

Attack and Defense Strategies for Intrusion
Detection in Autonomous Distributed IoT
Systems

Hamid Al-Hamadi1, Ing-Ray Chen2, Ding-Chau Wang3, and Meshal Almashan4
1Department of Computer Science, Kuwait University, Safat 13060, Kuwait
2Department of Computer Science, Virginia Tech, 7054 Haycock Road, Falls Church, Virginia 22043, USA
3Department of Information Management, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
4Graduate School of Engineering, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

Corresponding author: Hamid Al-Hamadi (e-mail: hamid@cs.ku.edu.kw).

This work was supported and funded by Kuwait University Research Grant #RQ02/18. This work is also supported by the U.S. AFOSR

under grant number FA2386-17-1-4076.

ABSTRACT In this paper, we develop a methodology to capture and analyze the interplay of attack-defense

strategies for intrusion detection in an autonomous distributed Internet of Things (IoT) system. In our

formulation, every node must participate in lightweight intrusion detection of a neighbor target node.

Consequently, every good node would play a set of defense strategies to faithfully defend the system while

every bad node would play a set of attack strategies for achieving their own goals. We develop an analytical

model based on Stochastic Petri Net (SPN) modeling techniques. Our methodology allows the optimal

defense strategies to be played by good nodes to maximize the system lifetime when given a set of parameter

values characterizing the distributed IoT system operational environment. We conduct a detailed performance

evaluation based on an experiment dataset deriving from a reference autonomous distributed IoT system

comprising 128 sensor-carrying mobile nodes and show how IDS defense mechanisms can counter malicious

attack mechanisms under the ADIoTS system while considering multiple failure conditions.

INDEX TERMS Intrusion Detection, Internet of Things, mission-oriented IoT systems, Stochastic Petri

Net, attack/defense behavior models.

I. INTRODUCTION

Security of Internet of Things (IoT) is of paramount

importance given its widespread adoption. This is especially

critical for security-sensitive IoT systems tasked with disaster

recovery, evacuation, and military operations. In this paper,

we develop a methodology to capture and analyze the

interplay of intrusion detection attack-defense strategies in an

Autonomous Distributed Internet of Things System

(ADIoTS). An instance of ADIoTS is a mission-oriented IoT

system populated with autonomous, smart IoT devices

including smart sensors, actuators, and control nodes, for

executing a specific mission. Possible application scenarios

may involve a team of Unmanned Aerial Vehicles (UAVs),

soldiers, automobiles, or robots monitoring and patrolling a

combat area, and relaying critical information to the base for

combat advantages. Such IoT devices (called nodes in this

paper for short) can be compromised via capture attacks

(through physical or cyber space) and turned into insiders

performing various malicious attacks with the objective to fail

the mission. Thus, an Intrusion Detection System (IDS) is

called for to detect and remove inside attackers in the

ADIoTS to ensure successful mission execution. Given the

high threat of attacker strategies on the system, defense

strategies must be put in place to counter such threats.

We design the ADIoTS such that all nodes in the ADIoTS

are expected to perform not only tasks assigned to them but

also IDS duties to defend the system. Malicious nodes,

however, can choose from a set of attack strategies with the

objective to retain malicious nodes (thus causing false

negatives) and evict good nodes (thus causing false positives)

with the ultimate goal to fail the mission. Good nodes, on the

other hand, can choose from a set of defense strategies to

prolong the system lifetime. The attack/defense behaviors

manifest into the false negative probability (i.e., missing a

malicious node as a good node) and false positive probability

(i.e., misidentifying a good node as a malicious node) which

together affect the system lifetime. Here an attacker refers to

an inside attacker and a defender refers to a good node.

Our approach is based on distributed voting-based

detection. We utilize SPNs as a mathematical tool to model

smart attack and defense behaviors of nodes in a mission-

oriented ADIoTS operating under our collusion-aware

2

voting-based IDS scheme, with the objective to analyze and

identify the optimal parameter settings of our collusion-aware

voting-based IDS design that can optimize the system

lifetime. More specifically, we develop node SPN models

each keeping track of the status of one node in an ADIoTS as

events happen in the system and identify optimal defense

strength parameters (in terms of the detection interval length

and the number of voters) in response to attacker

characteristics and the sensed environment to maximize the

system lifetime. While the importance of designing effective

IDS strategies for detecting malicious nodes is well

recognized, the literature is thin in modeling the interplay of

attack/defense strategies and their effects on system

reliability. Our work follows model-based evaluation. The

novelty lies in setting up IDS duties that every node must

participate in, thus forcing attack/defense interplay to go in a

direction toward the designer’s desirable outcome, i.e.,

prolonging the system lifetime.

Our work has the following unique contributions:

1) We develop a methodology to capture and analyze the

interplay of attack-defense strategies while

attackers/defenders execute their required IDS functions in

the form of voting-based intrusion detection in an ADIoTS.

2) We develop an analytical model based on Stochastic

Petri Net (SPN) modeling techniques [1] to describe the

dynamics of IDS attack/defense strategies and examine their

effect on system lifetime.

3) We develop a novel iterative computational

procedure with computational complexity of O(n) where n is

the number of nodes in an ADIoTS to make it

computationally feasible to analyze a large ADIoTS.

4) We provide a detailed security evaluation in Section

VI showing how defense strategies in our collusion-aware

voting-based IDS design can effectively counter malicious

attack strategies in an ADIoTS while considering multiple

failure conditions.

5) We compare our proposed collusion-aware voting-

based IDS (CAVBIDS) scheme with baseline IDS schemes,

and show how it outperforms these systems under smart and

collusion-based attacks.

Table I below lists acronyms and abbreviations used in the

paper. Table II lists the parameters used by the analytical

model. The rest of the paper is organized as follows:

 Section II surveys related work. Section III discusses the

system model including intrusion detection attack-defense

strategies. Section IV develops an analytical model and an

iterative computational procedure for quantifying the effect

of attack/defense strategies on system lifetime. Section V

discusses how optimal defense strategies are applied to

maximize system lifetime. Section VI conducts security

evaluation. Finally, Section VII summarizes the paper and

outlines future work.
TABLE I

ACRONYMS AND ABBREVIATIONS

Acronym Meaning

CAVBIDS Collusion-Aware Voting-Based IDS

IoT Internet of things

IDS Intrusion detection system

ADIoTS Autonomous distributed internet of things system

SPN Stochastic petri net

MTTF Mean time to failure

TEU Task execution unit

TABLE II

NOTATIONS

Symbol Meaning

𝑃𝑎 Random attack probability

m Number of voters per IDS voting

𝑇𝐼𝐷𝑆 IDS interval

𝑃𝑎𝑙𝑐 Random attack probability for low capability node

𝑃𝑎ℎ𝑐 Random attack probability for high capability node

𝑃𝑖
𝑔(𝑡) Probability of node 𝑖 being good at time 𝑡

𝑃𝑖
𝑏(𝑡) Probability of node 𝑖 being bad at time 𝑡

𝑃𝑖
𝑒(𝑡) Probability of node 𝑖 being evicted at time 𝑡

𝑃𝑖,𝑙
𝐿 (𝑡) Probability that node 𝑖 is located in area 𝑙 at time 𝑡

𝑃𝑓𝑛
𝐼𝐷𝑆 System IDS false negative probability

𝑃𝑓𝑝
𝐼𝐷𝑆 System IDS false positive probability

𝐻𝑝𝑓𝑛 Host IDS false negative probability

𝐻𝑝𝑓𝑝 Host IDS false positive probability

𝑃𝑒 Percentage of energy spent per 𝑇𝐼𝐷𝑆

TEU Task execution unit

𝑅𝑇 Residence time in current location

LOC Location subnet of node SPN model

UCN Undetected Compromised Node subnet of node SPN model

DCN Detected Compromised Node subnet of node SPN node

TASKS Tasks subnet of node SPN model indicating tasks

completed

II. RELATED WORK

Many studies have focused on providing intrusion

detection capability to protect vulnerable IoT-based networks

from malicious attacks. Benkhelifa et al. [2] discuss

advancements in intrusion detection practices in IoT. They

discuss how preventive security measures for IoT systems are

difficult to implement and stress the importance of a second

line of defense such as using an IDS. They further suggest that

due to the distributed nature of IoT, a distributed or

hierarchical IDS is most suitable. We adopt the same approach

in this paper. In [3], a protocol for centralized and active

malicious node detection is proposed. Malicious nodes are

detected by identifying changes by a genetic algorithm-based

data gathering scheme through a matrix comparison method

 3

executed by a mobile sink with unlimited energy capability.

