
A Distributed Constraint Satisfaction Problem
Approach to Virtual Device Composition

Eric Karmouch, Member, IEEE, and Amiya Nayak, Senior Member, IEEE

Abstract—The dynamic composition of networked appliances, or virtual devices, enables users to generate complex, strong, and

specific systems. Current MANET-based composition schemes use service discovery mechanisms that depend on periodic service

advertising by controlled broadcast, resulting in the unnecessary depletion of node resources. The assumption that, once generated, a

virtual device is to remain static is false; the device should gracefully degrade and upgrade along with the conditions in the user’s

environment, particularly the network’s current performance requirements. Presently, schemes for infrastructure-less virtual device

composition and management do not consider this adaptation. We present a distributed constraint satisfaction problem (distCSP) for

virtual device composition in MANETs that addresses these issues together with simulations that show its effectiveness and efficiency.

Index Terms—Pervasive computing, multimedia applications, algorithm/protocol design and analysis, mobile environments, constraint

satisfaction

Ç

1 INTRODUCTION

CONTINUOUS network connectivity and the increasing
availability of online data are creating a demand from

consumers for networked services to be seamlessly inte-
grated into their lifestyles. This is driving network and
computing technology into everyday objects, and bringing
to fruition the concept of the networked appliance [1]. A
networked appliance is defined as a dedicated function
consumer device with an embedded processor, a network
connection, and the ability to disperse its capabilities within
the network. This allows other devices to combine with and
use those capabilities as part of a virtual device, a collection of
heterogeneous devices in the vicinity of the user that behave
as a single homogeneous device in solving a given task. The
functionality of a networked appliance is distributed,
enabling it to be controlled, monitored, managed, and
extended beyond what it was initially designed to do. More
specifically, as this paper discusses, a virtual device is
defined as a system of strong networked devices, both fixed
and mobile, with many distributed input and output
capabilities and able to provide users with coherent and
surrounding interfaces. The devices are specific, meaning
that they provide a single functionality at high quality. Users
are able to incorporate autonomous devices in their vicinity
as needed. Single applications can be distributed across a
number of devices, with the strengths of each device
providing enhanced user experience and quality of service
(QoS). Virtual devices are managed automatically, with little
or no human involvement. For more details regarding
virtual devices and challenges they pose, see Supplemental

Section 1, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2012.39.

An open problem is how to achieve the automatic

composition of virtual devices and the services they provide

in order to create dynamic service configurations with

limited human intervention. The aim is to automate the

discovery process and to enable the devices to determine

what services are required. Various approaches have been

taken in the home networking research area [2]. They range

from advanced human-computer interaction to networking

and automatic interoperation. However, these approaches

tend to be orthogonal to the development of enabling

platforms. They manage only to provide basic interoper-

ability through centralized approaches, resulting in little or

no support for mobile ad hoc network environments

(MANETs). The hope of finding more reactive and decen-

tralized solutions has lead to research that specifically targets

service composition in MANETs [3], [4], [5]. Little or no

attention has been paid to quality of service. As a result,

finding the “best composition possible,” as opposed to “a

composition that fits,” is not considered a priority. This

research also relies on discovery mechanisms that are largely

based on constant periodic service advertising by controlled

broadcast, whether composition is currently desired or not.

The effect is that node resources such as battery and

processing power are unnecessarily depleted. Moreover, an

ad hoc network is composed of a collection of wireless nodes,

some or all of which may be mobile; a wireless network is

dynamically created without aid from either infrastructure or

administration. Ad hoc networks can therefore be described

as self-creating, self-organizing, and self-administering,

offering unique benefits and versatility to the virtual device

problem. However, they also create environments in which

measurable attributes such as bandwidth, delay, loss, and

jitter are highly likely to vary over time. A composed virtual

device should therefore gracefully degrade and upgrade

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2012 1997

. The authors are with the School of Electrical Engineering and Computer
Science at the University of Ottawa, ON K1N 6N5, Canada.
E-mail: ekarm041@eecs.uottawa.ca, anayak@eecs.uottawa.ca.

Manuscript received 6 Dec. 2010; revised 8 July 2011; accepted 22 Jan. 2012;
published online 27 Jan. 2012.
Recommended for acceptance by J. Zhang.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2010-12-0710.
Digital Object Identifier no. 10.1109/TPDS.2012.39.

1045-9219/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

along with the performance of the network and with minimal
interruption to the user.

In this paper, we define the virtual device composition
problem and present the Virtual Device Constraint Satisfac-
tion Protocol (VDCSP). This does not require broadcast-
based service advertisements. It also includes a graceful
degradation and upgradation that corresponds to the
performance of the network. We achieve this by modeling
and solving the virtual device problem as a distributed
constraint satisfaction problem (distCSP) [6]. A CSP is defined
by the triplet (X, D, C), where X ¼ X1; . . . ; Xnf g is a set of n
variables, D ¼ D1; . . . ; Dnf g is a set of n domains of values,
where Di is the domain of the values of the variable Xi, and
C ¼ C1; . . . ; Cj

� �
is a set of j constraints of the problem. A

CSP is solved by assigning values to the variables so that all
constraints are satisfied. A distributed CSP is defined as a
CSP where variables and constraints are distributed among
automated agents. Solving a CSP therefore implies achiev-
ing coherence or consistency among agents. Another benefit
of the distCSP approach is that, unlike traditional schemes,
distCSPs can be solved without the need for agents to
directly divulge complete or precise information about their
domain and constraints. Instead, information is passed in a
highly summarized form. This is important for privacy and
security reasons, as there may be information pertinent to
composition, such as the client billing model, that a node
may not wish to divulge.

Our preliminary work on the possibility of using CSPs
for virtual device composition is presented in [7],]8]. The
contributions of this paper are 1) to modify our solution to
include network attributes in the process, 2) to extend our
solution to account for postcomposition adaptation based
on changing network attributes, and 3) to provide more
extensive simulations that study the effects of mobility and
scalability on the efficiency and effectiveness of the
protocol. The simulations show that VDCSP is able to
compose high-quality virtual devices that meet task
requirements, service constraints, and user preferences,
and that also perform postcomposition adaptation, while
minimizing cost in messages used and composition time.

The rest of the paper is organized as follows: Section 2
introduces related work on both infrastructure-based and
infrastructure-less environments. It includes a detailed
description of a prominent distributed service composition
protocol (DSC) that we use for comparison in simulation.
Section 3 presents our VDCSP. We incorporate network
attributes into the service selection and composition
process, and extend the protocol to account for postcompo-
sition adaptation based on changing network attributes.
Section 4 provides the findings of our simulations, showing
the effectiveness of our method and its response to
changing mobility and scaling.

2 RELATED WORK

Service discovery and composition is a significant area of
research [9], [10], [11], [12], [13], [14], [15], [16], [17] in the
context of web services. Research in this area takes two
paths: 1) service description and matching and 2) service
discovery and composition architectures, mostly in infra-
structure-based environments. Research into infrastructure-
less environments is still relatively new. We begin by

examining service discovery and composition in both kinds
of environments. We then provide a more detailed descrip-
tion of Chakraborty et al.’s Distributed Service Composition
Protocol [3], the protocol we use for comparison.

