
A Transaction Model for Mobile Computing

Sanjay Kumar Madria
School of Computer Science
University Sains Malaysia

1800 Minden, Penang, Malaysia
skm@cs.usm.my

Bharat Bhargava
Department of Computer Sciences
Purdue University, West Lafayett

IN 47907, USA
bb@cs.purdue.edu

Abstract

In this paper, we introduce a prewrite
operation before a write operation in a
mobile transaction to improve data
availability. A prewrite operation does not
update the state of a data object but only
makes visible the value that the data object
will have after the commit of the transaction.
Once the transaction has read all the values
and declares all the prewrites, it can pre-
commit at mobile host. The remaining
transactionÕs execution is shifted to the
stationary host. Writes on database consume
both time and resources at stationary host
and are therefore, delayed. A pre-committed
transactionÕs prewrite values are made
visible both at mobile and stationary hosts
before the final commit of the transaction.
This increases data availability during
frequent disconnection common in mobile
computing. Since the expensive part of the
transaction execution is shifted to the
stationary host, it reduces the computing
expenses at mobile host.
1. Introduction

Wide area and wireless computing
suggest that there will be more competition
for shared data since it provide users with
ability to access information and services
through wireless connections that can be
retained even while the user is moving.
Further, mobile users will have to share their
data with others. The task of ensuring
consistency of shared data becomes more
difficult in mobile computing because of
limitations of wireless communication
channels and restrictions imposed due to

mobility and portability ([5], [15]). The
access to the future information systems
through mobile computers will be performed
with the help of mobile transactions.
However, a transaction in this environment is
different than the transactions in the
centralized or distributed databases in the
following ways.
· The mobile transactions might have to

split their computations into sets of
operations, some of which execute on
mobile host while others on stationary
host. A mobile transaction share their
states and partial results with other
transactions due to disconnection and
mobility.

· The mobile transactions require
computations and communications to be
supported by stationary hosts.

· As the mobile hosts move from one cell
to another, the states of transaction, states
of accessed data objects, and the location
information also move.

· The mobile transactions are long-lived
transactions due to the mobility of both
the data and users, and due to the
frequent disconnections.

· The mobile transactions should support
and handle concurrency, recovery,
disconnection and mutual consistency of
the replicated data objects.

To support mobile computing, the
transaction processing models (see section 2.1
for review of some existing model) should
accommodate the limitations of mobile
computing, such as unreliable
communication, limited battery life, low
band-width communication, and reduced
storage capacity. Mobile computations should
minimize aborts due to disconnection.

Operations on shared data must ensure
correctness of transactions executed on both
stationary and mobile hosts. The blocking of
transactions execution on either the stationary
or mobile hosts must be minimized to reduce
communication cost and to increase
concurrency. Proper support for mobile
transactions must provide for local autonomy
to allow transactions to be processed and
committed on the mobile host despite
temporary disconnection.

Our objective is to increase data
availability at mobile and stationary hosts.
The main features of our mobile transaction
model are :
· Each mobile transaction has a prewrite

operation before a write operation. A
prewrite operation makes visible the
value the data object will have after the
commit of the transaction.

· Once all the prewrites have been
processed, the mobile transaction pre-
commits at mobile host. A pre-
committed transactionÕs results are
visible at mobile and stationary hosts
before the final commit. This minimizes
the blocking of other transactions and
increases concurrency.

· The transaction continues its execution at
mobile host by announcing prewrite
values and then shifts the resource
consuming part of the transactionÕs
execution (updates of the database on
disk) to the stationary host. This reduces
the computing cost on mobile host.

· A pre-committed transaction is
guaranteed to commit. This feature of our
model avoids an undo or compensating
transaction, which is costly in mobile
computing.

· A pre-read returns a prewrite value
whereas a read returns a write value.

· The transactions are serialized based on
their pre-commit order. This feature of
our model saves some computing cost as
transactions which can not be serialized
or deadlocked are aborted before pre-
commit.

· Our model deals efficiently with the
constrained resources in mobile
computing environment.

