (BS) [8].

A. Motivation

The resource efficiency and dependability of a trust system
should undoubtedly be the most fundamental requirements for
any WSN (including clustered WSNs). However, existing trust
systems developed for clustered WSNs are incapable of satis-
fying these requirements because of their high overhead and low
dependability. A universal trust system designed for clustered
WSNs for the simultaneous achievement of resource efficiency
and dependability remains lacking.
First, limited work has focused on the resource efficiency of

clustered WSNs. A trust system should be lightweight to serve
a large number of resource-constrained nodes in terms of accu-
racy, convergence speed, and additional overhead [7], [8], [10].
Based on an integrated comparison, a number of innovative
works have been developed for clusteredWSNs, such as GTMS
[8], TCHEM [13], HTMP [9], ATRM [20]. However, most of
these works failed to consider the problem of resource con-
straints of nodes or used complex algorithms to calculate nodes’
trustworthiness. Implementing complex trust evaluation algo-
rithms at each CM or CH is unrealistic. Although GTMS uses
several novel mechanisms to improve the resource efficiency
of clustered WSNs, this approach relies on a broadcast-based
strategy to collect feedback among CMs, which requires a sig-
nificant amount of resource and power.
Furthermore, limited work has focused on the dependability

of the trust system itself. In existing trust mechanisms forWSNs,
trust management systems collect remote feedback and then ag-
gregates such feedback to yield the global reputation for the
node that can be used to evaluate the global trust degree (GTD)
of this node. However, an open or hostile WSN environment
contains a large number of undependable (or malicious) nodes.
Feedback from these undependable nodes may yield incorrect
evaluation. The dependability of a trust system is undoubtedly
an important requirement for any WSN environment. That is,
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a trust system should be highly dependable in terms of pro-
viding service in an open or hostile WSN environment. How-
ever, most previous studies lack feasible alternatives to solve
the problem of malicious feedback, which significantly affects
system dependability and feedback availability. Recent studies
for clustered WSNs (e.g., TCHEM [13], HTMP [9]), the au-
thors adopt simple weighted average approaches to aggregate
feedback trust information without considering the problem of
malicious feedback. This may result in misjudgment of the trust
decision-making process.

B. Our Contributions

To the best of our knowledge, we are the first to conduct a
systematic study of a trust management system for clustered
WSNs from the perspective of both dependability and resource
efficiency. The key features of LDTS go beyond existing ap-
proaches in terms of the following aspects:
1) A lightweight trust evaluating scheme for cooperations be-
tween CMs or between CHs. Within the cluster, the indi-
rect trust of a CM is evaluated by its CH. Thus each CM
does not need to maintain the feedback from other CMs,
which will reduce the communication overhead and elim-
inate the possibility of a bad-mouthing attack by compro-
mised CMs. The feedback of a CH is applied a similar
manner to obtain the same benefits.

2) A dependability-enhanced trust evaluating approach for
cooperations between CHs. Considering that CHs take
on large amounts of data forwarding and communication
tasks, a dependability-enhanced trust evaluating approach
is defined for cooperations between CHs. This approach
can effectively reduce networking consumption while
preventing malicious, selfish, and faulty CHs.

3) A self-adaptive weighting method for CH’s trust aggrega-
tion. This approach overcomes the limitations of traditional
weighting methods for trust factors, in which weights are
assigned subjectively.

These new designs and other specific features (e.g., indepen-
dent of any specific routing scheme and platform and so forth)
collectively make the LDTS a lightweight, self-adaptive, and
dependable solution that can be used in any clustered WSN.
This paper will provide both theoretical foundations and

experimental results to validate the designs of the LDTS. The
remainder of this paper is organized as follows: Section II
gives an overview of related work. The lightweight scheme for
trust decision-making is described in Section III. Section IV
discusses trust modeling and evaluation mechanism in LDTS.
Sections V and VI respectively provide the theoretical and sim-
ulation-based analyses and evaluation of LDTS. Section VII
concludes this paper.

II. RELATED WORK

Research on trust management systems for WSNs received
considerable attention from scholars. A number of studies have
proposed such systems for WSNs [5], [10]–[12], [19], [21].
However, these systems suffer from various limitations such
as the incapability to meet the resource constraint requirements
of the WSNs, more specifically, for the large-scale WSNs. Re-
cently, very few trust management systems have been proposed

for clustered WSNs, such as GTMS [8], TCHEM [13], HTMP
[9], and ATRM [20]. To our best knowledge, a universal trust
system designed for clustered WSNs to achieve dependability
and resource efficiency remains lacking.
Shaikh et al. [8] proposed GTMS, a group-based trust man-

agement scheme for clustered WSNs. GTMS evaluates the trust
of a group of nodes in contrast to traditional trust schemes that
always focus on the trust values of individual nodes. This ap-
proach givesWSNs the benefit of requiring less memory to store
trust records at each node. GTMS aids in the significant reduc-
tion of the cost associated with the trust evaluation of distant
nodes. However, GTMS relies on a broadcast-based strategy to
collect feedback from the CMs of a cluster, which requires a
significant amount of resources and power.
Bao et al. [9] proposed HTMP, a hierarchical dynamic trust