2.1 Infrastructure-Based Environments

Languages for describing web services in a dynamic
manner include the Web Services Development Language
(WSDL) [18] and the DARPA Agent Markup Language for
Services (DAML-S) [19]. WSDL is an XML-based language
in which network services are described as a collection of
endpoints operated by document/procedure-oriented mes-
sages. DAML-S focuses on the standardization of the Web
Ontology Language (OWL) [20]. OWL can be defined as a
set of XML elements and attributes, which, through
standardized meanings, are used to define terms and their
relationships. Languages for formally specifying services
and composite services include the XML-based Web
Services Flow Language (WSFL) [21] and the Business
Process Execution Language for Web Services (BPEL4WS)
[20], used in the formal specification of business processes
and business interaction protocols. Complex planning
engines have also been developed using service descrip-
tions to generate declarative specifications of workflows for
the composition of services [23], [25].

The majority of service discovery and composition
architectures are designed for wired infrastructures, using
central lookup servers for service registration, discovery,
and composition, and assuming stable nodes connected by
reliable communication channels. These include Jini [25],
Salutation and Salutation-lite [26], UPnP [27], and the
Service Location Protocol [26], and others described in
[29], [30]. These techniques often involve preconfigured
composition managers on dedicated machines that require
a large amount of memory, bandwidth, and processing
power. They do not cater to highly pervasive, mobile and
ad hoc environments, leaving themselves vulnerable to
issues such as central points of failure, mobility, and fault
management.

2.2 Infrastructure-Less Environments

As previously mentioned, service discovery and composi-
tion in infrastructure-less environments is a relatively new
area of research. Existing work [31], [32] relies too heavily
on broadcast-based techniques that lead to scalability and
efficiency issues. The work also tends not to include QoS
metrics for enhanced composition. As a result, the main
focus of most existing protocols is to discover, integrate,
and execute services while satisfying resource constraint
issues typical of MANETs (such as connectivity, routing,
and energy awareness) while failing to address the quality
of the composed service. However, the work of Chakra-
borty et al. [3] makes significant contributions in the area.
Their group-based service discovery protocol (GSD) is
based on peer-to-peer caching of service advertisements
and on group-based selective forwarding of service
discovery paths. The discovery and integration allows for
composite services, but the approach does not deal with
specific user and task needs and situations.

More recent techniques include the work of Han and
Zhang [33] and Wang [34]. Han et al. design and implement

1998 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2012

a service composition protocol based on the Dynamic
Source Routing (DSR) protocol. It goes beyond best-effort
approaches and considers QoS in real-time systems.
Although their solution considers traditional QoS para-
meters such as delay and cost, they do not consider user-
based qualities of a virtual device. Wang provides a solution
that incorporates a service providers’ mobility prediction.
This provides for more reliable composition in that, in terms
of mobility, the most stable service can be selected from
several services of the same type. This is an important aspect
of composition that provides a valid extension to the work
presented in this paper. But it does not consider the virtual
device problem as a whole.

Standardized protocols, such as the Bluetooth Service
Discovery protocol [35], when extended into ad hoc
environments, also rely heavily on broadcast, and support
only basic identifier matching. More recent work is
promising, including the MobiLife Integrated Project [36],
Intel Research’s Dynamic Composable Computing [37]
project, and Namman et al.’s Flexible Service Composition
Framework [38]. All three address decentralized ad hoc
compositions tailored to specific user needs and situations.

The MobiLife Integrated Project brought advances in
mobile applications and services within reach of the every-
day lives of users by developing new applications and
services based on the evolving capabilities of 3G systems and
beyond [36]. The Project solved parts of the virtual device
problem with its contributions in the area of multimodality
and personalization. Theoretical frameworks were devel-
oped to satisfy the mobile user experience. A strong emphasis
was placed on making the best use of available environment
devices. MobiLife sets itself apart from similar projects by
including mobile devices as core components and by its
concern for device mobility and the need for continuous
adaptation. However, much of this work remains theoretical.

Dynamic Composable Computing (DCC), introduced by
Intel Research, explores the impromptu assembly of a
logical computer from the best set of wireless parts
available nearby [37]. The work builds on existing stan-
dards to develop an architecture that enables users to
quickly connect mobile devices. In particular, Intel Research
develops a layer-2 service discovery scheme [37] that
integrates IP service advertisement and the discovery
process. This reduces the inefficiency of broadcast discov-
ery techniques. The approach still relies on manual/named
compositions that require heavy user involvement as
compared to [35], [36], 38], although future work will
investigate ranking-based compositions.

Namman et al.’s Flexible Service Composition Frame-
work [38] uses a hybrid (centralized/distributed) approach.
As default, a centralized technique enables automatic
service compositions in heterogeneous environments.
Should the central server become unavailable, local in-
formation is used for the composition process in combina-
tion with an interrogation procedure between neighboring
nodes. Although this provides adequate support in an
environment with limited interruption at the centralized
server, the technique would inevitably suffer in an environ-
ment too dynamic for a centralized server to exist at all.

The use of a Constraint Satisfaction Problem (CSP) in
service composition, providing automated candidate service

selection, appears in some research [39], [40]. This paper also
uses a distributed Constraint Satisfaction Problem within a
MANET.

2.3 Distributed Service Composition Protocol

As previously described, Chakraborty et al.’s distributed
service composition protocol [3] is based on the principles
of reactive systems. It consists of mobile nodes, representing
various devices in the environment that provide one or
more services and are able to be invoked by peer nodes.
These nodes are connected using ad hoc network protocols;
the discovery and integration of services allows for
composite services. Although nodes may differ in physical
properties such as computational power and battery life,
there is no differentiation between a requesting source,
service provider, or broker. A requesting source may
simultaneously act as a service provider and/or a broker
for separate composition requests. The process of composi-
tion begins by a requesting source electing a broker within
the network. The broker then discovers nodes providing the
required services (service providers), and integrates and
executes those services on behalf of the source.

The protocol has four phases. The first phase is broker
arbitration where the requesting source elects a broker,
maximizing a potential value and considering each poten-
tial broker’s resources and the service providers in their
vicinity. This information is calculated by each potential
broker and sent to the source. The elected broker is ideally a
node with high computational power, low computational
load and long battery life, and located in an area of high
service density. Information on service providers in a
potential broker’s vicinity is obtained as each broker
examines its cache, which is updated according to the
group-based service discovery protocol [41]. GSD is based
on two concepts: 1) peer-to-peer caching of service adver-
tisements within a limited vicinity and 2) group-based
selective forwarding of discovery requests. Each service
provider periodically advertises a list of their services to
other peer nodes within a limited vicinity, including a list of
service groups. The process involves the hierarchical
grouping of services; grouping information is used to
selectively forward discovery requests to service providers.
The effect is that network-wide broadcasts are reduced and
efficiency in discovering services is increased.

The second phase is service discovery. Using GSD, all
necessary services are discovered, based on the matching of
requests with cached descriptions of services. Services are
represented using DAML-based semantics [19]. This kind of
matching can identify two services of the same type, but it is
limited in identifying the variation between those two
services, the current availability of each, and the importance
of these factors to the user.