They consider the energy exhaustion of IoT nodes and lifetime

duration. Furthermore, they focus on collecting digital

forensic evidence to be used against malicious nodes. Their

protocol however only focuses on detecting energy exhaustion

and fake information reporting attacks and does not consider

more sophisticated attacks against IoT deployments. In [4], the

authors propose and analyze an intrusion detection

architecture for resource constrained IoT networks. They use

Raspberry Pi as a commodity single board computer with the

snort open-source Intrusion Detection System and evaluate the

resulting performance of the actual deployment. They prove

that their proposed architecture can effectively run the IDS on

Raspberry Pi in a distributed IoT system with limited

resources and explain how the Raspberry Pi hardware

mitigated problems with deploying snort on wireless mesh

networks. Similarly, [5] proposes an intrusion detection model

based on machine learning where feature selection is linked to

specific types of expected attacks on the IoT system. They also

run their IDS on a Raspberry Pi system claiming their

lightweight protocol does not sacrifice on detection

performance. In [6], a host-based intrusion detection and

mitigation framework for smart devices deployed in home

environments is proposed. Their framework detects intruders

and blocks them from reaching their target. The system is

designed with the flexibility to dynamically include patterns

of known attacks, thus specifying related features to employ

with customized machine learning techniques. It provides a

comprehensive architecture for intrusion detection in smart

homes, with a clear implementation following the OpenFlow

protocol [7]. They, however, take a centralized approach to

intrusion detection as they rely on a centralized intrusion

detection manager, and their work concentrates on protecting

limited devices in a home IoT setting. You et al. [8] present a

monitoring solution to identify misbehaving embedded IoT

devices. Their solution is based on a lightweight behavior rule

specification system. In their study they have concluded that

the misbehavior detection techniques that are based on rule

specifications outperform the contemporary ones that are

anomaly-based, for a UAV cyber physical system. Compared

to the above cited work, our work does not focus on host-level

(i.e., one-to-one) detection methods for identifying host-level

IDS security measures such as the host-level false positive

probability and the host-level false negative probability.

Rather, our work focuses on a system-level detection method

in the form of majority voting by requesting each node that is

assigned to monitor a target node to report its host-level

intrusion detection results obtained through host-level

detection methods. The system-level voting outcome

subsequently determines if the target node is behaving or not.

Furthermore, we develop a methodology to capture and

analyze the interplay of attack-defense strategies while

attackers/defenders execute their required IDS functions

during majority voting.

Machine learning techniques have been used in IDS design

[9-12] . In [9] the authors propose a misuse intrusion detection

framework for a wireless local area network based on majority

voting that differentiates between attacker and legitimate node

patterns by examining mac-layer frames. Their system uses

several machine learning techniques where the best

performing classifiers are chosen to get strong generalization.

Then, majority voting is performed to get better accuracy. In

[10], the authors develop a novel machine learning based IDS

for IoT. The authors stress the importance of securing IoT

devices which are considered as the weakest link and

vulnerable to a variety of attacks. Their proposed protocol

aims to detect malicious IoT nodes by first learning the

behavior of the IoT based network, then applying a rule-based

approach configured by the administrator. Their work

however is only focused on detecting network scanning and

simple forms of denial of service attacks. Similarly, the

authors in [11] use a machine learning IDS approach by

collecting data through dedicated sniffers, followed by stages

of generating correctly classified instances, an iterative linear

regression stage, and then finally a detection threshold is being

applied to separate normal from malicious nodes. Their work

does not consider lifetime and only considers blackhole and

flooding attacks without considering colluding and smart

attackers. In [12], a smart approach for intrusion detection and

prevention system in mobile ad hoc networks is proposed.

Their proposed system relies on machine learning approaches

methods where intrusion detection depends on the four entities

of packet analyzer, preprocessing unit, feature extraction unit

and classification unit. They perform security analysis by

considering false positive rate and detection rate. These works

cited above [9-12] all utilize machine learning techniques for

providing host-level intrusion detection. Our work is different

in that we aim to provide system-level intrusion detection in

the form of IDS voting by which each voting node selected

(which can be good or bad) reports its host-level intrusion

detection outcome as input. We aim to obtain the best system-

level intrusion detection outcome by analyzing the interplay of

attack-defense strategies employed by IoT devices (good or

bad) and identifying the best defense strategies to be employed

in an ADIoTS.

In [13], the authors discuss the limitations in the state-of-

the-art counter-measures against the security threats in health

IoT. They identify internal attacks, where cryptographic

keying material can be compromised, as serious threats to the

IoT system especially due to the difficulty in detecting such

compromised nodes. The authors identify key aspects to

counter security threats in health IoT including using a

distributed system instead of centralized, considering energy

efficiency, and countering colluding nodes orchestrating

attacks that are difficult to be detected by traditional

methods. In our work, we also consider these aspects in our

model and identify optimal intrusion detection parameters to

maximize the IoT system lifetime under colluding attackers.

In [14], a distributed anomaly detection system for IoT is

4

proposed. The authors discuss how internal attackers can

establish themselves as legitimate nodes within the network,

and how an internal anomaly detection system is required to

prevent such internal attackers. They devise a control

message scheme integrated with a routing protocol for low-

power and lossy networks, to report the anomaly to an edge-

router node. The system has a configurable profile in which

detection and grading parameters are defined. They further

specify the system architecture operating at the network and

link layers. While their work exhibits distributed attributes

and considers inside attackers, the final decision regarding

the anomaly in their protocol is done at the edge router, thus

creating the possibility of single point of failure

vulnerabilities. Unlike [14] our work does not have a single

point of failure. Rather, the system-level intrusion detection

method designed in the form of IDS voting is totally

distributed and resilient to failures or compromises of one

third of IoT nodes in an ADIoTS.

Another line of related work for IoT systems in the

literature focuses on lifetime maximization in the presence

of inside attackers. The authors in [15] propose and analyze

a technique that is based on a behavior-rule specification for

medical devices intrusion detection. The medical devices

studied here are those embedded in Medical Cyber Physical

Systems (MCPSs) where the patient’s safety is of the highest

priority. The authors propose a methodology of transforming

behavior rules into a state machine enabling the

identification of monitored devices that are changing their

behavior from the behavior specifications. The analysis of

system lifetime is studied after defining system failure

conditions. In [16], the authors propose an adaptive network

defense management system for defending against smart

attacks and selective capture that disrupt the basic

functionality of data delivery in a wireless sensor network.

The authors develop an analysis methodology for identifying

the best settings of the defense protocol by which the lifetime

of the sensor network against smart attacks and selective

captures is maximized. Also, a simulation study has been

conducted to validate this methodology. The protocol

settings include the redundancy level for multi-path routing,

the radio adjustment, the intrusion invocation interval and

the number of voters. In [17], the authors present an intrusion

detection and prevention mechanism suitable for low-power

IoT deployments, where an intelligent security architecture

is implementing using random neural networks by learning

the normal behavior of the system and then embedding the

base station with the trained random neural networks. Their

method additionally relies on creating tags linked to memory

accesses in order to detect out of bounds memory accesses

indicating malicious activity. Their work follows anomaly-

based mechanisms for intrusion detection in IoT where

computation is offloaded to a base station. In [18], the

authors design and evaluate a trust-based distributed

intrusion detection mechanism for IoT where nodes use trust-

based mechanisms to manage neighbor reputation scores. A

border router or cluster head is used to calculate trust values

based on collected direct trust and reputation trust values of

neighbors. They claim the proposed mechanism is suited to

small IoT devices and can be applied to the health domain.

Their work however only considers attacks of selective

forwarding and sink hole on RPL (Routing Protocol for Low-

Power and Lossy Networks) performed by inside attackers,

and does not consider smart attacks, collusion of nodes, or

finding optimal IDS parameters to maximize system

lifetime. Compared to the works cited above [15-18], our

work also adopts model-based analysis, i.e., we develop an

analytical model based on Stochastic Petri Nets (SPNs) [19]

to analyze the interplay of attack-defense strategies

employed by voting members during IDS voting and

identifying the best defense strategies to be employed to

maximize the IoT system lifetime, given system failure

conditions as input. Unlike [15-18] , we do not consider the

use of a centralized entity for conducting intrusion detection.

Specifically, the proposed system-level intrusion detection is

conducted in the form of IDS voting which is totally

distributed. The only requirement is that each node when

acting as a host IDS uses lightweight host-level detection

techniques in order to cast a vote regarding the behavior of a

target node in its vicinity.