management protocol for cluster-based WSNs that considers
two aspects of trustworthiness: social trust and QoS (quality-of-
service) trust. The authors developed a probability model uti-
lizing stochastic Petri net techniques to analyze protocol perfor-
mance and then validated subjective trust against the objective
trust obtained based on ground truth node status. However, im-
plementing such a complex trust evaluation scheme at each CM
of the cluster is unrealistic.
Crosby et al. [13] proposed TCHEM, a trust-based cluster

head election mechanism. Its framework is design in the con-
text of a cluster-based network model with nodes that have
unique local IDs. This approach can decrease the likelihood
of malicious or compromised nodes from becoming CHs. The
mechanism does not encourage sharing of trust information
among sensor nodes. Thus, this approach reduces the effect
of bad mouthing attacks. However, TCHEM does not cover
trust in detail, because of which numerous key issues of trust
management are not introduced.
Boukerche et al. [20] proposed ATRM, an agent-based trust

and reputation management scheme. ATRM introduces a trust
and reputation local management strategy with the aid of the
mobile agents running on each node. The benefit of a local
management scheme for trust and reputation is that central-
ized repositories are not required, and the nodes themselves ca-
pable of providing their own reputation information whenever
requested. Therefore, reputation computation and propagation
is performed without network-wide flooding and with no acqui-
sition-latency. However, ATRM assumes that mobile agents are
resilient against malicious nodes that try to steal or modify in-
formation that such agents carry. In numerous applications, this
assumption may be unrealistic [8].

III. LIGHTWEIGHT SCHEME FOR TRUST DECISION-MAKING

A. Network Topology Model and Assumptions

Our primary goal is to develop a trust-based framework for
cluster-based WSNs as well as a mechanism that reduces the
likelihood of compromised or malicious nodes being selected
(or elected) as collaborative nodes. A node in the clustered
WSN model can be identified as a CH, or a CM (See Fig. 1).
Members of a cluster can communicate with their CH di-
rectly. A CH can forward the aggregated data to the central
BS through other CHs. We assume that nodes are organized
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Fig. 1. Roles and identities of nodes in a clustered WSN model.

Fig. 2. Trust decision-making at CM level.

into clusters with the help of a proposed clustering scheme
such as [1] and [4]. We assume that all nodes have unique
identities, which is similar to the assumptions of [8], [9], and
[13]. In a number of sensor network models, nodes do not have
unique identities similar to the Internet protocol in traditional
networks. However, to uniquely identify nodes and to perform
communication in such environments, a class-based addressing
scheme [22] is used, in which a node is identified by a triplet

[8]. To protect trust
values from traffic analysis or fabrication during transfer from
one node to another, we also assume a secure communication
channel, which can be established by using any key manage-
ment scheme [25]–[27].

B. Lightweight Scheme for Trust Decision-Making

Our proposed LDTS facilitates trust decision-making based
on a lightweight scheme. By closely considering the identities
of nodes in clustered WSNs, this scheme reduces risk and
improves system efficiency while solving the trust evaluation
problemwhen direct evidence is insufficient (See Section IV-B).
This scheme is described as follows:
1) Trust Decision-Making at CM Level: ACM calculates the

trust value of its neighbors based on two information sources
(Fig. 2): direct observations (or direct trust degree, DTD) and in-
direct feedback (or indirect trust degree, ITD). DTD is evaluated
by the number of successful and unsuccessful interactions. In
this work, interaction refers to the cooperation of two CMs. All
CMs communicate via a shared bidirectional wireless channel
and operate in the promiscuous mode, that is, if node sends a
message to CH via node , then node can hear wether node
forwarded such message to CH , the destination. If does

not overhear the retransmission of the packet within a threshold
time from its neighboring node or if the overheard packet is
found to be illegally fabricated (by comparing the payload that

Fig. 3. Trust decision-making at CH level.

is attached to the packet), then will consider the interaction
unsuccessful.
Unlike most existing reputation or trust models, which rely

on broadcast-based strategy to collect feedback from the whole
cluster, consequently increasing the system communication
overhead significantly, our LDTS does not utilize a broad-
cast-based strategy and instead sets the value of ITD is based
on the feedback reported by the CH about a specific node.
Thus, each CM does not need to share trust information with
its neighbors. This indirect feedback mechanism has numerous
advantages such as the effective mitigation of the effect of
malicious feedback, thereby reducing the networking risk in
an open or hostile WSN environment. Given that the feedback
between CMs need not be considered, this mechanism can
significantly reduce network communication overhead, thus
improving system resource efficiency. As an example of trust
decision-making at the CM level, if a node wants to com-
municate with node , first checks whether it has any past
interaction records with during a specific time interval. If a
past interaction record exists, then makes a decision directly;
otherwise, will send a feedback request to its CH.
2) Trust Decision-Making at CH Level: In cluster WSNs,