The third and fourth phases are service integration and
service execution. In these phases, discovered services are
selected. No specific algorithm is used; selection is based on
a number of basic cost factors, such as “nearest available
service.” An execution flow is created identifying relevant
service information such as node binding, control flow, and
network parameters. Execution occurs in a distributed
manner: the broker executes service and transmits informa-
tion from the previous service to the next. This star-shaped

KARMOUCH AND NAYAK: A DISTRIBUTED CONSTRAINT SATISFACTION PROBLEM APPROACH TO VIRTUAL DEVICE COMPOSITION 1999

execution continues according to the requirements of the
execution flow.

3 VIRTUAL DEVICE COMPOSITION

In Fig. 1a, we show an environment made up of mobile
nodes, connected by ad hoc network protocols, that represent
various devices providing one or more services and that can
be invoked by peer nodes. Device composition involves the
composition of services offered in a user’s vicinity and
provides the user with a virtual device, satisfying what we
describe as an atomic task. An atomic task is an application-
level task, independent from any other and requiring one or
more atomic services. An atomic service is a service residing
on a single node, with further components only if they too
reside on the same node. Generated from a task is a task-based

composition specification (TCspec), a specification of service
and service property requirements represented as policies
(Fig. 1b). Policies are divided into three categories: task
requirement, service constraint, and user preference. Task

requirements represent the minimum services required for
task satisfaction. Service constraints represent the constraints
needed to allow the composed service to function as
intended. User preferences are service constraints controlled
by the user; they simply shape the desired QoS, meaning
that, at any instant, a number of service composition
permutations in the environment satisfy a TCspec. The QoS
associated with one particular composition separates it from
other compositions. In this paper, we define QoS as the

ability of a virtual device to match the predetermined task
requirements, service constraints, and user preferences (the
TCspec). Our objective is to efficiently examine possible
composition configurations in a user’s vicinity and to
identify the configuration that 1) satisfies all service require-
ments, 2) adheres to all service constraints, and 3) best
caterers to the user’s preferences. Complicating this process
is the fact that nodes are independent and may be operating
under different rules and guidelines in making composition
decisions. We refer to these rules and guidelines as private
policy, (information used by a node), in addition to public
policy (information in a TCspec), to decide how to react in
satisfying tasks. Private policy may refer to security rules,
business models, priority guidelines, and so on. Private
policy information is confidential and should not be shared
with other nodes. This makes centralized solutions that
involve extensive information-sharing unsuitable. An accep-
table solution is distributed, providing efficient negotiation
techniques while sharing a minimal amount of information.

As previously mentioned, ad hoc networks are known
for their highly dynamic nature. It is incorrect to assume
that a composed virtual device will remain valid in a static
form. As the network changes, the virtual device should
adapt, but in a way that provides minimal disruption to the
user. In the following discussion, we use the performance
metrics of bandwidth, delay, loss, and jitter to develop a
QoS model that enables the virtual device to adapt to the
variations of the network.

3.1 Virtual Device Composition DistCSP

In order to meet the objectives outlined in the previous
section, we model virtual device composition in the form
of a distributed constraint satisfaction problem VDC-
DistCSP ¼ ðX;D;CÞ where:

. X ¼ fXigði ¼ 1; . . . ; n; Xi � DÞ. Xi is a variable
corresponding to the set of services being provided
by node i to satisfy a particular task.

. D ¼ fDigði ¼ f1; . . . ; ngÞ. D is a set of n domains of
values, such that Di is the service option domain of
Xi (i.e., the set of services that Xi can provide).

. C is the set of constraints of the problem. We can
formulate them as follows:

8i;j Xi \Xj ¼ fg i; j 2 f1; . . .ng; i 6¼ j; ð1Þ

8i [Xi ¼ fSg; ð2Þ

PRðfSg; B; L;D; JÞ � �; ð3Þ

fSg ¼MaxðQoSsccÞ; ð4Þ

where S is a set of services equivalent to all k required
services dj, j ¼ 1; . . . ; kf g, where each service corresponds
to a particular task requirement policy of a TCspec.
Constraint (1) guarantees that at most one node provides
any particular service. Constraint (2) ensures that all
required services have been assigned. Constraint (3)
ensures that the performance requirements PR of the
composed service (bandwidth (BW), delay (D), loss (L),
and jitter (J)) are more constrained than or equally

2000 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2012

Fig. 1. (a) Environment class diagram. (b) Sample TCspec for a video
conferencing task.

constrained as the current performance requirement � of
the network. Constraint (4) ensures that the chosen service
set S maximizes QoSvd½��, the overall QoS of the composed
virtual device.

Similar to Chakraborty et al.’s solution, we use a broker
(as defined in Section 2.3). By electing a broker (B), we
denote a utility function UðBiÞ as the utility value of each
potential broker as:

UðBiÞ ¼WL � LðBiÞ þWCR � CRðBiÞ þWP � P ðBiÞ; ð5Þ

where LðBiÞ is the battery life of Bi, CRðBiÞ is the number
of composite requests currently being processed by Bi, and
P ðBiÞ is the processing power of Bi. Applied to each
parameter is a weight identifying the amount of influence
given to that parameter during the computation of UðBiÞ.
We are aware of the difficulties that may arise when
determining values for the weights. We therefore consider
this issue out of the scope of the paper. Machine learning
techniques may help in finding reasonable values for some
of the weights.

In identifying the QoS of a particular composition, we
apply a model similar to that defined by Perttunen et al. [42].
However, we take a decentralized approach that enables the
model to function in MANETs. Requirements of the virtual
device concept are 1) being aware of the user’s continuously
changing environment, 2) immediately recognizing the
user’s expectations, and 3) providing a service that matches
the user’s circumstances. We structure a QoS function in the
context of virtual device composition and identify it as the
degree of match between the requirements of a user’s task
(including service constraints, satisfying both task require-
ments and user preferences) and the qualities and capabil-
ities of service composition. We also identify the necessary
spectrum of tolerance in bandwidth (BW), delay (D), loss
(L), and jitter (J) that a particular composition can accept.
Given this information, potential compositions, referred to
as service composition candidates (SCCs), can be further
classified by their performance requirements. We express
this function as QoSvd½PR�, representing the maximum QoS
among all service composition candidates. This satisfies the
performance requirement PR where

QoSvd½PR� ¼MaxðQoSsccÞ½PR�; ð6Þ

PRscc ¼ PRð8Si 2 SCC;MaxðBWÞ;
MinðLÞ;MinðDÞ;MinðJÞÞ;