2. Mobile Architecture

In mobile computing environment
(see figure 1), the network consists of
stationary and mobile hosts [5]. A mobile
host (MH) changes its location and network
connections while computations are being
processed. While in motion, a mobile host
retain its network connections through the
support of stationary hosts with wireless
connections. These stationary hosts are called
mobile support stations (MSS) or base
stations which perform the transaction and
data management functions with the help of
transaction managers (TMs) and data
managers (DMs), respectively. Each MSS is
responsible for all the mobile hosts within a
given small geographical area, known as a
cell. At any given instant, a MH
communicates only with the MSS
responsible for its cell. A MH may have some
server capability to perform concurrency
control and logging etc. Some MH has very
slow CPU and very little memory and thus,
acts as an I/O device only. Within this
mobile computing environment, shared data
are expected to be stored and controlled by a
number of database servers executing on
MSS.

When a MH leaves a cell serviced by
a MSS, a hand-off protocol is used to transfer
the responsibility for mobile transaction and
data support to the MSS of the new cell. This
hand-off may involve establishing a new
communication link. It involves the
migration of in progress transactions and
database states from one MSS to another.
2.1 Review of Mobile Transaction
Processing Models

The mobile mobile transaction
processing is an active area of research. We
outline some of the existing ideas as follows.
· Semantic based transaction processing

models ([2],[17]) have been extended for
mobile computing in [18] to increase
concurrency by exploiting commutative
operations. These techniques require
caching large portion of the database or
maintain multiple copies of many data
items. In [18], fragmentability of data
objects have been used to facilitate
semantic based transaction processing in
mobile databases. The scheme fragments
data objects. Each fragmented data object

has to be cached independently and
manipulated synchronously. This scheme
works in the situations where the data
objects can be fragmented like stacks and
queues.

· In optimistic concurrency control based
schemes [6], cached objects on mobile
hosts can be updated without any co-
ordination but the updates need to be
propagated and validated at the database
servers for the commitment of
transactions. This scheme leads to aborts
of mobile transactions unless the conflicts
are rare. Since mobile transactions are
expected to be long-lived due to
disconnection and long network delays,
the conflicts will be more in mobile
computing environment.

· In pessimistic schemes, cached objects
can be locked exclusively and mobile
transactions can be committed locally.
The pessimistic schemes lead to
unnecessary transaction blocking since
mobile hosts can not release any cached
objects while it is disconnected. Existing
caching methods attempt to cache the
entire data objects or in some case the
complete file. Caching of these
potentially large objects over low
bandwidth communication channels can
result in wireless network congestion and
high communication cost. The limited
memory size of the MH allows only a
small number of objects to be cached at
any given time.

���
��

��

��

��

Figure 1. Mobile Architecture

· Dynamic object clustering has been
proposed in mobile computing in
([13],[14]) using weak-read, weak-write,
strict-read and strict-write. Strict-read and
strict-write have the same semantics as
normal read and write operations invoked
by transactions satisfying ACID
properties [1]. A weak-read returns the
value of a locally cached object written

by a strict-write or a weak-write. A weak-
write operation only updates a locally
cached object, which might become
permanent on cluster merging if the
weak-write does not conflict with any
strict-read or strict-write operation. The
weak transactions use local and global
commits. The Òlocal commitÓ is same as
our Òpre-commitÓ and Òglobal commitÓ

Fixed Network
 TM DM

 Server

 MSS

 TM DM

 Server

 MSS

· MH (some
server
capability)

· MH (only
I/O)

· MH (some
server
capability)

· MH (only
I/O)

is same as our Òfinal commitÓ (see
section 3). However, a weak transaction
after local commit can abort and is
compensated. In our model, a pre-
committed transaction does not abort and
hence, require no undo or compensation.
A weak transactionÕs updates are visible
to other weak transactions whereas
prewrites are visible to all transactions.

· [7] presents a new transaction model
using isolation-only transactions (IOT).
IOTs do not provide failure atomicity
and are similar to weak transactions of
[13].

· An open nested transaction model has
been proposed in [3] for modelling
mobile transactions as a set of
subtransactions. The model allows
transactions to be executed on
disconnection. It supports unilateral
commitment of subtransactions and
compensating transactions. However, not
all the operations are compensated [3],
and compensation is costly in mobile
computing.