CHs form a virtual backbone for intercluster routing where CHs
can forward the aggregated data to the central BS through other
CHs. Thus, the selection of CHs is a very important step for
dependable communication. In our LDTS, the GTD of a CH is
evaluated by two information sources (Fig. 3): CH-to-CH direct
trust and BS-to-CH feedback trust. During CH-to-CH commu-
nication, the CHmaintains the records of past interactions of an-
other CH in the same manner as CMs keep interaction records
of their neighbors. Thus, the direct trust value can be computed
according to the number of successful and unsuccessful interac-
tions. The BS periodically asks all CHs for their trust ratings on
their neighbors. After obtaining the ratings from CHs, the BS
will aggregate them to form an effective value of ITD.
Similar to the trust decision-making process at the CM level,

in our LDTS, the ITD of a CH only depends on the feedback
reported by the BS. Thus, in the CH-to-CH communication
case, when a CH wants to interact with another CH , it will
send a feedback request to the BS, at the maximum. There-
fore, including the response message form the BS, the total
communication overhead is two packets. Thus, this mechanism
can also greatly reduce network communication overhead
and consequently improve the system’s resource efficiency.
Compared with trust decision-making at the CM level, trust
decision-making at the CH level has to calculate for direct trust
and feedback trust simultaneously. As an example of trust de-
cision-making at the CH level, if a CH wants to communicate
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TABLE I
ALL TRUST RELATIONSHIPS IN LDTS

with another CH , first calculates CH-to-CH direct trust for
based on the past interaction records with during a specific

time interval. Meanwhile, sends a feedback request to the
BS. After receiving the request, the BS will send a response
message to , in which ’s feedback trust value (BS-to-CH
feedback trust) is embedded. Then, will aggregate these trust
sources into a GTD, after which will make a final decision
based on ’s GTD.

C. Summary of Trust Relationships in LDTS

As shown in Figs. 2 and 3, LDTS needs to maintain two levels
of trust: intercluster trust and intracluster trust. Intracluster trust
evaluation has two kinds of trust relationship: CM-to-CM direct
trust and CH-to-CM feedback trust. Likewise, intercluster trust
evaluation also has two kinds of trust relationship, CH-to-CH
direct trust and BS-to-CH feedback trust. All trust relationships
in LDTS are summarized in Table I. The calculation methods
for these trust relationships are introduced in Section IV.

IV. LIGHTWEIGHT AND DEPENDABILITY-ENHANCED TRUST
CALCULATION

A. Domain of Trust Values

The trust relationship is generally expressed as a specific
quantitative value. This value can be a real number between 0
and 1 (e.g., [15]–[18]) or an integer between 0 and 100 (e.g.,
[8]). In this work, we transform this value into an unsigned
integer in the interval between 0 and 10. Although presenting
the trust values as a real number or an integer may be insignifi-
cant in traditional networks, this issue is of critical importance
for WSNs because of limited memory as well as transmission
and reception power [8]. This domain of trust values has the
following benefits:
1) Less memory overhead. An unsigned integer between 0 and
10 only needs 4 bits (0.5 bytes) of memory space, thus
saving save 50%memory space compared with trust values
represented as an integer between 0 and 100 (1 bytes) and
87.5% compared with trust values represented as a real
number (4 bytes).

2) Less transmission overhead. Given that a smaller number
of bits require transmission during the exchange of trust
values between nodes, we gain the benefit of less overhead
of transmission and reception power.

B. Intracluster Trust Evaluation

1) CM-to-CMDirect Trust Calculation: The trust evaluation
approach at CMs is defined by the following equation:

(1)

Fig. 4. Values of CM-to-CM direct trust.

where is a window of time. The length could be
made shorter or longer based on network analysis scenarios.
Thus, as time elapses, the window forgets old experiences
but adds newer experiences. is the nearest integer func-
tion, such that . is the total number
of successful interactions of node with during time ,

is the total number of unsuccessful interac-
tions of node with during time . In special cases, if

and , we set .
If , which denotes no interac-
tions between node and node during time . We set

(the formula of see (3)).
Integer is the feedback trust toward node
reported by . Thus, a CM calculates the trust value of

its neighbors based on two information sources:
(CM-to-CM direct trust) and (CH-to-CM indirect
trust).
Given that the feedback between CMs need not be consid-

ered, this mechanism can greatly save on system resources.
Moreover, from (1), we see that expression
approaches 0 rapidly with an increase in the number of un-
successful interactions, which indicates the strict punishment
feature of LDTS for unsuccessful interactions. The strict pun-
ishment feature of LDTS can effectively prevent sudden attacks
from malicious nodes with higher accumulated trustworthiness.
Fig. 4 shows the values of CM-to-CM direct trust against
successful and unsuccessful interactions. For example, the trust
value is 9 with 1 unsuccessful and 10 successful interactions,
and the trust value is 6 with 2 unsuccessful and 10 successful
interactions.
2) CH-to-CM Feedback Trust Calculation: Supposing the

existence of CMs in a cluster. The cluster head will
periodically broadcast the request packet within the cluster. In
response, all CMs in the cluster will forward their trust values to-
ward other CMs to . Then, will maintain these trust values
in a matrix , as shown below:

. . .
(2)
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where is the direct trust of
node on . On the other hand, , which means this value
is a node’s ratings towards itself. To reduce boasting, this value
will be discarded by during feedback trust aggregation.
In [29], Whitby and Jøang proposed the beta feedback

system, which is based on the theory of statistics and is char-
acterized by flexibility and simplicity. Inspired by [29], we use
the beta probability density functions to compute :

(3)

where is the nearest integer function, denotes the posteriori
probabilities of binary events , is the amount of positive
feedback towards node counted from matrix ,
and is the amount of negative feedback towards
node . is the probability expectation value of the
beta distribution :

(4)

Analyzing (3) and (4), our feedback aggregation mechanism is
found to be a lightweightmethodwith very simplemathematical
formulas, which is suitable for resource-constrained nodes in a
large-scale sensor network.
However, a possible attack scenario to the trust system must

be considered. If a CH behaves badly in indirect trust feedback
to its CMs, the CMs will have no idea that the feedback from
the CH is actually misleading. Thus, the selection of a trust-
worthy node as the CH is one of the most significant require-
ments in cluster WSNs. This problem has been studied by sev-
eral scholars. In TCHEM [13], Crosby et al. proposed a novel
selection mechanism to reduce the likelihood of a malicious
node to be selected as a CH. In [14], Ferdous et al. proposed an
interesting scheme for the selection of a trustworthy CH that can
provide secure communication via cooperative nodes. To make
our LDTS independent of any specific clustering protocol, in
this work, we assume that a trustworthy node has been selected
as the CH of the cluster by using any selection protocol. That
is, we assume that the CH is trustworthy within its cluster. For
a possible CH selection solution, the readers can refer to the
scheme in [13] or [14].

C. Dependability-Enhanced Intercluster Trust Evaluation

In accordance with the characteristics of clustered WSNs,
both CMs and CHs are resource-constrained nodes, and BSs
have more computing and storage capacity and no resource con-
straint problem. Thus, energy conservation remains a basic re-
quirement for trust calculation at CHs. In LDTS, we propose
a dependable and energy-saving scheme, which is suitable for
large-scale and clustered WSNs.
1) CH-to-CH Direct Trust Calculation: During CH-to-CH

communication, the CH maintains a record of past interactions
with other CHs in the samemanner as CMs keep records of other
CMs. The direct trust between a CH toward another CH is
defined as:

(5)

where . is the total number of successful
interactions of CH with CH during time window , and

is the total number of unsuccessful interactions of CH
with CH . As a special case, if and ,
we set .
2) BS-to-CH Feedback Trust Calculation: Supposing that

CHs exist in the network. The base station will periodically
broadcast the request packet within the network. In response,
all CHs in the network will forward their direct trusts for other
CHs to . will maintain these trust values in a matrix , as
shown below:

. . .
(6)

where is the direct trust of CH
toward CH . Moreover, , which means that this value is
a CH’s ratings for itself. To reduce boasting, this value will be
discarded by the BS during feedback trust aggregation.
One of the difficulties of computing for BS-to-CH feedback

trust is the question of malicious feedback. In [28], Liang and
Shi found that the lightweight average aggregation algorithm
performs better than complex algorithms, especially when a
considerable number of bad raters exist in the system. Inspired
by [28], [29], we use an enhanced beta probability density
function to compute for BS-to-CH feedback trust:

(7)

where denotes the posteriori probabilities of binary events
, is the amount of positive feedback towards

a CH , and is the amount of negative feedback .

(8)

which is the probability expectation value of the beta distribu-
tion function ([29]). is the average value of aggre-
gated feedback from CHs in the network:

(9)

where is the feedback of CH toward CH .
Analyzing (7) to (9), our BS-to-CH feedback mechanism not

only considers the amount of feedback , but also con-
siders the quality of each feedback ( ). Therefore, our
approach is more aligned with the habit of human cognition on
feedback, which is an innovation of LDTS beyond approaches
in [8], [9], [13], [20].
3) Self-Adaptive Global Trust Aggregation at CHs: We adopt

the idea that the GTD of a CH comprises two parts (which is
adopted by most studies on trust management [28]): the first-
hand trust (CH-to-CH direct trust) and the secondhand trust
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Fig. 5. Values of with different and .

(BS-to-CH feedback trust). Thus, the CH ’s GTD is aggregated
by the following equation:

(10)

where is the nearest integer function. is the weight of
, and correspondingly, is the weight of .