ð7Þ

QoSscc ¼ Aw �
X
j

Wtj;u � Simtjðdj; dj;tcspecÞ; ð8Þ

Aw ¼MinðAwsÞ; and ð9Þ

Aws ¼ detavailðSTs; Ps;Qs; . . .Þ: ð10Þ

Using a similarity function Sim, we are able to classify
similarities in quality and capability between services in a
TCspec and those available in the user’s environment.
Moreover, SimTi is a precise similarity function for a specific
service or service property dj of type Tj. The output of the
similarity function is a normalized value between [0,1],

considering both positive and negative discrepancies from a

precise match. The nearer the value is to 1, the higher the
degree of match. In shaping the amount of relevance given to

a particular service or service property type, each iteration of

the summation is affected by a user-specific or default weight
Wti;u, representing the quantity of weight given. A second

weight Aw is applied, representing the availability of the

potential service composition. Aw is attained by computing

the service availability Aws for each service in the potential
composition, and computing the minimum (9). The calcula-

tion of Aws is founded on various factors including the

current state of the service STs, the usage policy of the service

Ps, queue information Qs on other users waiting for the
service, and other relevant information (10). Every service Si
has a performance requirement formed as a bound PRSi

representing the minimum bandwidth and maximum loss,

delay, and jitter it is able to tolerate (8). The performance
requirement of a particular SCC can be computed from the

maximum BW and minimum L, D, and J values across all

services involved (7).
We are aware that defining similarity functions for each

service and service property type is an exhaustive
approach; potentially hundreds of types may exist. In

real-life applications, determining values for weights and

selecting the most appropriate similarity functions is a

complex issue. Considering the ontological relations of the
service types could help with the calculation, especially if

generic ontological relations could be used. But we consider

these issues out of the scope of this paper: solutions may be

found in machine learning techniques.
To further clarify, this sample similarity function is used

in identifying optimum resolution, in that both larger and

smaller resolutions are handled as worse than an exact

match with a service:

SimresðR1; R2Þ ¼
Minðx1; x2Þ
Maxðx1; x2Þ

þ Minðy1; y2Þ
Maxðy1; y2Þ

� ��
2; ð11Þ

where R1 and R2 are the values of the resolution properties,

and x1; x2; y1, and y2 are the respective horizontal and

vertical resolutions. The division by two normalizes the
similarity to [0,1].

Having identified our distCSP, we apply an algorithm

based on the asynchronous backtracking algorithm [6]. We

call our method the VDCSP and our algorithm the Virtual

Device Constraint Satisfaction Algorithm (VDCSA).

3.2 Virtual Device Constraint Satisfaction Protocol

The VDCSP allows automated agents, each representing the
interests of a particular node, to act concurrently and

asynchronously. No global control is required in deciding

how to best form the virtual device that the user needs. The

protocol requires no periodic service advertising and is able
to incorporate private policy.

The virtual device composition problem, from a distCSP
perspective, can be represented as anm� nMatrixA (Fig. 2),

comprised of m nodes and n services:

. A black circle in Ax;y represents a service d ¼ Sy,
such that Nx provides service d.

KARMOUCH AND NAYAK: A DISTRIBUTED CONSTRAINT SATISFACTION PROBLEM APPROACH TO VIRTUAL DEVICE COMPOSITION 2001

The solution requires the application of the constraint set C
defined in Section 3.1, whereby a Matrix A0x;y (Fig. 2) is
formed:

. A black circle inAx;y containing the letter p represents
a potential service d ¼ Sy in a node N 0xs Xx variable,
such thatNx has the potential of contributing service d
in the virtual device composition.

. A black circle inAx;y containing the letter c represents
a committed service d ¼ Sy in a node N 0xs Xx variable,
such that Nx has committed to contributing service d
in the composition. The attribute c is used as a
composition-specific flag to indicate which nodes are
currently committing a service. Should a node’s
resources allow it to do so, it may commit to a
number of compositions (and virtual devices) simul-
taneously. The commitment is dynamic and may
change throughout the lifetime of the virtual device.

. Each column n must contain exactly one black circle
containing the letter c.

The composition of node/service pairs corresponding to
the black circle values containing the letter c form a
composition satisfying the constraint set C. VDCSP estab-
lishes a Matrix A and provides a concurrent and asynchro-
nous negotiation mechanism to transform Matrix A into
Matrix A0. The following shows the various steps of VDCSP.

3.2.1 Candidate Formation

Candidate formation is the first step of the protocol and
allows for the creation of Matrix A. When a task becomes
activated on a user’s device, the corresponding node sends
a virtual device request (VDrequest) message into the user’s
immediate vicinity, using a bounded broadcast (Fig. 3). A
VDrequest contains the task’s TCspec, which is used by a
receiving node to decide whether or not it can contribute a
service to the task requirements. A node that can do so can,
by implication, also meet the current performance require-
ment � of the network. These nodes send a virtual device
reply (VDreply) message to the VDrequest initiator. The
VDrequest initiator uses these replies to compute a candidate
table containing the addresses and unique identifiers of all
responding nodes. The nodes in the candidate table are
organized in descending priority order based on their unique
identifiers. Once the table is formed, the VDrequest initiator
distributes it to all candidates.

Fig. 3 shows an example of candidate formation. A task
has become activated at Node N0, at which time it

broadcasts, with bounded value of one hop, a VDrequest
containing the corresponding TCspec. Nodes N1; N2; N3,
and N4 determine that they are candidates and can provide
one or more services listed in the TCspec. They reply with a
VDreply message. N0 then forms a prioritized candidate
table and distributes it to all candidates.

3.2.2 QoS Ranking

By implication, a node receiving a candidate table is
participating in the VDCSP. For each service dj that the
node Ni has agreed to potentially contribute, a QoS ranking
is computed using (8) as Rankqos ¼ Aws �Wti;u � Simtiðdj;
dj;tcspecÞ, where a similarity function is computed between dj
and the service requirements specified in TCspec. The
availability and user-specific/default weights Aws and Wti;u,
of the service dj are applied to the similarity function.

For each service a node has agreed to potentially
contribute, three pieces of information are kept in a
tertiary: service type, QoS ranking, and commitment
status. The commitment status (ComStatus) is a variable,
either potential (p) or committed (c), that represents whether
or not the service has been committed by a node. The p

and c values are shown in Fig. 2. For each of a node N 0is
services, a tertiary is stored in N 0is Xi, such that Xi ¼ fðdj;
Rankqosj; ComStatusjÞgðj ¼ f1; . . . ; kgÞ.

Fig. 5a represents a global view of the Matrix A formed
as described in the previous section, including the
corresponding QoS rankings. For node N1, X1 ¼ fðS1;

100j; cÞ; ðS2; 95; cÞ; ðS4; 100; cÞg.

3.2.3 Virtual Device Constraint Satisfaction Algorithm

With Matrix A complete, we apply the VDCSA. This is
based on the traditional asynchronous backtracking algo-
rithm for solving distCSPs [6]. The execution of VDCSA
(pseudocode provided in Fig. 4) is asynchronous between
candidate nodes; it begins with all candidates committing to
all services in their respective X0is and exchanging these
values in ok? messages.

Ok? messages are used to spread knowledge of value
assignments to candidate nodes, which use them to form
their agent view. An agent view reflects a node’s current view
of the partial solution. A partial solution is a subset of the final

2002 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2012

Fig. 2. A transformation from Matrix A to A0, visually abstracting the
virtual device problem. (c ¼ committed, p ¼ potential).