· A kangaroo transaction (KT) model was
given in [4]. It incorporates the property
that transactions in a mobile computing
hop from a base station to another as the
mobile unity moves. The mobility of the
transaction model is captured by the use
of split transaction [16]. A split
transaction divides an ongoing
transactions into serializable
subtransactions. Earlier created
subtransaction is committed and the
second subtransaction continues
execution. The mobile transaction is
splitted when a hop occurs. The model
captures the data behaviour of the mobile
transaction using global and local
transactions. The model also relies on
compensating transaction in case a
transaction aborts. Our model has the
option of either using nested transactions
or split transactions. However, the save
point or split point of a transaction is
explictly defined by the use of pre-
commit. This feature of the model allows
the split point to occur in any of the cell.
Unlike KT model, the earlier
subtransaction after pre-commit can still

continue its execution with the new
subtransaction since their commit orders
in our model are based on pre-commit
point. Unlike KT, our model does not
need any compensatry transaction.

· Transaction models for mobile
computing that perform updates at
mobile computers have been developed
in ([3],[13]). These efforts propose a new
correctness criterion [3] that are weaker
than the serializability. They can cope
more efficiently with the restrictions of
mobile and wireless communications.

· In ([9],[10],[11],[12]), prewrite operations
have been used in nested transaction
environment to increase concurrency and
to avoid undo or compensated
operations. The notion of a recovery
point subtransaction has been introduced.
In a nested transaction tree, if a recovery-
point subtransaction executed
successfully, its effects are not to be
discarded. In this paper, we exploit some
of these ideas in order to increase
reliability and availability in mobile
computing environment.

3. Prewrite Transaction Model
The prewrite transaction model

presented in [11] has the following features :
· A prewrite operation announces the value

that the data object will have after the
commit of the corresponding write
operation.

· A transaction is pre-committed if it has
announced all the prewrites values and
read all the required data objects, but the
transaction has not been finally
committed.

· A pre-read returns a prewrite value of the
data object whereas a read returns the
result of a write operation. A pre-read
becomes a weak-read (in case the data
objects involved are not simple) if it
returns a prewrite value even though the
transaction who announced the last
prewrite has been finally committed.
However, this weak-read should not to be
aborted. This makes our weak-read
different from the weak-read of [13].

· Each prewrite operation makes visible the
value the transaction will eventually
write. Prewrites may have different

semantics in different environments. For
simple data objects, the prewrite and
write values match exactly. For database
files, the prewrites may only contain
primary-key values and the new values of
the fields of records. In case of design
objects, prewrites may represent a model
of the design. However, the final design
released for manufacturing may differ from
prewrite design of the model to some
extent. For example, the final design may
have a different colour shade than the
prewrite design model. In case of a
document object, the prewrite may
represent an abstract of the detail
document. For many read operations,
these small differences make no difference
to future computation.

· Once the required data objects are read or
pre-read and prewrites are computed, the
transaction pre-commits. A transaction is
required to read or pre-read all the
required data objects before pre-commit
because after a transaction releases a lock
for a prewrite operation, it can not get a
lock for read operation due to the
condition of two phase locking [1]. After
a pre-commit, the prewrites are made
visible to other transactions for
processing. Initially, prewrites are kept in
the transactionÕs private workspace. Once
the transaction pre-commits, they are
posted in the prewrite-buffer. The data
objects are physically updated on the
disk. The prewrites are handled at the
transaction manager level whereas
physical writes are handled at the data
manager level.

· The transactions commit order in the
serilaizable transactions execution history
is decided at the order of pre-commit
action.

· Our concurrency control algorithm is to
be executed in two servers: For

controlling pre-read (i.e., read of prewrite
value) and prewrite operations at TM
server and read (i.e., read of write value)
and write operations at DM server. Since
prewrite values are made publically
visible after pre-commit, the lock-type
held by the prewrite operation is
converted to the lock-type for write
operation after pre-commit provided no
conflicting locks are held by other
transactions. The lock acquired for a
prewrite operation is not released after
pre-commit because the two phase
locking [1] does not allow a transaction
to acquire a lock after the transaction has
released some locks.

· A transaction is not allowed to abort after
pre-commit. The prewrite provides non-
strict execution without cascading aborts.
In figure 2, T1 and T2 are two
subtransactions where pw(x), w(x), pr(x),
and r(x) are the prewrite value, write
value, pre-read value and read-value
respectively, for the data object x. The
transaction T2 commits before T1. In
case T1 aborts after T2 commits, there
will not be a cascading abort. Since our
model does not need Òundo recoveryÓ
from transaction aborts [12], no
compensating transaction is to be
executed. In case the pre-committed
transaction is forced to abort due to
system dependent reasons such as system
crash, the transaction restarts on system
revival. In order to restart a failed pre-
committed transaction from the last
consistent state, prewrite and write logs
are saved on stable storage [12].