An SPN model is an analytical model allowing a system’s

behaviors and states to be clearly defined since it will be

transformed (by SPNP [1]) into a Markov model, thus

providing a state-based strong modeling foundation. Unlike

simulation which is laborious and lacking accuracy unless it

is run sufficiently long to satisfy statistical significance, SPN

models facilitate answering why if types of design questions

accurately and rapidly because it merely involves

computation. We use Stochastic Petri Nets (SPNs) [19] to

model the interplay of attack-defense strategies employed by

voting members during IDS voting with the goal to identify

the best defense strategies to be employed to maximize the

IoT system lifetime. In the literature, SPN models have also

been used by many scholars [20-29] to analyze reliability and

performance characteristics of cyber physical systems. In

particular, the authors in [25] propose an analytical model

based on SPNs for cyber-physical systems to capture the

dynamics between defense and adversary behavior. In their

work, they consider different types of failures that can occur

in cyber-physical systems such as pervasion failure,

exfiltration failure, and attrition failure. They further

illustrate the parameterization process by using a modernized

electrical grid and discuss the optimal design conditions by

which the mean time to failure of the modernized electrical

grid is maximized. In [26] Mitchell and Chen study the

reliability of a cyber-physical system utilizing an IDS. A

probability model that is based on SPNs is developed to

analyze the CPS’s behavior with the existence of malicious

nodes over a wide range of attackers’ behaviors. In addition,

an Intrusion Detection and Response System (IDRS) is also

presented in this study. In [27], the authors propose a SPN-

based approach for modeling and analysis of disaster

recovery solutions for IoT infrastructures where mission-

critical IoT systems need real-time decision-making. A

disaster recovery cloud is used in the case of a disaster

 5

affecting the primary site’s components including medical

servers and physician and emergency workstations. IoT

network components are incorporated into the model to

represent the connectivity between IoT medical devices and

the primary site. Using the Petri net-based modeling

approach, the system availability, cost, and recovery time of

the disaster are analyzed. The authors show the applicability

of their work through modeling a real-world healthcare IoT

system. In [28], the authors propose a SPN model of a

defensive maneuver cyber platform utilizing moving target

defense and deceptive defense tactics. Their aim is to utilize

defense cyber maneuver techniques to provide survivability

and operational continuity. In their model, each system node

can be in one of the operational, idle, or deceptive states as a

defense response based on the attack, such that all states

satisfy the specified constraints ensuring the stability of the

maneuver system. By changing node states, and the rates in

which nodes transition between states, a more defendable

platform can be provided. Finally, they show trade-offs

between security and operations. In [29], a SPN model is

used to model and analyze threats in smart factories. They

consider various threat scenarios including attacks and errors

the cause availability risks, and their impact on the

components of information networks in the area of

connected production environments.

Our work is different from the above cited works [20-29]

in four aspects. First, to the best of our knowledge we are the

first to explore SPNs for modeling a mission-oriented

ADIoTS, whereas the above cited works [20-29] utilize SPN

techniques mainly for reliability and performance analysis of

wireless networks or cyber physical systems. In our work, we

adopt SPN modeling techniques to specifically model and

analyze the security property of a mission-oriented ADIoTS

operating under our proposed collusion-aware voting-based

IDS (CAVBIDS) scheme. Second, we develop an SPN model

that allows us to analyze defense strategies to counteract attack

strategies performed by inside attackers that would cause

system (i.e., mission) failures. Our SPN model considers smart

attacks such that attackers may attack strategically in order to

maximize system failure probability. Our SPN model also

considers colluding malicious nodes with the ability to work

together to evade intrusion detection and evict good nodes.

Third, our SPN model considers both energy and lifetime of

the system as well as the interplay of attack/defense strategies

for finding optimal IDS parameters to adaptively counter these

smart attacks such that the system lifetime is maximized while

achieving specified mission objectives. Finally, we

demonstrate how CAVBIDS can apply the optimal IDS

parameters identified from our SPN model to dynamically

defend against smart collusion attacks.

Table III above summarizes our proposed system

compared to the available surveyed literature.

III. ADIoTS SYSTEM MODEL

We consider an ADIoTS comprising mission-oriented

members or IoT devices (i.e. nodes) where all nodes in the

ADIoTS are expected to perform mission tasks and IDS duties

in order to achieve mission goals. In this work we do not

differentiate between a member and an IoT device but instead

treat them synonymously. IDS activities are performed by the

ADIoTS where each node is responsible for participating in

intrusion detection periodically at every intrusion detection

interval (namely 𝑇𝐼𝐷𝑆). IoT devices can be compromised via

capture attacks (through physical or cyber space) and turned

into insiders performing various malicious attacks. An insider

is a legitimate member of the mission group and thus has

 TABLE III

SUPPORTING FEATURES OF THE PROPOSED SYSTEM COMPARED TO THE AVAILABLE LITERATURE

Previous Work

Intrusion

Detection

IoT-Based

Tackles Inside

Attackers and

Collusion

Considers

Lifetime and

Energy

Consumption

Distributed
SPN Model-Based

Approach

[5] ✓ ✓ - Partial - -

[10],[11] ✓ ✓ - - - -

[6],[8],[12],[17] ✓ ✓ Partial - - -

[15] ✓ ✓ Partial Partial - -

[4] ✓ ✓ - ✓ ✓ -

[13] ✓ ✓ ✓ Partial ✓ -

[14],[18] ✓ ✓ Partial - ✓ -

[25] ✓ - Partial ✓ - ✓

[16] ✓ - ✓ ✓ ✓ -

[26] ✓ - ✓ ✓ ✓ ✓

[27],[28] ✓ ✓ - ✓ - ✓

[29] ✓ - - Partial - ✓

Proposed system ✓ ✓ ✓ ✓ ✓ ✓

6

access to the group security key for group communication, and

it will remain undetected unless it exhibits malicious behavior

and is detected by the IDS. An inside attacker can perform

packet-dropping attacks by randomly dropping packets

passing through it, integrity attacks by packet modification,

and denial of service attacks by overwhelming the

network/server with service requests. In this paper, we

propose a voting-based distributed IDS design to detect and

remove inside attackers in the ADIoTS to ensure successful

mission execution.

H

H

H

H

H

T
vote

vote
vote

vote

vote

Host IDS

Target

FIGURE 1. Distributed voting-based Intrusion Detection.

At the host-level, a node that is assigned to monitor a

neighbor target node will use its host IDS capability based
on lightweight anomaly detection mechanisms to judge if
the neighbor target node is behaving or misbehaving (see
Fig. 1). At the system level, we assume that the mission
commander in a well-protected area will send a mobile
sink node (e.g., a drone) at every intrusion detection
interval (namely 𝑇𝐼𝐷𝑆) to collect votes from IoT nodes who
have been assigned to monitor a target node and then
based on the voting outcome make a decision about
whether the target node is behaving or misbehaving. Note
that the mobile sink node sent by the mission commander
is not a single point of failure because its only function is
to collect votes from participating nodes that perform
host-level intrusion detection on a target node. Should the
mobile sink node fail to return votes to the mission
commander, the mission commander can send another

one immediately. When asked to express its opinion about

whether a target node in the neighborhood is behaving, a

node must vote “yes” (meaning behaving) or “no” (meaning

misbehaving) toward the target node. A malicious node can

perform “ballot-stuffing” attacks by voting “yes” toward

another malicious node to keep the malicious target node in

the system. A malicious node can also perform advanced
collusion attacks, including “ballot-stuffing” attacks by
voting “yes” toward another malicious node to keep the
malicious target node in the system, and “bad-mouthing”
attacks by voting “no” toward a good node to evict the
good target node from the system. When the majority of
votes is “no” the target node is evicted. For the case in
which a malicious node is voted “yes” by a majority, the
system results in a false negative. For the case in which a
good node is voted “no” by a majority, the system results

in a false positive. Malicious nodes would apply the
“best” attack strategies with the goal of shortening the

system lifetime. Good nodes (i.e., defenders) on the other

hand would select the “best” defense strategies to prolong

the system lifetime. The attack/defense behavior therefore is

set up within the context of IDS voting whose effectiveness

is measured by the false negative probability and false

positive probability which together affect the system

lifetime. We note that a good node’s host IDS is not
perfect, so it may miss detecting a bad node. That is, a
good node can miss detecting a bad node with a host-level
false negative probability 𝐻𝑝𝑓𝑛 and it can misidentify a

good node as a bad node with a host-level false positive
probability 𝐻𝑝𝑓𝑝. Such values are frequently small (e.g.,

less than 5%) and are assumed to be known before each
node is released to operation by software engineering
testing.

Furthermore, the mission’s success is dependent on the

nodes collectively completing the required mission tasks. We

consider that the ADIoTS nodes are heterogeneous with

respect to memory and processing capability. While a low

capability node may complete a small number of tasks, high

capability nodes may have the capability to complete a larger

number of tasks within the same time interval. We consider

that nodes with similar capability will execute the same

number of tasks within the same time duration. We map the

amount of task work to a unit of task completion denoted by

task execution unit (TEU), to effectively measure the

mission group’s tasks completion, as opposed to counting the

number of tasks. Fig. 2 depicts the intrusion detection and

mission task execution of the ADIoTS. Each IoT device is

responsible for completing TEUs based on its capability. IoT

devices communicate with each other based on IoT machine-

to-machine (M2M) wireless communication protocols such

as MQTT [30] and LWM2M [31] without the need to

connect to the broader Internet.

TA
SK

TEUs

H
ID

S

vote

vote

vote

vote

vote

Target

FIGURE 2. ADIoTS nodes perform distributed voting-based intrusion
detection and execute mission tasks. ADIoTS nodes are heterogenous with
low capability (blue) and high capability (green). Each node is equipped
with modules for executing intrusion detection and executing tasks (i.e.,
TEUs).