Fig. 3. A sample candidate formation scenario.

solution, which is expanded by adding committed variable
tertiaries one by one, until a final solution is reached.
Different nodes may have different agent views at any given
time, although as the algorithm progresses, all nodes work
toward a single common agent view (the final solution).

Following the receipt of an ok? message (Fig. 4i), a node
Ni compares its Xi with its agent view (Fig. 4iii), looking for
any inconsistencies with regards to higher priority nodes.
Inconsistencies occur when N 0is Xi value violates the set of
constraints C of the problem. If inconsistencies are present,
Ni attempts to resolve them by altering its Xi. If Ni is able to
achieve consistency, it distributes its new Xi in an ok?

message to all candidates. If no Xi exists, then it is necessary
to backtrack (Fig. 4iv).

Backtracking involves sending one or more nogood

messages to the higher priority nodes causing the incon-
sistency. A nogood message specifies exactly which tertiary
value in Xi to consider as nogood. Every candidate keeps a
nogood list, which adds to its constraint set C. On receiving a
nogood message, the recipient attempts to adapt its
respective Xi value, enabling the sender to reenter a
consistent state (Fig. 4ii). If the nogood recipient is unable
to resolve the inconsistency, then it too triggers a backtrack.
In this way, nogood messages flow up the candidate table
until they are either resolved or a no solution decision is
reached. A no solution occurs when the highest priority
node cannot resolve a nogood, such as when it has exhausted

all of its variable options. The problem is then over-
constrained and the algorithm is terminated.

A solution occurs when all nodes share a common agent
view and are in a consistent state. Nodes continue to
periodically send ok? messages until either a no solution or
final solution is reached.

3.2.4 VDCSA Example Execution

To clarify the algorithm, we provide an example. The trace of
the algorithm’s execution can vary according to the timing/
delay of messages. This example shows one possible trace.

The initial values are shown in Fig. 5a. Priority has been
determined by numerical identifiers, QoS rankings have
been computed, all candidates have committed to their
services, and these values have been exchanged using ok?
messages. Each candidate now attempts to reach consistency.

KARMOUCH AND NAYAK: A DISTRIBUTED CONSTRAINT SATISFACTION PROBLEM APPROACH TO VIRTUAL DEVICE COMPOSITION 2003

Fig. 4. Partial VDCSA pseudocode.

Fig. 5. Example execution of VDCSA.

Being the highest priority node, N1 is currently in a
consistent state, but N2 is not. N2 observes that N1 has
committed to service S1 (Fig. 5b). In order to enter a
consistent state, N2 must uncommit to S1 because N2 does
not provide a higher QoS ranking than N1. However, N2

keeps its commitment to S3, and N1 does not provide
service S3 (Fig. 5c).
N3 is also in an inconsistent state (Fig. 5d). N3 is able to

rectify its S4 value by uncommitting; however, since its QoS
ranking for S2 is higher than that of N1, it is unable to un-
commit to S2. Therefore, N3 sends a nogood message to N1.
N1 receives the nogood message, and uncommits to S2,
allowing N3 to enter a consistent state (Fig. 5e).
N4’s values for S1, S2, and S4 are inconsistent. N4

uncommits to services S1 and S2, but is unable to uncommit
to S3 (Fig. 5f). It sends a nogood to N2; this allows N4 to reach
consistency (Fig. 5g) and a solution is found (Fig. 5h).

3.2.5 VDCSA Soundness and Completeness

The soundness of VDCSA is guaranteed because agents can
only reach a stable state only if all of their variable values
satisfy all constraints. The algorithm is also complete,
finding a solution if one exists and terminating if no
solution is found within a finite time.

A “no solution” scenario occurs if the problem is over-
constrained. VDCSA responds to overconstrained problems
by eventually generating a nogood depicting an empty set, in
which any set of variable values leads to a constraint
contradiction. This is a failure and causes the algorithm to
terminate. The only way in which termination would not
happen in finite time is if one or more nodes were to cycle
through their possible variable values in an infinite loop. By
induction, we show that this cannot happen.

If the node in an infinite loop is of highest priority, it will
not send nogood messages, but will only receive them. When
the node receives a nogood, it will change its value so that it
either receives, or does not receive, a nogood in return.
Should the node receive a nogood for all of its potential
values, an empty set nogood will be generated. Should the
node not receive a nogood after changing its variable value,
no further changes will occur. Either way, an infinite loop
cannot happen.

Now we assume that nodes X1 to Xk�1ðk > 2Þ are in a
stable state, and that node Xk is in an infinite loop. Since X1

to Xk�1 are stable and Xk only receives nogood messages
from lower priority nodes, all nogood messages received
should be resolved by a change in Xk’s variable value.
Because Xk’s potential variable values are finite, two
situations can occur: either Xk changes its value and does
not receive a nogood in return or it exhausts its potential
values and sends a nogood to X1...k�1. The first situation
presents a contradiction in that Xk would not be in an
infinite loop, and the second situation presents a contra-
diction in that X1...k�1 cannot receive a nogood if they are in a
stable state. Therefore, Xk cannot be in an infinite loop and
must terminate in finite time.

With regards to complexity, constraint satisfaction is
generally considered NP-complete [6]. As a result, worst
case time complexity is exponential in the number of
variables n, X ¼ fXigði ¼ 1; . . . ; n;Xi � DÞ.

3.2.6 Postcomposition Adaptation

As previously mentioned, should network conditions no
longer satisfy the service composition initially selected,
adaptation is needed. In this case, as the broker periodically
monitors network conditions, should a � occur that the
composed virtual device cannot satisfy, or should � allow
for a service upgrade, a new virtual device request is sent
forming a new candidate table and triggering another
iteration of VDCSA.

Applying the preceding QoS model assumes that an
advertised service contains performance tolerance informa-
tion, and that any node is able to obtain periodic
performance metrics from the network. That being so,
integrating the model into a composition scheme leads to
the generation of a dynamic hash table HTvd whereby,

. the values of the table represent service composi-
tion candidates currently available in the user’s
environment,

. the keys of the table represent the current perfor-
mance requirement � of the network, where
� ¼ ðBW;L;D; JÞ, and

. the hash function H maps a �i to a particular SCCj,
such that H ¼ QoSvd½��.

The completeness of HTvd and the efficiency of obtaining
HTvd depends on whether a push or pull method is used in
service advertisement. A push method (such as Chakraborty
et al.’s DSC) involves nodes that are providing services by
continuously broadcasting service advertisement. They are
said to be pushing their services to nearby nodes. A pull
method (such as VDCSP) involves a node advertising its
services only when a peer node shows interest. The
interested node is said to be pulling the advertisement to
itself. A push-based technique leads to a largely complete
HTvd, because brokers of a composition continuously receive
notices of new or modified services. However, this technique
is inefficient: service advertisements are received whether
they are desired or not. This leads to unnecessary depletion
of node resources (battery and processing power). A pull-
based composition is more efficient because the broker fills
HTvd with only the services it is explicitly interested in at the
moment. The result, however, is an incomplete HTvd,
because, after initial composition, the broker is unaware of
new or modified services in the network. The necessary
adaptation requires additional work, up to and including
complete recomposition.