· The model relaxes the isolation property
as the prewrites are made visible to
others after pre-commit but before the
final commit of the transaction. Also,
durability of prewrites is guaranteed at
the pre-commit point.

���� � T1 r(x), pw(x) pc w(x) c
�� T2 pr(x) c

Figure 2. Two Concurrent Transactions

4. Prewrite Mobile Transaction
Model

In this section, we see how prewrite
model discussed in the previous section can
be used in the mobile transaction
applications. We discuss two cases.
Case 1: MH has limited server capability
to do concurrency control, logging, and to
execute pre-commit.

In our mobile transaction model, a
transaction begins its execution at mobile
host. When a transaction arrives at MH, the
transactionÕs read requests are processed at
MH in case it has the consistent cached data
objects. Otherwise, the MH sends request for
some of the reads (for which the MH has no
consistent cached data objects) to the MSS.
When a read access transaction arrives at
MSS, it analyses the transaction and returns
the prewrite value in response. If prewrite is
not available, the write values are returned.
The MSS tags to identify that the return
value is a prewrite value. In case the

transaction needs the final write, it has to
initiate a read again. Once all the requested
values are returned by MSS to MH, the
transaction declares all the prewrite values for
the data objects and pre-commits at MH. A
pre-committed transactionÕs execution is then
shifted from mobile host to the stationary
host for the completion of its remaining
execution. This moves the expensive part of
the mobile transaction execution to the static
network. At the stationary host, the
transaction actually updates all the data
objects for which the prewrite values have
been declared earlier and commits thereafter
(see figure 3). Thus, the prewrite value of the
required data object is made visible by MSS
to other mobile hosts in that cell before the
data object is updated at the stationary host.
This increases availability for concurrently
running transactions. Prewrites are stored in
the transactionÕs private workspace at MH
and once the transaction pre-commits, they
are moved to the main memory of MSS.

Start Reads/Prewrites Pre-commit Writes Commit
����

 Part of transaction executed at MH Part of transaction executed at MSS

Figure 3. The Transaction Processing in Mobile Computing

Example 1: Real-Time Application
· Consider a newspaper reporter who is

travelling in his van equipped with a
mobile computer. If an accident site he
likes to report immediately, he initiates a
reporting transaction that consists of
some Òheadline-reportÓ about the
accident and sends it to the newspaper
office (MSS). The newspaper office
immediately displays this on the web
page as well as on electronic bulletin
board. Since the mobile computer can
run out of battery power or due to weak
connections or network congestion, the
reporter does not prepare and send the
full-report. The Òheadline-reportÓ
corresponds to prewrite value of our
model. It reduces the blocking of other
transactions at stationary host as it may
suffice the requirement of many
transactions. For example, based on

headline-report, some transactions like
reservation of beds in hospitals for
victims and transactions for seat
reservations in air-lines for the relatives
to travel to the accident site etc. can be
initiated. Also, once the headline reports
arrived at MSS, the reporting
transactionÕs remaining execution is
shifted to the MSS for the completion of
report. There are two choices for the
completion of full-report. First, the
newspaper office (MSS) contacts some
other reporter in that area to go to the
accident site physically and file the
complete report. Second, the reporter at
MH can complete the full story at the
time of disconnection (i.e., during lunch-
time) or weak connections. Thus, MSS
can deal effectively with the situations
like failure of MH or in case the mobile
host has crossed the cell or is in doze

mode. At the time of reconnection, the
full-report would be incorporated into the
database. The Òheadline-reportÓ can also
to be transmitted to other base stations in
the fixed network so that transactions
there can also be executed without delay.

Case 2: MH has very slow CPU and small
memory, thus acts as an I/O device only.

In case the mobile host can not
execute the transaction at MH (i.e., MH only
acts as I/O), it can submit the transaction to
the MSS. The MSS server returns all the
required values and declares all the prewrite
values corresponding to the write operations.
After the transaction pre-commits, the
prewrite values are send to the mobile host
and at the same time, the rest of the
transaction starts executing at the MSS.
Example 2 : Stock Buying-Selling
Application
· Once a stock-selling transaction is

accepted for sell at the given limit-price,
the prewrites will have information about
the amount of money available before the
stock-selling transaction is committed at
MSS. Once this information is received
at MH, the user can initiate another
stock-buying transaction and sends its
Òbuying-orderÓ to the corresponding
MSS.