The weights and meet . and
can be computed according to (5) and (7), respec-

tively. However, the level of accuracy of the values of and
is a key question to be considered by this work.
How to avoid the effect of individual favoritism on the weight

allocation of trust sources is a key task of trust management [23],
[24], [28]. In this work, we define a self-adaptive approach to
calculate the values of and :

(11)

where and denote the total amount of successful
interactions of CH with during . is called
the feedback factor. Constant is provided by the BS, is the
amount of positive feedback toward CH .
is a positive function that increases with the number of posi-
tive feedback or the total amount of successful interactions ,
which is defined as follows:

(12)

where is a positive constant that can be tuned by the trust
system accordingly.
The function has a desirable property in that with

increasing ( could be any positive integer), the function
quickly approaches 1. Notably, instead of the above function

, we could have used any other function that has the prop-
erty of quickly approaching 1 with increase in the argument.
Our choice of the above function is aimed at brevity and ease
of calculation. Fig. 5 shows the changes in the values of
with different amounts of positive feedback and adjustable
constant . The feedback factor is found to approach 1
rapidly with increasing and positive feedback . To increase

the dependability of the trust system, we suggest that a smaller
value of , such as , be set. Thus, the value of
primarily depends on the amount of positive feedback . For
example, if , , then .

V. THEORETICAL ANALYSIS AND EVALUATION

A. Dependability Analysis Against Malicious Attacks

In this section, we analyze the dependability of the LDTS pro-
tocol against attacks on a trust management system. In clustered
WSNs, the main attacks from a malicious node primarily in-
clude two kinds of patterns:
1) Garnished attack. In such an attack, malicious nodes be-
have well and badly alternatively with the aim of remaining
undetected while causing damage. For instance, garnished
malicious nodes may suddenly conduct attacks as they ac-
cumulate higher trustworthiness.

2) Bad mouthing attack. As long as feedback is considered,
malicious nodes can provide dishonest feedback to frame
good parties and/or boost trust values of malicious nodes.
This attack, referred to as the bad mouthing attack [6], is
the most straightforward attack.

After providing evidence of the malicious nodes’ objectives, we
can prove that our trust management system at both the CM and
CH levels is dependable against attacks from malicious nodes
because this system can detect the malicious behavior and can
prevent such nodes from fulfilling their objectives.
We broadly categorize two types of nodes (CMs or CHs):

good ones and malicious ones. Our assumption is that good
nodes interact successfully most of the time and submit true
feedback. Conversely, malicious nodes try to launch garnished
attacks or bad mouthing attacks. InSection VI, we define this
concept more rigorously, capture the behavior of malicious
nodes, and model how such nodes might try to gain an un-
fair advantage in our trust scheme. Then, we prove our trust
system’s dependability against such malicious attacks.
Definition 1: In the LDTS protocol, a CM for a CM is said

to be trusted if its trust value . Accordingly, a CH
for a CH is said to be trusted if its trust value .
Definition 2: In the LDTS protocol, a CM is said to be

malicious for a CM if it has interacted with at least once
and . A malicious CM for a CM is said to have
deceived if . Accordingly, a CH is said to
be malicious for a CH if it has interacted with at least once
and . A malicious CH for a CH is said to have
deceived if .
Definition 3: A trust management system is said to be de-

pendable against deception by a malicious node (CM or CH) if
no malicious node can deceive another node (CM or CH).
Theorem 1: In the CM-to-CM direct trust decision-making at

CMs, the proposed LDTS is dependable against the deceptive
behavior of malicious CMs.

Proof: Suppose, on the contrary, that a malicious CM
for a CM that successfully deceived . Then, according to the
Definitions 1 and 2: and . Three cases
can be considered.
(1) If , CM has interacted with a CM within the

time stamp . Let denote the real number .
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Given that , we can derive . Hence,
given that , at the time of the last inter-
action, the trust calculation can be performed by using
the past interaction evaluation, according to (1):

Given that and , we obtain

Given that , we obtain

which implies that . Since ,
and , which is obviously impossible

and yields the contradiction . Thus,
by using our trust evaluation approach, the condition

is impossible, which
proves Theorem 1.

(2) If . We consider . Given that
, at the time of the last interaction, the trust cal-

culation can be performed by using the past interaction
evaluation, according to (1):

Apparently, this condition contradicts the hypothesis
, which proves Theorem 1.

(3) If and , CM has no interaction with
CM at all within the time . In such case, will rely
on the feedback reported by the CH.

Theorem 1 shows that the LDTS is dependable against de-
ception by a malicious CM. Meanwhile, Theorem 1 indirectly
proves that the LDTS is dependable against the garnished at-
tacks. From the theoretical basis of Theorem 1, the expression

indicates a strict punishment feature for unsuc-
cessful interactions. The strict punishment feature of LDTS can
effectively prevent sudden attacks from malicious nodes with
higher accumulated trustworthiness.
Theorem 2: In the CH-to-CH direct trust decision-making at

CHs, the proposed LDTS is dependable against the deceptive
behavior of malicious CHs.