In the following section, among other analysis, we
examine whether this additional work needed in a pull
technique leads to a more efficient and cost-effective
solution than the resource-heavy push technique.

4 SIMULATION AND ANALYSIS

This section evaluates the performance of our VDCSP in
varying service densities, mobility, and topologies. The
section also evaluates VDCSPs ability to gracefully degrade
and upgrade in postcomposition adaptation. We compare
our results to those of Chakraborty et al.’s [3] push-based DSC
protocol. The comparison is an effort to identify the efficiency
gain in message usage and composition time, as well as to
determine the reactions to varying mobility and scaling.

2004 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2012

4.1 Simulation Parameters and Metrics

We built a MANET and implemented both VDCSP and DSC
protocols using J-SIM [43], a well-known simulation
environment. We used an area of 30� 30 m containing
25 nodes with a transmission range of 30 m. We set mobility
to follow a random-way-point model with a minimum
speed of 1 m/s, a maximum speed of 3 m/s, and a 5 s
stoppage time. All broadcasts follow a strict bounded hop
count of 1. The DSC service advertising intervals are set to
5 s. The simulations are intended to reflect a mobile device
making 100 requests over a 24-hour period. The simulation
was repeated for composite lengths of 3, 5, and 7, and service
densities of 20-100 percent. We define service density as the
percentage of nodes containing one of the atomic services
required in the composition. For each simulation, we
identify the optimal QoS achieved; a normalized QoS value
to represent how close the actual formed composition comes
to the best TCspec match currently present in the network.
We also identify the amount of time taken and the number of
messages consumed.

Moreover, it should be noted that since the derivation of
similarity functions and weight are out of the scope of this
paper, within the simulation we have utilized predeter-
mined similarity values to focus instead on the performance
of the protocols.

4.2 QoS Analysis

From Fig. 6, results indicate that, compared to DSC, VDCSP
provides an average increase in QoS of 55, 44, and 35 percent
when composing three, five, and seven services, respec-
tively. VDCSP is able to provide QoS above 99 percent for all
service densities in Fig. 6. DSC does not fare well, mainly
because it contains no mechanism to distinguish a poor
service from a better service. The QoS performance of DSC
simply reflects the average in the networks, a metric that
drops as service density rises.

4.3 Cost Analysis

Per composition, the number of messages used by VDCSP
(Fig. 7) is an average of 62,750 messages (98 percent) lower
than DSC. See Fig. 7 for the overlap in DSC curves. Average
VDCSP composition time decreases by 15.39 seconds

(74 percent) when compared to DSC (Fig. 8). The consider-
able drop in messages is because DSC requires nodes to
advertise their services at periodic intervals. DSC also
requires the broker election, service discovery, and service
aggregation phases to be sequential, whereas VDCSP solves
the problem in a single distCSP. The initial spike of DSC for
composition lengths 5 and 7 (Fig. 8) can be attributed to the
fact that DSC makes futile attempts to discover services that
do not exist, whereas VDCSP, by finding the “best”
composition possible, is able to quickly identify whether a
desired service exists or not.

The periodic service advertisements of DSC place a
heavy cost on the approach. In supplemental Section 2,
available online, we investigate the effects of increasing the
service advertisement interval to minimize message cost.

4.4 Effects of Scaling

To examine the effects of scaling on the performance of each
protocol, we utilize the parameters shown in Table 1, but
hold service density at 50 percent, and composition length
at three services. In addition, we now gradually increase the

KARMOUCH AND NAYAK: A DISTRIBUTED CONSTRAINT SATISFACTION PROBLEM APPROACH TO VIRTUAL DEVICE COMPOSITION 2005

Fig. 6. QoS with respect to service density for composition lengths 3, 5, 7. Fig. 7. Number of messages consumed with respect to service density
for composition lengths 3, 5, 7.

Fig. 8. Composition time with respect to service density for composition
lengths 3, 5, 7.

dimension area D of the experiment and the number of
nodes N involved: D ¼ 30þ 6� ð

ffiffiffiffiffi
N
p
� 5Þ.

Results show that both protocols suffer from scalability
issues. The effect of scaling on VDCSP proves to be
detrimental to the achieved level of QoS (Fig. 9). As the
dimension area surpasses the transmission range of a node,
the performance begins a linear decrease (for example, 45 to
65 nodes in Fig. 9). This can be attributed to the lack of
discovery of potential services both by bounded broadcast
and node disconnect during the negotiation process. It also
leads to an increase in composition time (Fig. 11), but only a
small increase in the number of messages (Fig. 10), which
taper down as the dimension continues to grow. The latter
can be attributed to the higher likelihood that more nodes
are out of range of a given node as the dimension increases,
resulting in negotiations between fewer nodes. The QoS
performance of DSC remains unchanged (Fig. 9) and always
achieves a level that matches the network average. This

decreases as the number of nodes increases because of the
continuous broadcasting and the protocol’s heavy discov-
ery mechanism. The cost in messages required places a far
too heavy burden on the network to be practical.

4.5 Effects of Mobility

To examine the effects of mobility on the two protocols, we
again utilize the parameters shown in Table 1, hold the service
density at 50 percent, and the composition length at three
services. However, we now increase the number of nodes to
49, and the dimension to 42� 42 m. Mobility continues to
follow a random-way-point model, but now gradually
increases, with no stoppage time, from 0 to 10 m/s.

Results show that DSC’s broadcast-based discovery
mechanism is resilient to mobility. DSC continuously
discovers the QoS level that matches the network average
(Fig. 12). But VDCSP’s pull-based mechanism suffers as
mobility causes an increase in the number of nodes that are
outside the initiating node’s range. As a result, fewer nodes
participate and spend less time solving the DistCSP (Figs. 13
and 14). An interesting observation occurs when nodes

2006 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2012

TABLE 1
Simulation Parameter Summary

Fig. 9. QoS with respect to scaling number of nodes and dimension.

Fig. 10. Number of messages consumed with respect to scaling number
of nodes and dimension.

Fig. 11. Composition time with respect to scaling number of nodes and
dimension.

move in and out of the initiating nodes’ range at a quick
enough rate to be discovered and participate in the DistCSP.
There is a subsequent rise in QoS, composition time and
number of messages used. Although DSC is more resilient
than VDCSP in this experiment, the cost far outweighs the
benefit. Once again, the number of messages required places
a far too heavy burden on the network to be practical.

4.6 Postcomposition Adaptation

In this section, we modify DSC to include our QoS model
QoSvd½PR� in order to analyze the effect of service
advertisement techniques on postcomposition adaptation.

Using the parameters shown in Table 1, our simulations
represents a mobile device entering an environment and
forming a virtual device, followed by 100 simulated
changes in bandwidth, delay, loss, and jitter. This forces
the virtual device to make 100 corresponding adaptations.

From Fig. 15, results indicate that both VDCSP and DSC
are able to continuously discover the optimal adaptation
(with lines overlapping at 100 percent) for varying service
densities and composition lengths. This is expected as the
two protocols are using identical QoS models. The differ-
ences come in the cost of achieving adaptation.