4.1 Mobile Transaction Model and
Partially Replicated System

If the data objects are replicated
partially, the mobile transaction makes
visible all the prewrites of the required data
objects available in its current cell and pre-
commits in the current cell. If it does not do
this and waits to announce the prewrite values
of all other required data objects by moving
into different cells, it will block other
transactions until it visits those cells. Our
approach of pre-committing in the current cell
in such situations also creates some
problems. Once a transaction is pre-
committed, it can not again announce
prewrite values for the objects in other cells.
This is due to the fact that once the prewrite
values are made visible at MSS by releasing
some locks, it can not again acquire locks due
to the two phase locking. This problem can
be resolved in two ways. Either the
transaction requests all the locks for all the

required data objects and wait until all the
locks are granted. This strategy will delay the
execution severely in case some links are
down. The other approach to solve the
problem is by using either the nested
transaction [8] or split transaction [16].
Nested Transaction Approach: To deal
with the problem, we use the nested
transaction model [8]. Once a transaction has
announced all the prewrite values for the data
objects available in its current cell and pre-
committed, a new subtransaction is created.
The earlier subtransaction is serialized before
this new subtransaction based on pre-commit
point. The earlier subtransactionÕs execution
can be continued at the old MSS. The new
subtransactionÕs responsibility is shifted to
the MSS of the new cell with the help of
hand-off protocol. Thus, both the transactions
can be executed independently and
concurrently in their respective cells. The pre-
commit points are the save points of the
nested transaction execution, thus they
provide failure-tolerant execution. In case the
earlier transaction aborts in the previous cell,
its own effects and the new subtransaction are
not undone. The aborted transaction can be
restarted from the last pre-commit point.
Another way of handling partially replicated
data objects is to split [16] the transaction as
soon as the MH moves to a new cell. The
splitted transaction acts as a new transaction
and therefore, can continue its processing in
the new cell.

Prewrites can help in partial
replication of the data objects in some of the
cells it moves. That is, it can make some
new servers to support its files. For example,
suppose a transaction at MH has send a
Òheadline-reportÓ about the accident and
moved to another cell. In the new cell, it
sends the Òheadline-reportÓ to its new MSS
also. The MSS can therefore, get the
headline-report before the full-report is
processed at earlier MSS. Thus, the new
MSS can serve those mobile transactions,
which require headline-report for further
processing like reservation of beds in
hospitals in the current cell etc. Thus,
transactions at the new MSS are not blocked
until the completion of earlier transaction at
the previous MSS.

5. Concurrent Operations and
Locking

The operation-compatibility matrix
of the various operations is given in table 1.
In mobile transaction model, a pre-read
operation can be executed at both MH and
MSS at the same time. A pre-read can be
executed at MH (MSS) while a write can take
place at MSS (MH) concurrently. Similarly, a
read can be executed concurrently with a
prewrite. A prewrite operation can also be
executed concurrently with another write
operation since prewrites are managed at the
transaction manager level whereas the writes
are performed at the data manager level.
However, there are some interesting cases as
follows:
Case 1: Suppose a pre-read is currently
being executed at MH and at the same
time, another transaction which has
announced the prewrite values finally
commits at MSS (final updates are
performed) (see figure 4(a)).

In this case, the pre-read will return a
prewrite value which might be different than
the last write value. For example, if the data
object x is the simple data object, the read
transaction T2 can commit as the prewrite
and write values will be same. In case x is a
design object, the system designate the read
T2 as a weak- read since the final design may
differ from the prewrite model. The
transaction T2 can resubmit its read request
later to MSS if it needs the latest complete
model of the design.
Case 2: In table 1, observe that a read
operation is compatible with a prewrite.
Consider a case where a read transaction
commits at MH after the transaction who
announced the prewrite operation has
been pre-committed.

The read in this situation will return
an old value. However, this is not a
significant problem because the transaction
can still be serialized. For example,
transaction T2 returns a write value, however
it commits after T1 has pre-committed. The
transaction T2 can be serialized before T1.