A. SYSTEM FAILURE TYPES

We consider the following system failure types:

• Byzantine failure [32]: A Byzantine failure occurs if one
third or more IoT devices in the ADIoTS have been

 7

compromised as there is no way to reach a consensus for
decision making.

• Attrition failure: An attrition failure occurs if the

ADIoTS does not have enough IoT devices left to carry

out its mission.

• Resource depletion failure: A resource depletion failure

occurs if the energy of IoT devices is too depleted to be

able to accomplish the mission.

• Application failure: If the number of tasks completed

does not meet the minimum threshold required to meet

the mission’s objectives. Such objectives could include

gathering location-based measurements, performing

certain calculations while deployed, or performing

physical tasks (actuating) while deployed. These tasks

can only be performed by nodes that have not been

evicted. The number of tasks (or equivalently, completion

percentage) is application dependent, where critical and

security sensitive applications may have a higher

threshold (i.e. lower tolerance) for task completion.

B. ATTACK STRATEGIES

Attack strategies used by a malicious node during IDS
majority voting include:

• Persistent: A malicious node attacks recklessly. When
serving as a voter during IDS majority voting, it will
always vote “no” to evict a good node (to cause a false
positive), and “yes” to retain a bad node (to cause a false
negative).

• Random: The attack behavior is the same as a persistent
attacker except that a malicious node only attacks
randomly with probability 𝑝𝑎 (0 to 1) to avoid detection.

• Opportunistic: The attack behavior is the same as a
persistent attacker except that a malicious node only
attacks opportunistically. That is, when serving as a voter,
a malicious node will vote to evict a good node, or to
retain a bad node, only if there is a majority of bad nodes
among m nodes being selected to perform majority
voting.

• Selective: The attacker uses the strategies of Random and

Opportunistic attacks, but selectively performs actions

based on the target node under IDS evaluation. When

there is a majority of bad voters, a bad voter will vote

against a good target confidently (without concern of

being detected by the IDS). When the bad voters are less

than a majority, they perform voting attacks in a random

fashion, where they vote against lower capability IoT

nodes with a lower probability than higher capability

nodes. Thus attack with 𝑃𝑎 (where 𝑃𝑎 = 𝑃𝑎𝑙𝑐 + 𝑃𝑎ℎ𝑐) if

bad nodes are less than a majority, where the malicious

voter attacks low capability and high capability with 𝑃𝑎𝑙𝑐

and 𝑃𝑎ℎ𝑐 respectively, where 𝑃𝑎𝑙𝑐 ≪ 𝑃𝑎ℎ𝑐. The strategy

of malicious voters here is to prioritize evicting high

capability IoT nodes over lower capability ones while

keeping IDS suspicion low. Thus, malicious nodes may

vote for a good low capability target, not in the hopes of

the target remaining in the system, but in order to

maintain a random attack behavior that evades the IDS,

thus maximizing the probability of the malicious voter

remaining in the system. The malicious voter does this

with the aim of remaining in the system for subsequent

IDS rounds to vote against a high capability target and

maximize the damage inflicted on the system. It also does

this since low nodes are of a lower benefit to the system

and are a lower threat to malicious nodes (as they

typically have a higher host-level false positive

probability and a higher false negative probability) in

comparison to high capability nodes.

Fig. 3 (a) illustrates a scenario of how malicious nodes

have decided to disregard an opportunity to attack, at time 𝑡,
to maximize evading detection. On the other hand, in Fig. 3
(b), the same malicious nodes, at time > 𝑡, have decided to
attack the high capability target. In this scenario in Fig. 3 (b),
both malicious nodes have voted to evict the good high
capability target by voting “no”, and a good node has
misidentified the target as malicious based on its host IDS
and voted “no”, thus resulting in a majority calling for
evicting the high capability target node.

LC Target

Yes

Yes

Yes

No

k

Yes

j

x

<<collusion>>

<<collusion>>

Time: t

action: skip

action: skip

(a)

HC Target

Yes

Yes

No

No

k

No
j

y

<<collusion>>
action: attack

<<collusion>>
action: attack

Time: > t

(b)

FIGURE 3. Selective attack during IDS voting by colluding nodes j and k:
(a) Intentionally disregarding an opportunity to attack a low capability target
node at time 𝒕 and evading detection by IDS, (b) Colluding to attack another
high capability target node at a later time > 𝒕.

The attacker’s benefit of evicting high capability nodes is

twofold; first high capability nodes have the capability to
accomplish more tasks and fulfill the application
requirements such that evicting them increases the probability
of application failure to the system. Second, high capability
nodes have better capability to cast accurate votes when
participating in the IDS (they typically have a lower host-

8

level false positive probability and a lower false negative
probability) thus detecting malicious voters with a higher
probability than lower capability nodes. This strategy of
mischievously voting for weaker opponents in order to be
able to cause failure to stronger opponents later on, exhibits
similarities to tactical voting (or strategic voting) strategies
used in political elections where the voter may, at the time of
voting, vote for its less preferable choice with the aim of
getting an overall better gain later on by influencing the
overall outcome [33, 34]. From the attacker’s perspective,
this means more damage or higher failure probability to the
system.

C. DEFENSE STRATEGIES

We list the defense strategies used by all good nodes (as
dictated by the defense system) during IDS majority voting
below. The defense strength can be controlled by adjusting
the following two parameters:

• The number of voters (𝑚) selected from a target node’s
location for executing IDS majority voting. Higher m
means higher detection strength.

• The intrusion detection interval (𝑇𝐼𝐷𝑆) to control the

detection frequency at which IDS voting is performed.

Smaller 𝑇𝐼𝐷𝑆 means higher detection frequency.

IV. MODELING AND ANALYSIS

In this section, we develop an analytical model to describe the
IDS attack-defense dynamics and analyze the effect of
attack/defense strategies executed by attackers/defenders on
the security property and consequently the system lifetime.
We also develop an iterative computational procedure to
make it computationally feasible for a large ADIoTS
consisting of a large number of IoT devices (See Table II for
the list of parameters used by the analytical model).

Our analytical model provides the following two pieces of
information to facilitate modeling of attack/defense
dynamics:

1. Location: we like to know the probability that node i is

located in area l at time t, denoted by 𝑃𝑖,𝑙
𝐿 (𝑡). By

inspecting 𝑃𝑖,𝑙
𝐿 (𝑡) and 𝑃𝑗,𝑙

𝐿 (𝑡), we will know if node i and

node j are in the same location at time t.
2. Good/Bad/Evicted status: we like to know the

probability that node i is good, bad, or evicted at time t,

denoted by 𝑃𝑖
𝑔(𝑡), 𝑃𝑖

𝑏(𝑡) and 𝑃𝑖
𝑒(𝑡), respectively, with

𝑃𝑖
𝑔(𝑡) + 𝑃𝑖

𝑏(𝑡) + 𝑃𝑖
𝑒(𝑡) = 1. By inspecting

𝑃𝑖
𝑔(𝑡), 𝑃𝑖

𝑏(𝑡) and 𝑃𝑖
𝑒(𝑡) for node i, 𝑃𝑗

𝑔(𝑡), 𝑃𝑗
𝑏(𝑡) and

𝑃𝑗
𝑒(𝑡)for node j, 𝑃𝑘

𝑔(𝑡), 𝑃𝑘
𝑏(𝑡)and 𝑃𝑘

𝑒(𝑡) for node k, and

so forth, we know the attack/defense strength at time t.
If a good target node is surrounded by many bad nodes,
then there is a high probability that the good target node
will be misidentified as a bad node (thus causing a false
positive) and a bad target node will be misidentified as a
good node (thus causing a false negative).

We use Stochastic Petri Net (SPN) modeling techniques to

provide us the above two pieces of information. We utilize a

tool called SPNP [1] to define and evaluate SPN node models

describing node attack-defense behaviors and status, to

measure the system security metrics for security analysis.

An SPN model [19] comprises 4 entities: (a) transitions to

represent occurrences of events, (b) places to represent

conditions or states; (c) arcs to connect transitions to places

and specify the directions of transitions; and (d) tokens to

represent jobs or nodes that can flow from input places into

output places based on transitions, indicating changes of

status.
 Fig. 4 shows the SPN node model for node 𝑖 for modeling

the location and status of node i over time. It consists of a

location subnet (top left) providing the location information

of node i at time t, a timer/energy subnet (top right) providing

the energy status of node i, and a compromise

undetected/detected status subnet (bottom) keeping track of

if node i has been compromised at time t and if the

compromise has been detected. These subnets are described

in more detail in the following subsections. Each node in the

system is separately modeled by an SPN node model.

Therefore, there will be many SPN node models in the

system (i.e., one for each node), but each can be run and

evaluated separately with our hierarchical modeling

technique.

FIGURE 4. Node SPN Model.