Per adaptation, the number of messages used by VDCSP
(Fig. 16) is an average of 89 percent less than DSC.
However, DSC’s average composition time decreases by
3.05 seconds when compared to VDCSP. Fig. 17 shows that
DSC holds at about 0.15 seconds for all service densities
and composition lengths. The results provide a visual
example of the tradeoff between the push and pull
methods. As DSC uses a push method, the broker is
continuously receiving periodic service advertisements
from nodes in the vicinity. Fig. 16 shows that the higher
the service density (the more advertising nodes), the higher
the number of messages. The benefits of this technique are
clearly shown in Fig. 17: using DSC, the broker’s HTvd
requires hardly any time at all for the virtual device to
adapt. By contrast, the time required for VDCSP to adapt is
directly related to service density and composition length.
As the performance metrics of the network change,
recomposition is necessary in order for the broker to
acquire sufficient information to initiate the optimal
adaptation. This is also seen in Fig. 16, where, using a pull
method, the process of composition is significantly more
efficient than DSC.

KARMOUCH AND NAYAK: A DISTRIBUTED CONSTRAINT SATISFACTION PROBLEM APPROACH TO VIRTUAL DEVICE COMPOSITION 2007

Fig. 12. QoS with respect to mobility speed.

Fig. 13. Number of messages consumed with respect to mobility speed.

Fig. 14. Composition time with respect to mobility speed.

Fig. 15. QoS (adaptation) with respect to service density for composition
lengths 3, 5, 7.

Our results show that our VDCSP protocol would benefit
from small amounts of pushed service advertisements. A
hybrid push/pull technique would potentially offer better
results. Rather than continuous broadcasts, the technique
could involve a single broadcast when a service is introduced,
modified, or about to be deleted. This would allow the broker
to keep a more complete HTvd, minimizing the frequency of
recomposition while avoiding heavy resource loss.

5 CONCLUSION

In this paper, we have presented a distCSP model for task-
based, QoS-aware, virtual device composition in MANETs,
and an asynchronous backtracking algorithm for solving the
distCSP. The model provides a method of virtual device
composition without continuous broadcast-based service
advertisements, and without the need for agents to directly
divulge specific information about their domain and
constraints. We have also presented a network-perfor-
mance-influenced QoS model for the graceful degradation
and upgradation of a virtual device postcomposition.
Through simulation, we have shown that our method is
effective in achieving high QoS. compositions without the
unnecessary depletion of node resources. We have also
discussed and simulated some drawbacks of the technique
in the context of push- and pull-based service advertisement.

Future work will investigate the design of a hybrid
push/pull technique with multihop broadcasting. Multihop
composition was not considered in this paper such that only
single hops are necessary in discovering devices within the
vicinity of the user. However, reconciliation services (e.g.,
codec transformation services) are not necessarily required
to be near the user, and the discovery of such services could
potentially benefit from multi-hop broadcasts. Furthermore,
the lessons learned will be applied as we experiment with
more constrained upgrade policies to avoid the frequent
changes caused by dynamic network conditions.

ACKNOWLEDGMENTS

This work was supported in part by a grant from Natural
Sciences and Engineering Research Council of Canada.

REFERENCES

[1] W. Buxton, “Less Is More (More or Less),” Invisible Future: The
Seamless Integration of Technology in Everyday Life, P. Denning, ed.,
pp. 145-179, McGraw Hill, 2001.

[2] M. Merabti, P. Fergus, O. Abuelma’atti, H. Yu, and C. Judice,
“Managing Distributed Networked Appliances in Home Net-
works,” Proc. IEEE, Special Issue on Recent Advances in
Distributed Multimedia Comm., vol. 96, no. 1, pp. 166-185, Jan.
2008.

[3] D. Chakraborty, A. Joshi, Y. Yesha, and T. Finin, “Toward
Distributed Service Discovery in Pervasive Computing Environ-
ments,” IEEE Trans. Mobile Computing, vol. 5, no. 2, pp. 97-112,
Feb. 2006.

[4] G. Prochart, R. Weiss, R. Schmid, and G. Kaefer, “Fuzzy-Based
Support for Service Composition in Mobile Ad Hoc Networks,”
Proc. IEEE Int’l Conf. Pervasive Services, pp. 379-384, 2007.

[5] S. Jiang, Y. Xue, and D. Schmidt, “Minimum Disruption Service
Composition and Recovery over Mobile Ad Hoc Networks,” Proc.
Fourth Ann. Int’l Conf. Mobile and Ubiquitous Systems: Networking
and Services, pp. 1-8, 2007.

[6] M. Yokoo, E.H. Durfee, T. Ishida, and K. Kuwabara, “The
Distributed Constraint Satisfaction Problem: Formalization and
Algorithms,” IEEE Trans. Knowledge and Data Eng., vol. 10, no. 5,
pp. 673-685, Sept./Oct. 1998.

[7] E. Karmouch and A. Nayak, “A Distributed Protocol for Virtual
Device Composition in Mobile Ad Hoc Networks,” Proc. IEEE Int’l
Conf. Comm. (ICC), 2009.

[8] E. Karmouch and A. Nayak, “A Distributed Constraint Satisfac-
tion Problem for Virtual Device Composition in Mobile Ad Hoc
Networks,” Proc. IEEE GLOBECOM, 2009.

[9] F. Casati, M.C. Shan, and D. Georgakopoulos, “E-Services - Guest
Editorial,” The Int’l J. Very Large Databases, vol. 10, no. 1, p. 1, 2001.

[10] A. Lazcano, “WISE: Process-Based E-Commerce,” IEEE Data Eng.
Bull., Special Issue on Infrastructure for Advanced e-Services,
vol. 24, no. 1, pp. 46-51, Mar. 2001.

[11] C. Thompson, P. Pazandak, V. Vasudevan, F. Manola, G. Hansen,
and T. Bannon, “Intermediary Architecture: Interposing Middle-
ware Object Services between Web Client and Server,” Proc.
Workshop Compositional Software Architectures, 1998.

[12] R.H. Katz, E.A. Brewer, and Z.M. Mao, “Fault-Tolerant, Scalable,
Wide-Area Internet Service Composition,” Technical Report
UCB/CSD-1-1129, CS Division, EECS Dept., Univ. of California
at Berkeley, Jan. 2001.

[13] J.N. Kok and K. Sere, “Distributed Service Composition,”
Technical Report no. 256, Turku Centre for Computer Science,
Finland, Mar. 1999.

[14] A. Brocco and B. Hirsbrunner, “Service Provisioning for a Next-
Generation Adaptive Grid,” Int’l J. Parallel, Emergent and Dis-
tributed Systems, vol. 26, no. 1, pp. 85-106, Apr. 2011.

[15] P. Queloz and A. Villazon, “Composition of Services with Mobile
Code,” Proc. Third Int’l Symp. Mobile Agents, 1999.

2008 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2012

Fig. 17. Composition time (adaptation) with respect to service density for
composition lengths 3, 5, 7.

Fig. 16. Number of messages consumed (adaptation) with respect to
service density for composition lengths 3, 5, 7.