Proof: Similar to Theorem 1.
Definition 4: A set of really malicious CMs are said to be

collaborating with one another if they provide false trust values
of a particular CM to the CH.
Definition 5: A collaboration of really malicious CMs is suc-

cessful against a CH toward a CM , if the following con-
ditions hold: (1) and ; or (2) and

.
Theorem 3: In theCH-to-CM feedback trust decision-making

at CMs, the proposed LDTS is dependable against the deceptive,
collaborative feedback of malicious CMs.

Proof:
(1) Conditions and cover the bad-

mouthing scenario where nodes collaborate to lie about
a bad node. Suppose, on the contrary, that a collaboration
that successfully deceived exists. Then, according to
Definitions 4 and 5:

Therefore at the time of the last interaction, the trust cal-
culation can be performed by using the beta probability
density functions, according to (3) and (4):

Apparently, this condition contradicts the hypothesis
, which proves Theorem 3.

(2) Conditions and cover the bad-
mouthing scenario where a group of nodes collaborate
to lie about a good node. The proof is similar to that of
Case (1).

Definition 6: A set of really malicious CHs are said to be
collaborating with one another if they provide false trust values
of a particular CH to the BS.
Definition 7: A collaboration of really malicious CHs is suc-

cessful against a BS toward a CH , if the following condi-
tions hold: (1) ; (2) .
Theorem 4: In the BS-to-CH feedback trust decision-making

at BSs, the proposed LDTS is dependable against the deceptive,
collaborative feedback of malicious CHs.

Proof: The proof is straightforward. We need to prove that
when , . According to (7), (8), and (9),
the BS-to-CH feedback trust can be calculated by using the en-
hanced beta probability density functions:
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We need to prove , that is

Similar to Theorem 3, the value of .
Thus, . In the condition where

, the negative feedback outweighs the positive feedback.
According to (9), , and we obtain
. Thus, we can derive:

This condition proves Theorem 4.

B. Communication Overhead Analysis and Comparison

To evaluate the communication overhead under full-load con-
ditions, we assume a worst-case scenario which is similar to [8],
in which every CM wants to communicate with every other CM
in the cluster, and every CH wants to communicate with the rest
of the CHs in the network. At the same time, each CH needs to
collect feedback reports from its CMs, and the BS has to collect
feedback reports from its CHs. Let us assume that the network
consists of clusters and that the average size of clusters is
(including the CH of the cluster).
In intracluster trust evaluation, when node wants to interact

with node , node will send a maximum of one CH feedback
request, for which node will receive one response. If node
wants to interact with all the nodes in the cluster, the maximum
communication overhead will be . If all nodes want to
communicate with one another, the maximum communication
overhead is . When a CH wants to collect feed-
back from its members, it will send requests and receive
responses, thus resulting in a total communication overhead of
. Thus, the maximum intracluster communication overhead

is .
In the intercluster communication case, when CH wants to

interact with CH , it will send one BS feedback request to the
BS, at the maximum. Thus, the communication overhead is two
packets. If CH wants to communicate with all the CHs, then the
maximum communication overhead will be packets.
If all the CHs want to communicate with one another, the max-
imum communication overhead .
When the BS wants to collect feedback from its CHs, it will
send requests and receive responses, thus resulting in a
total communication overhead of . Thus, the maximum in-
tercluster communication overhead is

.
Therefore, the maximum communication overhead in-

troduced by the LDTS to the entire network is:

(13)

Fig. 6 shows the communication overhead of various trust
management systems under a large-scale clustered WSN envi-

Fig. 6. Communication overheads with 10,000 nodes.

Fig. 7. Storage overhead of the trust database at each node. (a) Trust database
at each CM (7 bytes). (b) Trust database at each CH (7 bytes).

ronment, which has a total of 10,000 nodes. On the whole curve,
we can see that our LDTS requires less communication over-
head than two other notable trust systems, GTMS and ATRM.
Based on the first part of the curve, LDTS and ATRM need less
communication overhead than GTMS. However, as the number
of clusters increases in the network, LDTS and GTMS introduce
less communication overhead than ATRM. Thus, the important
condition that we need to note here is that our LDTS is highly
suitable for large-scale WSNs with either a small or a large size
of clusters and having large size of clusters, thus outperforming
GTMS and ATRM.