�T1 r(x), pw(x) pc w(x) c At MSS
�� T2 pr(x) c At MH

Figure 4 (a). The Situation in Case 1

�T1 r(x), pw(x) pc w(x) c At MSS
��� T2 r(x) c At MH

Figure 4(b). The Situation in Case 2

 Pre-read Read Pre-write Write
Pre-read Yes Yes No Yes

Read Yes Yes No No
Pre-write No Yes No Yes

Write Yes No Yes No

Table 1. Operation Compatibility Matrix

Locking: We develop a concurrency control
algorithm to control the conflicting operations
in our mobile transaction model. The
concurrency control algorithm is executed in

two phases may be at two places. In the first
phase, the concurrency control for controlling
prewrite and pre-read operations is performed
at the transaction manager level at MH or

MSS. In the second phase, the concurrency
control for controlling write and read
operations (to access write values) is
performed at the data manager (DM) level at
MSS mainly since the data managers are
accessed only while performing updates on
the databases.

We use read-lock for read, pre-read-
lock for pre-read, prewrite-lock for prewrite,
and write-lock for write operations,
respectively. A prewrite-lock conflicts with
other pre-read- and prewrite-locks, however, it
does not conflict with read- and write-locks.
A prewrite-lock can not be released after pre-
commit as the transaction has to still get a
write-lock for final updates. A prewrite-lock
acquired by a pre-committed transaction is
converted to a write-lock provided no other
transaction holds the conflicting locks. Once a
prewrite-lock is updated to a write-lock, the
same transaction can not acquire any other
lock [11]. However, pre-read-locks can be
acquired by others to access prewrite values.
The locking protocols are given in figure 5.
The formal mobile transaction-processing
algorithm is given in figure 6.

There will be no a deadlock
involving the transactions which are pre-
committed. This is due to the fact that
prewrite- and write-locks are acquired in an
ordered fashion so deadlocks will occur only
at the time of acquiring prewrite- or read-
locks. Thus, a pre-committed transaction will
not be aborted due to the deadlocks.

Locks on the data are managed and
provided by the MSS. In case of replicated
objects, the number of locks to be acquired in
our algorithm depends on the particular
replication algorithm used. The two main
replication algorithms used are majority
consensus and read-one-write all (ROWA)
[1]. In majority consensus algorithm, locks
are acquired on majority of sites whereas read-
one-write-all (ROWA) requires lock on all the
sites. In case read/write ratio is less, ROWA
is preferred otherwise majority consensus will
be preferred.

Pre-Read-Lock(X): Grant the requested pre-
read-lock to a transaction T on X if no other
transaction holds a prewrite-lock on X.

Read-Lock(X): Grant the requested read-lock
to a transaction T on X if no other transaction
holds a write-lock on X.
Prewrite-Lock(X): Grant the prewrite-lock to
a transaction T on X if no other transaction
holds a Prewrite- or pre-read-lock on X.
Write-Lock(X): A request to update a
prewrite-lock on X held by a transaction T to
write-lock on X is granted as follows:
 Begin
 If the write-lock-wait queue for X is
empty then
 Begin
 If the transaction T is pre-committed
and no other transaction holds a read- or
write-lock on X then convert prewrite-lock to
write-lock;
 End;
 else
 Begin
 put the transaction T in a write-lock-
wait queue for X;
 End;
 End.

�
 Figure 5. The Locking Protocol

1. A transaction T is submitted to the mobile
host.
2. Mobile host analyzes the transaction T to
find out about its read and write requests (we
assume here that MH has some server
capability).
 (/*pre-commit part of the algorithm
executed at MH*/)
3. If the transaction T has read and write
operations then
 Begin
 For all reads and writes Î T
 MH sends a request to MSS for all the
required read values and request for prewrite-
locks;
 After MSS acquirs the necessary read-
locks, it returns read values to MH (return
values will be prewrite value. If no prewrite
value is found, the write values are returned
 For all writes Î T
 Begin
 Announce all the prewrite values
at MH (without waiting for prewrite-locks);
 Store the prewrite logs at MH;

 Write pre-commit log record and
destination move log record;
 Send prewrite values, prewrite logs
and other log records to MSS;
 If MSS acquired all prewrite-locks
for all the data objects for which prewrite
values have been announced then
 Begin
 MSS accepts the prewrite values
and logs;
 MSS update the prewrite-lock to
write-lock provided no other transaction holds
conflicting locks (see figure 5);
 End;
 else the prewrite values and
corresponding logs are discarded at MH;
 End;
 End;
4. For each prewrite announced (/*post
pre-commit algorithm executed at MSS*/)
 Begin
 Update those data objects in the
database for which prewrites have been
announced;
 Store necessary log records;
 End;