[16] D. Chakraborty and A. Joshi, “Dynamic Service Composition:
State-of-the-Art and Research Directions,” Technical Report TR-
CS-01-19, Univ. of Maryland Baltimore County, Dec. 2001.

[17] Y. Feng, J. Cao, I. Chuen, H. Lau, Z. Ming, and J. Kee-Yin Ng, “A
Component-Level Self-Configuring Personal Agent Platform for
Pervasive Computing,” Int’l J. Parallel, Emergent and Distributed
Systems, vol. 26, no. 3, pp. 223-238, June 2011.

[18] WSDL, “Web Services Description Language 1.1,” http://
www.w3.org/TR/wsdl, 2012.

[19] DARPA, “Agent Markup Language for Services Specification Draft
0.5,” http://www.daml.org/services/daml-s/2001/05/, 2012.

[20] W3C, “OWL Web Ontology Language Overview,” http://
www.w3.org/TR/owl-features/, 2012.

[21] WSFL, “Web Services Flow Language,” http://xml.coverpages.
org/wsfl.html, 2012.

[22] IBM, “Business Process Execution Language for Web Services
Version 1.1,” http://www.ibm.com/developerworks/library/
specification/ws-bpel/, 2012.

[23] K. Erol, J. Hendler, and D. Nau, “HTN Planning: Complexity and
Expressivity,” Proc. Int’l Conf. Artificial Intelligence, 1994.

[24] M. Paolucci, A. Ankolekar, N. Srinivasan, and K. Sycara, “The
Daml-s Virtual Machine,” Proc. Second Int’l Semantic Web Conf.,
2003.

[25] K. Arnold, B. Osullivan, R.W. Scheifler, J. Waldo, and A. Wollrath,
The Jini Specification. The Jini Technology Series. Addison-Wesley,
June 1999.

[26] The Salutation Consortium, Inc., “Salutation Architecture Speci-
fication (Part 1) Version 2.1,” http://systems.cs.colorado.edu/
grunwald/MobileComputing/Papers/Salutation/Sa20e1a21.pdf,
2012.

[27] R. John, “UPnP, Jini and Salutaion - A Look at Some popular
Coordination Frameworks for Future Network Devices,” technical
report, California Software Labs, 1999.

[28] E. Guttman, C. Perkins, and J. Veizades, “Service Location
Protocol,” RFC 2165, June 1997.

[29] S.E. Czerwinski, B.Y. Zhao, T.D. Hodes, A.D. Joseph, and R.H.
Katz, “An Architecture for a Secure Service Discovery Service,”
Proc. Fifth Int’l Conf. Mobile Computing and Networks, 1999.

[30] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M. Shan,
“Adaptive and Dynamic Service Composition in eFlow,” Techni-
cal Report HPL-200039, Software Technology Laboratory, Palo
Alto, California, Mar. 2000.

[31] S. Helal, N. Desai, and C.L. Konark, “A Service Discovery and
Delivery Protocol for Ad-Hoc Networks,” Proc. IEEE Third Conf.
Wireless Comm. Networks, 2003.

[32] D. Tang, C. Chang, K. Tanaka, and M. Baker, “Resource Discovery
in Ad Hoc Networks,” Technical Report CSL-TR-98-769, Stanford
Univ., Aug. 1998.

[33] S. Han and Y. Zhang, “Design and Implementation of Service
Composition Protocol Based on DSR,” Proc. Int’l Conf. Parallel and
Distributed Computing, Applications and Technologies (PDCAT),
pp. 323-328, Dec. 2010.

[34] J. Wang, “Exploiting Mobility Prediction for Dependable Service
Composition in Wireless Mobile Ad Hoc Networks,” IEEE Trans.
Services Computing, vol. 4, no. 1, pp. 44-55, Jan. 2010.

[35] Bluetooth Specification, http://www.bluetooth.org./, 2012.
[36] M. Klemettinen, Enabling Technologies for Mobile Services: The

MobiLife Book. Wiley, 2007.
[37] R. Want, T. Pering, S. Sud, and B. Rosario, “Dynamic Composable

Computing,” Proc. Ninth Workshop Mobile Computing Systems and
Applications, pp. 17-21, 2008.

[38] C. Namman, A. Mingkhwan, O. Abuelma’atti, and M. Merabti,
“The Flexible Service Composition Framework for Networked
Appliances,” Proc. Int’l Conf. Innovations in Information Technology,
pp. 233-237, 2007.

[39] R. Thiagarajan and M. Stumptner, “Service Composition with
Consistency-Based Matchmaking: A CSP-Based Approach,” Proc.
Fifth European Conf. Web Services, pp. 23-32, Nov. 2007.

[40] I. Paik, D. Maruyama, and M.N. Huhns, “A Framework for
Intelligent Web Services: Combined HTN and CSP Approach,”
Proc. Int’l Conf. Web Services (ICWS), pp. 959-962, Sept. 2006.

[41] A. Joshi and D. Chakraborty, “GSD: A Novel Group-Based Service
Discovery Protocol for MANETS,” Proc. Fourth Int’l Workshop
Mobile and Wireless Comm. Networks, pp. 140-144, 2002.

[42] M. Perttunen, M. Jurmu, and J. Riekki, “A QoS Model for Task-
Based Service Composition,” Proc. Fourth Int’l Workshop Managing
Ubiquitous Comm. and Services, pp. 11-30, 2007.

[43] J-Sim, “Home (J-Sim Official),” J-Sim, http://sites.google.com/
site/jsimofficial/, Jan. 2005.

Eric Karmouch received the BSc degree in
computer science from the University of Ottawa
in 2004 and the MSc degree in computer science
from Queen’s University in 2006. He is currently
working toward the PhD degree with the School
of Electrical Engineering & Computer Science at
the University of Ottawa. His research interests
include distributed, mobile, and pervasive com-
puting, and ambient intelligence. He is a member
of the IEEE and the IEEE Computer Society.

Amiya Nayak received the BMath degree in
computer science and combinatorics and opti-
mization from the University of Waterloo, Cana-
da, in 1981, and the PhD degree in systems and
computer engineering from Carleton University,
Canada, in 1991. He has more than 17 years of
industrial experience, working at CMC Electro-
nics, Defence Research Establishment Ottawa,
EER Systems and Nortel Networks, in software
engineering, avionics and navigation systems,

simulation and system level performance analysis. He is in the Editorial
Board of IEEE Transactions on parallel and distributed systems,
International Journal of parallel, emergent and distributed systems,
International Journal of computers and applications, International Journal
of computer information technology and engineering, International
Journal of computing and information science, International Journal of
autonomic computing, and EURASIP Journal on wireless communica-
tions and networking. Currently, he is a full professor at the School of
Electrical Engineering & Computer Science at the University of Ottawa,
Canada. His research interests are in the areas of mobile ad hoc and
sensor networks, fault tolerance, and distributed systems/algorithms. He
is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KARMOUCH AND NAYAK: A DISTRIBUTED CONSTRAINT SATISFACTION PROBLEM APPROACH TO VIRTUAL DEVICE COMPOSITION 2009

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