C. Storage Overhead Analysis and Comparison

Each CM has to maintain a small trust database, as shown
in Fig. 7(a). The size of each record is 7 bytes. Therefore, the
storage requirement for LDTS at each CM is bytes,
where represents the number of CMs in a cluster. The
size of the trust table mainly depends on the size of the cluster.
Each CH maintains two tables, one of which is used to store
the feedback matrix (see (2)), thus resulting in a total storage
overhead of . In the second table, each CHmaintains
a trust database as shown in Fig. 7(b). The size of each record
also is 7 bytes. Therefore, storage requirement for CHs is

bytes, where represents the number of CMs
in a cluster. The total storage overhead at the CH for both tables
is .
The formulas for the storage requirements of three trust

management systems LDTS, GTMS, and ATRM, are given in
Table II, in which represents the average number of CMs
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TABLE II
ANALYSIS AND COMPARISON OF STORAGE REQUIREMENTS

FOR LDTS, GTMS, AND ATRM

Fig. 8. Storage overhead at each CM with 1,000 nodes.

Fig. 9. Storage overhead at each CH with 1,000 nodes.

in each cluster, represents the total number of CHs in the
network, is the time window defined by GTMS, and
represents the number of contexts described in ATRM (for
details about the storage requirements of GTMS and ATRM,
please see [8]).
Figs. 8 and 9 show the storage overhead of three trust manage-

ment systems under a clustered WSN environment, which has a
total of 1,000 nodes. On the whole curve of Fig. 8, we can see
that our LDTS needs less storage overhead than the two other
trust systems, GTMS and ATRM. This condition proves that
LDTS at the CM level consumes less memory than the two other
models. Fig. 9 shows that as the number of clusters increases in
the network, the LDTS introduces less storage overhead at the
CH level compared with the two other systems, which indicates
that LDTS is more suitable for large-scaleWSNs having a small
size of clusters. The results in Fig. 9 can be easily explained by

TABLE III
ROLE AND CLASSIFICATION OF A NODE IN THE SIMULATOR

Table II. In LDTS, the total storage overhead at the CH
level is bytes. Evidently, the value
of primarily depends on the number of nodes at each
cluster. As the number of nodes at each cluster increases, the
storage consumption requirement also increases at the CH. As
the number of nodes at each cluster decreases, the storage con-
sumption requirement also decreases linearly at the CH.

VI. SIMULATION-BASED ANALYSIS AND EVALUATION

By extending the Netlogo-based trust simulation engine [23],
[28], we implemented a simulator to test the feasibility of the
proposed LDTS. For the purpose of comparison, we also added
GTMS [8] into the simulator, because both LDTS and GTMS
are independent of any specific routing scheme and platform.
We did not implement the ATRM system [20] because it requires
a specific agent-based platform.

A. LDTS Simulator and Environment

In the simulator, three kinds of nodes exist based on their
identities (Table III), i.e., as a CM, as a CH, and as a BS. A
CM or a CH can be a collaborator or a rater toward other nodes.
The behavior of a CM as a collaborator can be one of two types:
good CM (GCM) and bad CM (BCM). GCMs will provide suc-
cessful interaction for the requested messages, whereas BCMs
will provide an unsuccessful interaction. The behavior of a CM
as a rater can be one of two types: honest CM (HCM) and mali-
cious CM (MCM). An HCM always gives the appropriate rating
for any CM, whereas an MCM always gives a random rating
between 0 and 10 for other CMs. Similar to a CM, a GCH al-
ways provide successful interaction, whereas a BCH provide an
unsuccessful interaction. An HCH always gives an appropriate
rating, whereas an MCH always gives random rating between 0
and 10.
Based on discussions in Section III and IV, we can see that

LDTS works with two topologies: the intercluster (CH-to-CH)
topology, where distributed trust management is used, and intra-
cluster (CM-to-CM) topology, where the centralized trust man-
agement approach is employed. We also find that different cal-
culation mechanisms are employed for intracluster and inter-
cluster trust evaluations. According to these characteristics of
LDTS, in this simulator, we separately evaluate the performance
of LDTS based on intracluster and intercluster cases. This ap-
proach will not affect the results of performance evaluation and
will greatly reduce the complexity of the simulator. Instead of
using the physical running time, we use the notion of time-step,
which is introduced in Netlogo, to calculate the simulation time.
The simulation parameters and default values used in the exper-
iments are listed in Table IV.
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TABLE IV
PARAMETERS AND THEIR POSSIBLE VALUES

Fig. 10. CM-to-CM communication overhead in a cluster.

B. Overhead Evaluation and Comparison

We aim to study the effect of the trust management system in
a WSN community, which closely resembles a real network en-
vironment.We suppose that most CMs and CHs are good, where
only 20% CMs and CHs are malicious. The comparison results
are shown in Fig. 10. With the increasing the number of CMs
in a cluster, the CM-to-CM communication overhead of GTMS
rapidly increased according to a exponential curve. However,
the CM-to-CM communication overhead of LDTS slowly in-
creased with the increasing number of CMs. This finding fur-
ther confirms our conclusions from the theoretical analysis in
Section VI, that is, given that feedback between CMs need not
be considered, this trust calculation mechanism in LDTS can
greatly reduce communication overhead.
Fig. 11 shows the comparison results of the CH-to-CH com-