A. MODELING NODE STATUS

The location subnet (at the top left of Fig. 4) for node 𝑖
provides us information about 𝑃𝑖,𝑙

𝐿 (𝑡). The id of the current

location of node 𝑖 is indicated by the number of tokens in

place LOC. The autonomous distributed IoT environment can

be modeled as an M×M location grid, with the unit length

equal to the wireless radio range (R) and each location is

labeled with a unique location id. We allow each node to have

its own mobility pattern specified by a sequence of time-

ordered (location id, residence time) tuples, meaning that the

IoT device stays at a location with the location id so indicated

for this much time with the residence time so indicated. The

mobility pattern can be generated by simulating the

movement of a node following a mobility model such as the

random movement model or the social SWIM mobility model

[35]. The transition T_LOCATION is triggered when node 𝑖
moves from its current location to the next location with the

transition rate calculated as 1 𝑅𝑇⁄ where RT is the residence

 UCN

T_COMPRO

DCN

DCN

T_IDS

LOC

T_LOCATION

T_IDSFA

TIME

(Energy)

T_TIMER

T_TASKS

TASKS

 9

time in the current location. Depending on the next location,

the number of tokens in place LOC is adjusted to reflect the

id of the location it resides under (after the movement is

made), so by looking at the number of tokens in place LOC

at time t we know the location of node 𝑖 at time t.

The compromise undetected/detected status subnet (at the

middle of Fig. 4) for node 𝑖 gives us information

about 𝑃𝑖
𝑔(𝑡), 𝑃𝑖

𝑏(𝑡) and 𝑃𝑖
𝑒(𝑡). The status of node 𝑖 is

indicated by a token which flows from one place to another.

Place UCN indicates that node 𝑖 is compromised. A node is

compromised when transition T_COMPRO with rate 𝜆𝑐𝑜𝑚

fires where 𝜆𝑐𝑜𝑚 is the per-node capture rate. The transition

T_COMPRO is enabled if the node is not yet compromised

or evicted. When node 𝑖 is compromised, a token goes to

UCN, meaning that node 𝑖 is now a malicious node not yet

detected by IDS, so it may perform persistent, random, or

opportunistic attacks. Place DCN means that node 𝑖 is

evicted. An eviction can occur in two ways. The first way is

that node 𝑖 was compromised (i.e., the token was in place

UCN) and is correctly identified by the system IDS, causing

the token to flow from into DCN and node 𝑖 to be evicted

immediately. The transition rate of T_IDS is

(1 − 𝑃𝑓𝑛
𝐼𝐷𝑆) 𝑇𝐼𝐷𝑆⁄ where 𝑃𝑓𝑛

𝐼𝐷𝑆 (derived in Equation 1 below)

is the false negative probability of the system IDS and 𝑇𝐼𝐷𝑆 is

the IDS detection interval. The second way is that node 𝑖 was

a good node but is misidentified as a bad node by the system

IDS, causing the token to be deposited in place DCN and node

𝑖 to be evicted immediately. The transition rate of T_IDSFA

is 𝑃𝑓𝑝
𝐼𝐷𝑆 𝑇𝐼𝐷𝑆⁄ where 𝑃𝑓𝑝

𝐼𝐷𝑆(derived in Equation 1 below) is the

false positive probability of the system IDS.

The timer subnet (at the top right of Figure 4) keeps track

of elapsed time in the node SPN model. After 𝑇𝐼𝐷𝑆 is elapsed,

T_TIMER fires and a token is added to place TIME.

T_TIMER is disabled when the node is evicted (i.e., when a

token is in place DCN). By looking at the number of tokens

in place TIME, one can tell the current time. This information

allows 𝑃𝑓𝑝
𝐼𝐷𝑆 and 𝑃𝑓𝑛

𝐼𝐷𝑆 to be updated in increments of 𝑇𝐼𝐷𝑆

dynamically to reflect the effect of IDS attacker/defense

dynamics on 𝑃𝑓𝑝
𝐼𝐷𝑆and 𝑃𝑓𝑛

𝐼𝐷𝑆. We also use the timer subnet as

the energy subnet with each token deposited in place TIME

indicating the amount of energy spent by node 𝑖 in an

intrusion detection cycle. By knowing the number of IDS

cycles elapsed (from place TIME) and the percentage of

energy spent by node 𝑖 per cycle for executing monitoring,

reporting, task execution, and performing IDS functions,

denoted by 𝑃𝑒 , we can estimate the remaining energy of node

𝑖 at time t.
The task subnet for node 𝑖 (at the bottom of Fig. 4) is to

keep track of the tasks completed by node 𝑖. The transition
T_TASKS is triggered periodically with rate 1/𝐸𝑇 where 𝐸𝑇
is the execution time. Thus, in every 𝐸𝑇 interval, a unit of
tasks (a TEU) is completed, and tokens representing this unit
will be deposited into place TASKS. While a low capability
node may deposit a small number of tokens, high capability
nodes may have the capability to complete a larger amount of
work within the 𝐸𝑇 interval, resulting in a larger number of
tokens being deposited in the same execution time duration.
We denote the task tokens deposited for low capability nodes
and high capability nodes over the 𝐸𝑇 interval by 𝑡𝑡𝑙𝑐

𝐸𝑇and

𝑡𝑡ℎ𝑐
𝐸𝑇 respectively. As a result, we expect that 𝑡𝑡𝑙𝑐

𝐸𝑇 > 𝑡𝑡ℎ𝑐
𝐸𝑇. A

node may execute tasks of different types including
monitoring, actuating, or computation, each represented by a
different number of tokens and executed as requested by the
system. In this work, for simplicity, we do not differentiate
between different task types and consider that nodes with
similar capability will execute the same number of tasks
within the same time duration (i.e., 𝐸𝑇).

B. MODELING ATTACKER/DEFENDER STRATEGIES

An attacker can perform persistent, random, or opportunistic

attacks while participating in the majority voting IDS

function. The attack strategy chosen affects the system IDS

security measured by the false negative probability (𝑃𝑓𝑛
𝐼𝐷𝑆)

and the false positive probability (𝑃𝑓𝑝
𝐼𝐷𝑆).

 We derive the false positive probability (𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡, 𝑙)) and

false negative probability (𝑃𝑓𝑛
𝐼𝐷𝑆(𝑡, 𝑙)) for diagnosing a target

node at location l and time t surrounded by 𝑛𝑔𝑜𝑜𝑑(𝑡, 𝑙) good

nodes and 𝑛𝑏𝑎𝑑(𝑡, 𝑙) bad nodes. Henceforth, the notation

(𝑡, 𝑙) at the end of a symbol is omitted for brevity.

 Equation 1 gives a closed-form solution for 𝑃𝑓𝑝
𝐼𝐷𝑆 and

𝑃𝑓𝑛
𝐼𝐷𝑆under random attack behavior where 𝐶 (

𝑎
𝑏
) is the # of

combinations to select a from b, 𝑛𝑏𝑎𝑑
𝑎 and 𝑛𝑏𝑎𝑑

𝑖 are the

numbers of “active” and “inactive” bad nodes, given by

𝑛𝑏𝑎𝑑 × 𝑝𝑎 and 𝑛𝑏𝑎𝑑 × (1 − 𝑝𝑎), respectively; 𝑚𝑚𝑎𝑗 is the

minimum majority of m, e.g., 3 is the minimum majority of

5; and ⍵ is 𝐻𝑝𝑓𝑝 for calculating 𝑃𝑓𝑝
𝐼𝐷𝑆 and 𝐻𝑝𝑓𝑛 for

calculating 𝑃𝑓𝑛
𝐼𝐷𝑆. Here 𝐻𝑝𝑓𝑝 and 𝐻𝑝𝑓𝑛 are the host-level

false positive probability and false negative probability,

𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡, 𝑙) 𝑜𝑟 𝑃𝑓𝑛

𝐼𝐷𝑆(𝑡, 𝑙) =

∑

[

 𝐶 (

𝑛𝑏𝑎𝑑
𝑎

𝑚𝑚𝑎𝑗 + 𝑖
) × 𝐶 (

𝑛𝑔𝑜𝑜𝑑 + 𝑛𝑏𝑎𝑑
𝑖

𝑚 − (𝑚𝑚𝑎𝑗 + 𝑖)
)

𝐶 (𝑛𝑏𝑎𝑑
𝑎 + 𝑛𝑏𝑎𝑑

𝑖 + 𝑛𝑔𝑜𝑜𝑑

𝑚
)

]

 𝑚−𝑚𝑚𝑎𝑗

𝑖=0

+ ∑

[

 𝐶 (

𝑛𝑏𝑎𝑑
𝑎

𝑖
) × ∑ [𝐶 (

𝑛𝑔𝑜𝑜𝑑 + 𝑛𝑏𝑎𝑑
𝑖

𝑗
) × ⍵𝑗 × 𝐶 (

𝑛𝑔𝑜𝑜𝑑 + 𝑛𝑏𝑎𝑑
𝑖 − 𝑗

𝑚 − 𝑖 − 𝑗
) × (1 − ⍵)𝑚−𝑖−𝑗]𝑚−𝑖

𝑗=𝑚𝑚𝑎𝑗−𝑖

𝐶 (𝑛𝑏𝑎𝑑
𝑎 + 𝑛𝑏𝑎𝑑

𝑖 + 𝑛𝑔𝑜𝑜𝑑

𝑚
)

]

 𝑚−𝑚𝑚𝑎𝑗

𝑖=0

(1)

10

respectively, as a result of each node executing host-level IDS

duties monitoring behaving or misbehaving of a neighbor

node as described earlier. They are given as input at the

system start-up time.
Here we note that persistent attack is a special case of

random attack with 𝑝𝑎 = 1. Equation 1 can also be used to
model opportunistic attack behavior such that 𝑝𝑎 = 1 when
during IDS voting, more than one half of the nodes selected

for IDS voting are bad nodes, thus resulting in 𝑃𝑓𝑝
𝐼𝐷𝑆 = 1 and

𝑃𝑓𝑛
𝐼𝐷𝑆 = 1. If more than one half of the nodes selected for IDS

voting are good nodes, an opportunistic attacker would
simply fall back to random attack behavior because there is
still a chance good nodes can still vote to evict a good target
node (with probability 𝐻𝑝𝑓𝑝), or retain a bad target node

(with probability 𝐻𝑝𝑓𝑛).