Figure 6. Mobile Transaction
Processing Algorithm

6. Conclusion
In this paper, we have presented a

mobile transaction model using prewrites to
increase availability. The model allows a
transaction�s execution to shift from the MH
to MSS for database updates, thus minimizes
the computing expenses at MH. Prewrite
values help in increasing availability as the
transactions can be executed during
disconnections both at MH and MSS without
blocking. For future work, we would like to
discuss a detail crash recovery algorithm for
mobile transaction model as well as some
implementation issues and formal correctness
proof.
References
[1] Bernstein P, Hadzilacos, and Goodman, N.,
Concurrency Control and Recovery in Database
Systems, Addison-wesley Publishing Co.,1987.

[2] Barghouti, N., and Kaiser G., Concurrency
Control in Advanced Database Applications,
ACM Computing Surveys, 23(3):269-317,1991.
[3] Chrysanthis, P.K., Transaction Processing in
a Mobile Computing Environment, Proceedings
of IEEE workshop on Advances in Parallel and
Distributed Systems, pp.77-82, Oct.1993.
[4] Eich, M.H.and Helal, A., A Mobile
Transaction Model That Captures Both Data and
Movement Behaviour, ACM/Baltzer Journal on
Special Topics on Mobile Networks and
Applications, 1997.
[5] Imielinksi T. and Badrinath B. R., Wireless
Mobile Computing:Challenges in Data
Management, Communications of ACM, 37(10),
October 1994.
[6] Kisler J. and M. Satyanarayanan,
Disconnected Operation in the Coda File
System, ACM Transactions on Computer
Systems, 10(1), 1992.
[7] Lu Q. and Satyanaraynan, M., Improving
Data Consistency in Mobile Computing Using
Isolation-Only Transactions, in proceedings of
the fifth workshop on Hot Topics in Operating
Systems, Orcas Island, Washington, May 1995.
[8] Moss, J.E.B., Nested Transactions: An
Approach to Reliable Distributed Computing,
Ph.D. Thesis. Also, Technical Report
MIT/LCS/TR-260 MIT Laboratory for
Computer Science, Cambridge, MA., April,
1981.
[9] Madria, S.K., Concurrency Control and
Recovery Algorithms in Nested Transaction
Environment and Their Proofs of Correctness,
Ph.D. Thesis, Department of Mathematics, Indian
Institute of Technology, Delhi, 1995.
[10] Madria, S.K., A Prewrite Transaction
Model, accepted for 3rd International Baltic
Workshop on Database and Information System
to be held in Riga, Latvia, April 15-17.
[11] Madria, S.K. and Bhargava, B., System
Defined Prewrites to Increase Concurrency in
Databases, accepted for First East-Europian
Symposium on Advances in Databases and
Information Systems (sponsored by ACM-
SIGMOD), St.-Petersburg (Russia), Sept.97.
[12] Madria, S.K., Maheshwari, S.N, Chandra, B.,
Bhargava, B., Crash Recovery Algorithm in an
Open and Safe Nested Transaction Model, 8th
International Conference on Database and
Expert System Applications (DEXA), France,
Sept.97. Appeared in Lecture Notes in Computer
Science, Vol. 1308, Springer Verlag.
[13] Pitoura E. and B. Bhargava, Building
Information Systems for Mobile Environments,
Proceedings of 3rd International Conference on

Information and Knowledge Management,
pp.371-378, 1994.
[14] Pitoura E. and B. Bhargava, Maintaining
Consistency of Data in Mobile Computing
Environments, in proceedings of 15th
International Conference on Distributed
Computing Systems, June,1995.
[15] Pitoura E. and B. Bhargava, Dealing with
Mobility: Issues and Research Challenges,
Technical Report TR-93-070, Department of
Computer Sciences, Purdue University, 1993.
[16] Pu C., Kaiser G., and Hutchinson, Split-
transactions for Open-ended Activities, in

proceedings of the 14th VLDB Conference,
1988.
[17] Ramamritham K. and Chrysanthis. P.K., A
Taxonomy of Correctness Criterion in Database
Applications, Journal of Very Large Databases,
4(1), Jan.1996.
[18] Walborn, G. D., Chrysanthis, P.K.,
Supporting Semantics-Based Transaction
Processing in Mobile Database Applications, in
proceedings of 14th IEEE Symposium on
Reliable Distributed Systems, pp.31-40,
Sept.1995.