munication overhead between LDTS and GTMS. LDTS and
GTMS have a relatively close network overhead as the network
size increases, which indicates that both LDTS and GTMS are
suitable for large-scale clustered WSNs. However, by compre-
hensively analyzing the results in Figs. 10 and 11, LDTS is more
suitable for large-scale clusteredWSNs with a large size of clus-
ters, thus outperforming GTMS.
Fig. 12 shows the comparison results of average storage over-

head at each CM in a cluster. With the increasing number of
CMs in a cluster, the average storage overhead of GTMS gradu-
ally increased according to a linear curve. However, the average
storage overhead of LDTSwas less than a third of that of GTMS
and slowly increased with the increasing number of CMs. This
finding confirms our conclusions from the theoretical analysis
in Section VI.
Fig. 13 shows the average storage overhead of the two trust

systems at each CH in a WSN network having an equal size

Fig. 11. CH-to-CH communication overhead in a network.

Fig. 12. Average storage overhead at each CM in a cluster.

Fig. 13. Average storage overhead at each CH in a network.

of clusters (10 nodes). We find that as the number of clusters
increases in the network the GTMS introduces slightly less
storage overhead compared with LDTS. The results in Fig. 13
can be easily explained by (2). Each CH has to maintain an
additional table, which is used to store the feedback matrix
(see (2)). The total storage overhead is . Although
the introduction of matrix increases the storage overhead of
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Fig. 14. PSDR comparison with different percentages of MCHs. (a) MCH 5%. (b) MCH 10%. (c) MCH 20%.

Fig. 15. PSDR comparison with different percentages of MCMs. (a) MCM 10%. (b) MCM 20%. (c) MCM 30%.

a CH node, this matrix can significantly enhance the depend-
ability of CH-to-CM trust evaluation.

C. Dependability Evaluation and Comparison

We compute the packet successful delivery ratio (PSDR) [6]
to reflect the dependability of trust management systems. A
higher PSDR indicates higher dependability. We suppose that
most CMs and CHs are good in the WSN community, where
BCMs and BCHs each comprise only 10%. This WSN environ-
ment closely resembles a real situation, where most CMs are
honest and most CHs are good.
Fig. 14 shows the PSDR comparison results under different

percentages of malicious cluster heads (MCHs). In this group
simulation, we suppose that in the WSN community, where
95% of CMs are honest. The remaining 5% of CMs are MCMs.
We separately set the percentage of MCHs as 5%, 10%, and
20%, which respectively indicate that the WSN environment is
honest, relatively honest, and dishonest community, with 50,
100, and 200 dishonest CHs separately. Fig. 14(a) shows an
honest WSN environment, where the percentage of MCHs is
only 5%. We can see that both LDTS and GTMS have a high
PSDR, which reflects that these twomodels have a high depend-
ability under an honest WSN environment. In Fig. 14(b) and (c),
the simulation results when MCHs is 10% and 20% have larger
differences compared with . With the increase in
the percentage ofmalicious CHs, the performance of both LDTS
and GTMS show a marked decline. Relatively, LDTS has a ro-
bust performance under a dishonest WSN environment. These
results are consistent with a real situation, i.e., in a dishonest
WSN community, malicious CHs may conduct a bad-mouthing
attack, which can greatly affect the performance of the WSN
system. To reduce the risk of trust evaluation, we adopt the

idea that the GTD of a CH is adaptively merged by two parts
(which is not aggregated by GTMS): CH-to-CH direct trust and
BS-to-CH feedback trust. This can significantly improve the de-
pendability of LDTS.
Fig. 15 shows the PSDR comparison results under different

percentages of MCMs. We find that LDTS also has a more ro-
bust dependability than the GTMS scheme. Fig. 15(a) shows
the experimental results under an honest environment. In the
simulation, the total percentage of MCMs is 10%, and the total
percentage of MCHs is likewise 10%, which indicate that the
community is a relatively honest community (i.e., with fewer
MCHs and MCMs). Both LDTS and GTMS have relatively
stable performance within 1,000 time-steps, even if their PSDRs
change from 0.92 to 0.96. Fig. 15(b) shows the experimental re-
sults under a relatively honest environment, where 20% of CMs
are dishonest. The results show that LDTS has a higher PSDR
than GTMS. Fig. 15(c) shows the experimental results under
a highly dishonest environment, where 30% of CMs are dis-
honest. Under this case, LDTS still shows better dependability
than GTMS.

VII. CONCLUSION

In this work, we proposed LDTS for clustered WSNs. Given
the cancellation of feedback between nodes, LDTS can greatly
improve system efficiency while reducing the effect of mali-
cious nodes. By adopting a dependability-enhanced trust eval-
uating approach for cooperations between CHs, LDTS can ef-
fectively detect and prevent malicious, selfish, and faulty CHs.
Theory as well as simulation results show that LDTS demands
less memory and communication overhead as compared with
other typical trust systems and is more suitable for clustered
WSNs.
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