Under selective attack, attackers selectively prioritize
high capability nodes during an attack. When bad nodes are a
majority, the attackers always vote against good target nodes
and vote for bad target nodes as in opportunistic attack,
irrelevant of its capability. If bad nodes are less than a
majority, the attackers only attack with probability 𝑝𝑎
randomly. However, they give priority to selectively attack
high capability nodes over lower capability nodes in order to
achieve an application failure. In effect, attackers collude to
evict the same expected number of target nodes under random
attack with probability 𝑝𝑎.

C. COMPUTATIONAL PROCEDURE

The underlying model of a node SPN model as shown in Fig.
4 is a continuous-time semi-Markov process with 5 state
components, LOC, TIME, UCN, DCN, and TASKS
describing the behavior of a node as time progresses.

One could put all node SPN models into one big SPN
model and run it in SPNP [1] to yield the system mean time
to failure (MTTF) as the security metric. However, the
computational complexity is 𝑂(𝑐𝑛) where 𝑐 = 5 is the
number of state components (LOC, TIME, UCN, DCN,
TASKS) and 𝑛 is the number of nodes in the ADIoTS. It is
computationally infeasible for a large n because of the state
explosion problem as the underlying Markov model needs to
consider the number of nodes in the system, the components
for each node, and the states per component.

FIGURE 5. Flow of SPN Model Execution.

We develop an iterative computational procedure with

linear complexity of 𝑂(𝑛) to make it computationally
feasible for a large ADIoTS. As illustrated in Fig. 5, the driver
program will invoke SPNP [1] to run and evaluate the node
SPN model n times, one for each distinct node, and then

integrate their outputs together to yield the system lifetime as
output. Since SPNP is invoked only n times, the complexity
is O(n) where n is the number of nodes in the ADIoTS.

The basic idea of our iterative computational procedure is

to update the false positive probability 𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡) and false

negative probability 𝑃𝑓𝑛
𝐼𝐷𝑆(𝑡) iteratively until convergence, as

follows:
The driver runs each node SPN model for node 𝑖 to

completion using SPNP [1] until node 𝑖 is in an absorbing
state, i.e., until node 𝑖 is evicted (i.e., a token is in place DCN)
or until energy is exhausted (i.e., maximum tokens are in

place TIME). Initially we set 𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡) and 𝑃𝑓𝑛

𝐼𝐷𝑆(𝑡) to 5% in

the first iteration. We then reset them to the new values
computed in step 3 in subsequent iterations.

For each node SPN model for node 𝑖, generate the output

𝑃𝑖,𝑙
𝐿 (𝑡), 𝑃𝑖

𝑔(𝑡), 𝑃𝑖
𝑏(𝑡), and 𝑃𝑖

𝑒(𝑡) in increment of 𝑇𝐼𝐷𝑆.

Based on node status probabilities reported by all nodes
(in previous step 2), compute the false positive probability

𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡) and false negative probability 𝑃𝑓𝑛

𝐼𝐷𝑆(𝑡) for node 𝑖 (in

increment of 𝑇𝐼𝐷𝑆). The time t at which the computation is
performed can be looked up by inspecting the number of
tokens in place TIME. Specifically,

𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡) = ∑ 𝑃𝑖,𝑙

𝐿 (𝑡)𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡, 𝑙)

𝑙
 (2)

where 𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡, 𝑙) is computed based on Equation 1 with

𝑛𝑏𝑎𝑑(𝑡, 𝑙) = ∑ 𝑃𝑘,𝑙
𝐿 (𝑡)𝑃𝑘

𝑏(𝑡)𝑘≠𝑖
𝑘 and 𝑛𝑔𝑜𝑜𝑑(𝑡, 𝑙) =

∑ 𝑃𝑘,𝑙
𝐿 (𝑡)𝑃𝑘

𝑔(𝑡)𝑘≠𝑖
𝑘 .

Check if the Mean Percentage Difference (MPD) of an

important parameter 𝑋𝑖(𝑡) of node 𝑖 (such as 𝑃𝑓𝑛
𝐼𝐷𝑆(𝑡)) in

iteration j and iteration j+1 is less than the minimum threshold

(set at 1%), i.e., |𝑋𝑖
𝑗+1 (𝑡) − 𝑋𝑖

𝑗 (𝑡)|/𝑋𝑖
𝑗(𝑡) < 1%. If no, go to

step 1 to continue the iterative computational process. If yes,
compute the MTTF of the system based on the failure
conditions and exit. For attrition failure, MTTF can be
identified by first sorting the mean time to bad/evicted status
for all nodes and then the first time at which the number of
good nodes falls below the system allowable minimum

threshold (𝑛𝑔𝑜𝑜𝑑
𝑇𝐻) is the MTTF. For Byzantine failure, the

first time at which the number of bad nodes is equal to or
greater than 1/3 of the total number of good and bad nodes is
the MTTF. For energy depletion failure, the first time at
which the number of nodes with adequate energy falls below
a threshold (𝐸𝑇𝐻)is the MTTF. A nodes energy resource is
indicated by the number of tokens in place TIME in the timer
subnet and when it reaches a maximum allowable it indicates
that the IoT device is too depleted. For application failure, the
first time when the task completion rate of nodes (computed
by dividing the number of tasks completed as indicated by the
number of tokens in place TASKS in the task subnet, by the
current time as indicated by the number of tokens in place
TIME in the timer subnet) collectively falls below the system
allowable minimum threshold (𝑡𝑐𝑇𝐻).

We list the computational procedure below:

1: 𝑫𝒓𝒊𝒗𝒆𝒓 𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏:

 11

2: 𝒘𝒉𝒊𝒍𝒆 𝑛𝑜𝑡 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑

3: 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡𝑒𝑟
4: 𝑟𝑢𝑛 𝑆𝑃𝑁 𝑚𝑜𝑑𝑒𝑙 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

 (𝑙𝑖𝑛𝑒 10)
5: 𝒊𝒇 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒 𝒕𝒉𝒆𝒏

6: 𝑓𝑖𝑛𝑑 𝑀𝑇𝑇𝐹 (𝑙𝑖𝑛𝑒 19) 𝑎𝑛𝑑 𝑒𝑥𝑖𝑡
7: 𝒆𝒍𝒔𝒆
8: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑛𝑒𝑥𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛; 𝑝𝑎𝑠𝑠 𝑠𝑎𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠

𝑜𝑓 𝑡ℎ𝑖𝑠 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛;
𝑔𝑜 𝑡𝑜 𝑙𝑖𝑛𝑒 3

9:

10: 𝑹𝒖𝒏𝒏𝒊𝒏𝒈 𝒏𝒐𝒅𝒆 𝑺𝑷𝑵 𝒎𝒐𝒅𝒆𝒍 (𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏):
11: 𝒘𝒉𝒊𝒍𝒆 𝑛𝑜𝑡 𝑟𝑒𝑎𝑐ℎ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝐼𝐷𝑆 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠
12: 𝐹𝑖𝑛𝑑 𝑡𝑖𝑚𝑒 𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐼𝐷𝑆 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛
13: 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛’𝑠 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠

𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
(𝑢𝑛𝑙𝑒𝑠𝑠 𝑓𝑖𝑟𝑠𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑤ℎ𝑒𝑟𝑒 𝑖𝑡 𝑒𝑞𝑢𝑎𝑙𝑠 1)

14: 𝑈𝑠𝑒 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑛𝑜𝑑𝑒𝑠 𝑣𝑎𝑙𝑢𝑒𝑠 𝑡𝑜 𝑓𝑖𝑛𝑑 𝑃𝑓𝑝
𝐼𝐷𝑆

/𝑃𝑓𝑛
𝐼𝐷𝑆

 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
(𝑢𝑠𝑒 5% 𝑖𝑓 𝑖𝑡 𝑒𝑞𝑢𝑎𝑙𝑠 1)

15: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑛𝑒𝑤 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠

𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
16: 𝑰𝒇 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑚𝑒𝑡 𝒕𝒉𝒆𝒏

17: 𝑚𝑎𝑟𝑘 𝑡ℎ𝑖𝑠 𝑛𝑜𝑑𝑒 𝑎𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑
18:
19: 𝑭𝒊𝒏𝒅 𝑴𝑻𝑻𝑭:
20: 𝒘𝒉𝒊𝒍𝒆 𝑛𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑨𝑵𝑫

𝑛𝑜𝑡 𝑟𝑒𝑎𝑐ℎ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝐼𝐷𝑆 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠
21: 𝐹𝑖𝑛𝑑 𝑡𝑖𝑚𝑒 𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑑𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛
22:

𝑓𝑖𝑛𝑑 𝑠𝑦𝑠𝑡𝑒𝑚 𝑃𝑓𝑝
𝐼𝐷𝑆

/𝑃𝑓𝑛
𝐼𝐷𝑆

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠

23: 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 𝐼𝐷𝑆 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠

24: 𝒊𝒇 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝒐𝒓 𝐵𝑦𝑧𝑎𝑛𝑡𝑖𝑛𝑒 𝒐𝒓

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝒐𝒓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝒕𝒉𝒆𝒏

25: 𝑛𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 𝑓𝑎𝑙𝑠𝑒

26: 𝑀𝑇𝑇𝐹 = 𝑡

V. APPLYING OPTIMAL DEFENSE SETTINGS FOR
LIFETIME MAXIMIZATION

Our analytical results identify optimal defense settings in
terms of the best (𝑇𝐼𝐷𝑆 , m) combination under which the
ADIoTS lifetime is maximized. This includes best defense
settings for sophisticated collusion-based attacks by inside
attackers such as Random, Opportunistic, and Selective
attacks. To apply the findings in this paper, the mission
commander can apply the best defense settings in terms of
(𝑇𝐼𝐷𝑆 , m) dynamically based on the current ADIoTS
operational and environmental conditions sensed at runtime
to maximize the ADIoTS lifetime. This is depicted in Fig. 6
where optimal defense settings are generated offline and
stored in the form of a lookup table based on the analytical
results obtained in the paper (top half of Fig. 6). When new
ADIoTS operational and environmental conditions are
sensed, a search is performed based on closest match or
extrapolation techniques to find the best defense settings of
(𝑇𝐼𝐷𝑆 , m) to apply so as to maximize the system lifetime
(lower half of Fig. 6).

SPN
modeling

Optimal
defense
strategy

ADIoTS IDS
Apply

defense
strategy

Attack behavior and ADIoTS operation
modeling

Sensed attack behavior and operational
parameters of deployed ADIoTS

<store>

Compare with
stored

Apply best match

FIGURE 6. Flow of Determining Optimal Defense Settings for Lifetime
Maximization.

VI. EVALUATION

In this section, we use the stochastic Petri net package (SPNP)
[1] to define and analytically solve the SPN model developed
to yield the system lifetime as output, when given a set of
parameter values characterizing the operational and
environmental conditions as listed in Table IV as input. All
parameters except the number of voters (m) and the IDS
detection interval (𝑇𝐼𝐷𝑆) have their values derived from an
ADIoTS described in [36] comprising 128 sensor-carrying
mobile nodes. The number of voters (m) and the IDS
detection interval (𝑇𝐼𝐷𝑆) are design parameters whose values
are to be identified and applied at runtime to maximize the
system lifetime.

TABLE IV

PARAMETERS FOR AN ADIOTS

Symbol Meaning Value

n Number of nodes 128

𝑛𝑔𝑜𝑜𝑑
𝑇𝐻 Minimum threshold for attrition failure 32,51

𝐸𝑇𝐻 Resource depletion threshold 5%

𝑡𝑐𝑇𝐻 Task execution rate threshold 25%

𝑛ℎ𝑐 Percentage of high capability nodes 30%

𝐻𝑝𝑓𝑛 Host IDS false negative probability [2.5,5,7.5]%

𝐻𝑝𝑓𝑝 Host IDS false positive probability [2.5,5,7.5]%

𝜆𝑐𝑜𝑚 Per-node capture rate 1/1800-5400

m Number of voters per IDS voting 3,5,7

𝑇𝐼𝐷𝑆 IDS interval 0-1400

𝑃𝑒 Percentage of energy spent per 𝑇𝐼𝐷𝑆 0.01%

𝑃𝑎 Random attack probability [0, 1]

𝑀𝑥𝑀 Operation area 64x64 m2

R Radio range 100 m

The 128 sensor-carrying mobile IoT devices are randomly
deployed in a 64x64 m2 operational area, each following the
SWIM mobility model [35] after deployment. The radio
range is 100 m for peer-to-peer communication for the 128
nodes. When there are fewer than 32 devices in the system,
the system is not able to perform its intended function, leading
to an attrition failure. At the host level, each device monitors
its immediate neighbors with a false negative probability

12

𝐻𝑝𝑓𝑛 ranging in 2.5%-7.5% and a false positive probability

𝐻𝑝𝑓𝑝 ranging in 2.5%-7.5%. Such values are assumed to be

known before each device is released to operation by software
engineering testing. IoT devices are compromised due to
capture attacks by which a good device that is being captured
is converted into a bad device. The per-node capture rate
𝜆𝑐𝑜𝑚 ranges from 1/5400 to 1/1800, meaning that on average
after 1800-5400 (seconds, minutes, hours, or days depending
on the system under consideration) is elapsed, a node would
likely be captured and turned into malicious. Assume that the
amount of energy consumed for each IoT device in an IDS
period is 0.01%. The security metric is the system MTTF
which is measured when the system fails due to Byzantine,
attrition, application, or energy depletion failure.

Fig. 7 shows the system MTTF (s) vs 𝑇𝐼𝐷𝑆 (s) for the
ADIoTS in the case in which the attack strategy is persistent
attack (𝑃𝑎 = 1) to quickly fail the system. The defense
strategies considered are the number of voters (m) in majority
voting IDS and the IDS detection interval (𝑇𝐼𝐷𝑆). With the
persistent attack strategy in place, an attacker always
performs ballot-stuffing (saying a bad node is a good node)
and bad-mouthing attacks (saying a good node is a bad node)
whenever it has a chance, to cause Byzantine and attrition
failures at the fastest pace. Under this attacker strategy, there
exists an optimal 𝑇𝐼𝐷𝑆 under which the system lifetime is
maximized. This is due to the following reasons: When 𝑇𝐼𝐷𝑆
is too low, the frequency of performing intrusion detection is
high, thus causing energy depletion failures to happen early
on. When 𝑇𝐼𝐷𝑆 is too high, it does not perform intrusion
detection often enough to detect and remove bad nodes from
the system. As a result, many bad nodes remain undetected in
the system. This also results in a short lifetime, due to both
Byzantine failure (when at least one third of the nodes are bad
nodes) and attrition failure (when the number of good nodes

falls below 𝑛𝑔𝑜𝑜𝑑
𝑇𝐻).

FIGURE 7. Optimal defense settings of (𝑻𝑰𝑫𝑺, m) for maximizing MTTF of an
ADIoTS as defined by Table IV, with 𝝀𝒄𝒐𝒎=1/3600 and 𝑯𝒑𝒇𝒏= 𝑯𝒑𝒇𝒑=5%.

The effect of the number of voters (m) is clearly
demonstrated in Fig. 7. We observe that the optimal 𝑇𝐼𝐷𝑆
depends on m and m = 5 is the best choice of this defense
strategy for maximizing the system lifetime for the example
ADIoTS. The reason is that when m is high, it tends to deplete

energy early on thus causing resource depletion failure. When
m is low, it tends to leave too many bad nodes undetected in
the system, thus causing Byzantine or attrition failure.
Consequently, m = 5 can best balance resource depletion
failure versus Byzantine or attrition failure to maximize the
system lifetime. The most striking observation is that an
optimal defense strategy exists in terms of the best (𝑇𝐼𝐷𝑆, m)
combination that will maximize the system MTTF, when the
attack strategy is persistent attack (𝑃𝑎= 1).

The effect of per-host defense capability in terms of
intrusion detection accuracy, represented by the host IDS
false negative probability 𝐻𝑝𝑓𝑛 and the host false positive

probability 𝐻𝑝𝑓𝑝, on the system lifetime is demonstrated in

Fig. 8. We first observe that the system lifetime is higher
when the system has better defense capability, i.e., when
𝐻𝑝𝑓𝑛 and 𝐻𝑝𝑓𝑝 are lower.

FIGURE 8. Effect of defense capability in terms of (𝑯𝒑𝒇𝒏, 𝑯𝒑𝒇𝒑) on MTTF of

an ADIoTS as defined by Table IV, with m = 5 and 𝝀𝒄𝒐𝒎=1/3600.

 We also observe that the optimal 𝑇𝐼𝐷𝑆 at which the

system MTTF is maximized strongly depends on the defense
capability. That is, the optimal 𝑇𝐼𝐷𝑆 that maximizes MTTF
increases as 𝐻𝑝𝑓𝑛 and 𝐻𝑝𝑓𝑝 increase. The reason is that when

the defense capability becomes weaker (meaning 𝐻𝑝𝑓𝑛 and

𝐻𝑝𝑓𝑝 have higher values at 7.5% in Fig. 8), many malicious

nodes may be undetected and remained the system while
many good nodes may be misidentified as malicious and
evited from the system, thus resulting in Byzantine or attrition
failures. This happens more often when the detection interval
is smaller. Consequently, when 𝐻𝑝𝑓𝑛 and 𝐻𝑝𝑓𝑝 are high, the

system is better off using a large optimal 𝑇𝐼𝐷𝑆 value. Fig. 8
demonstrates this trend, i.e., when 𝐻𝑝𝑓𝑛 and 𝐻𝑝𝑓𝑝 are higher

at 7.5% the optimal 𝑇𝐼𝐷𝑆 is 120 while when 𝐻𝑝𝑓𝑛 and 𝐻𝑝𝑓𝑝

are lower at 2.5% the optimal 𝑇𝐼𝐷𝑆 is 60. The results reveal
that the per-node defense capability affects not only the
system lifetime but also the optimal detection interval 𝑇𝐼𝐷𝑆 (a
defense strategy) under which the system lifetime is
maximized.

The effect of attacker capability in terms of per-node
compromise rate 𝜆𝑐𝑜𝑚on the system lifetime is demonstrated
in Fig. 9. We first observe that the system lifetime is lower
when the attacker capability is high, i.e., when 𝜆𝑐𝑜𝑚 is higher.
We also observe that the optimal 𝑇𝐼𝐷𝑆 at which the system

0

2000

4000

6000

8000

10000

12000

0 500 1000 1500

M
TT

F

TIDS

m=3
m=5
m=7

0

2000

4000

6000

8000

10000

12000

14000

0 500 1000 1500

M
TT

F

TIDS

Hpfn=Hpfp=2.5%

Hpfn=Hpfp=5%

Hpfn=Hpfp=7.5%

 13

MTTF is maximized strongly depends on the attacker
capability. That is, the optimal 𝑇𝐼𝐷𝑆 that maximizes MTTF
decreases as 𝜆𝑐𝑜𝑚 increases. The reason is that when the
attacker capability is higher (meaning 𝜆𝑐𝑜𝑚 is higher at
1/1800 in Fig. 9), many good nodes may be compromised and
turned into malicious in which case the system is better off by
running intrusion detection more often by making 𝑇𝐼𝐷𝑆
smaller to catch and evict malicious nodes from the system to
prevent Byzantine failure from occurring. Fig. 9 demonstrates
this trend, i.e., when 𝜆𝑐𝑜𝑚 is higher at 1/1800 the optimal 𝑇𝐼𝐷𝑆
is 40 while when𝜆𝑐𝑜𝑚 is lower at 1/5400 the optimal 𝑇𝐼𝐷𝑆 is
160. The results reveal that the attacker capability also affects
the optimal detection interval 𝑇𝐼𝐷𝑆 (a defense strategy) under
which the system lifetime is maximized.

FIGURE 9. Effect of attack capability in terms of 𝝀𝒄𝒐𝒎 on MTTF of an
ADIoTS as defined by Table IV, with m = 5 and 𝑯𝒑𝒇𝒏= 𝑯𝒑𝒇𝒑=5%.

FIGURE 10. Effect of attack strategy on system lifetime under varying
𝑻𝑰𝑫𝑺.

Unlike defense capability, attacker capability is not a

choice of the defense system. However, when learning the
attacker capability is strong (e.g., from experiences), the
results suggest that the system should shorten the detection
interval to maximize the system lifetime. The optimal
detection interval 𝑇𝐼𝐷𝑆 of course depends on the operational
setting represented by the set of parameters defined in Table
IV. Given the operational setting, the methodology proposed

in the paper helps identify the optimal (𝑇𝐼𝐷𝑆 , m) for
maximizing the system lifetime.

The security analysis thus far considers a homogenous
system where all nodes are of similar capability. To illustrate
the effects of selective attacks and application failures, we
consider below a heterogeneous ADIoT system consisting of
both high and low capability nodes, as discussed in Section
III. Fig. 10 shows the effect of attack strategy on system
failure conditions, under varying 𝑇𝐼𝐷𝑆 values. For clarity, we
list the system failure condition triggered for Fig. 10 results
separately in Table V. We show the effect of random,
opportunistic, and selective attacks on system failures. As a
persistent attack is a special case of a random attack with
𝑃𝑎 = 1, we omit persistent attack for brevity. We consider the
system failure types as discussed in Section III.A, namely,
Byzantine, resource depletion, attrition, and application
failures. We consider that of the deployed nodes 30% are of
high capability (i.e., 𝑛ℎ𝑐 = 30%), where they execute 4
TEUs (Task Execution Units) as opposed to 1 TEU by lower
capability nodes, hence contributing more towards task
completion.

First, from Fig. 10 we again observe that there exists an
optimal 𝑇𝐼𝐷𝑆 that maximizes the system lifetime in response
to various attack strategies. We observed this for persistent
attacks earlier in Figures 7-9. Now we also observe it for
random, opportunistic, and selective attacks.

Second, we find that in all attack strategies, using a very
high intrusion detection frequency (small 𝑇𝐼𝐷𝑆) results in
rapid node energy consumption causing a resource depletion
failure before other failure conditions can occur (e.g., when
𝑇𝐼𝐷𝑆=10, all failures under all attack strategies are due to
resource depletion). Conversely, using a very low intrusion
detection frequency (high 𝑇𝐼𝐷𝑆) results in a Byzantine failure
occurring first, as IDS bad node eviction cannot cope with the
compromise rate thus resulting in bad nodes > 1/3 good
nodes (e.g., when 𝑇𝐼𝐷𝑆 = 640). This is further illustrated in
Fig. 11 (for the opportunistic attack case of Fig. 10), where
the system good and bad node populations are shown as a
function of time, as a result of node compromise and IDS
execution (we do not show the evicted node population in Fig.
11 for brevity). Thus we observe that 𝑇𝐼𝐷𝑆 greatly effects the
system failure conditions (i.e., which system failure occurs
first).

Third, we observe that the opportunistic attack results in
lower system lifetime than random attack, since the
opportunistic attack, in addition to attacking randomly, takes
advantage of IDS voting occurrences where bad nodes form
a majority in which case it always votes against good nodes
and votes for bad nodes. Similarly, we observe that selective
attack, in addition to attacking opportunistically, especially
targets high capability nodes that are critical in meeting task
execution rate. Thus, under the selective attack strategy, high
capability nodes are chosen by colluding attackers as main
targets. This has the effect of resulting in application failures
(last column of Table V). Also, the colluding attackers still
use the strategies of random and opportunistic attacks to result
in Byzantine failures. As a result, the selective attack is the
most effective attack strategy among all to minimize MTTF.
However, as we observe from Fig. 10, the system designer
can optimally adjust the 𝑇𝐼𝐷𝑆 value to obtain the best

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 500 1000 1500

M
TT

F

TIDS

λcom=1/5400

λcom=1/3600

λcom=1/1800

1800

2000

2200

2400

2600

2800

3000

3200

10 20 30 40 60 80 120 160 240 320 480 640

M
TT

F

TIDS

random

opportunistic

selective

Attack

14

achievable MTTF (along with the best selection of m value
although it is not shown in Fig. 10) against the selective
attack strategy.

TABLE V

FIRST FAILURE OCCURRENCE TYPE FOR VARYING ATTACKS AND UNDER

VARYING 𝑇𝐼𝐷𝑆

 Attack type

 Random Opportunistic Selective

𝑇𝐼𝐷𝑆

10 Res. Dep. Res. Dep. Res. Dep.

40 Attrition Attrition Application

80 Attrition Attrition Application

240 Attrition Attrition Application

640 Byzantine Byzantine Byzantine

FIGURE 11. An illustration showing the occurrence of Byzantine and
attrition failures under opportunistic attack for the two cases of 𝑻𝑰𝑫𝑺 being
640 and 80, respectively.

Fig. 12 and Fig. 13 respectively compare two baseline IDS

schemes against our proposed CAVBIDS scheme.
For the first baseline comparison, Fig. 12 shows the

performance comparison of our proposed CAVBIDS scheme
with a baseline IDS scheme that uses a fixed or static
detection interval without changing the defense strength in
terms of the detection interval length in response to attacker
strength (i.e., compromise rate λcom). We observe that
CAVBIDS outperforms the first baseline scheme using a
large detection interval (i.e. TIDS = 320) as the attacker
strength varies from high (e.g., compromise
interval 1 λcom⁄ = 40) to low (e.g., compromise
interval 1 λcom⁄ = 100). The first baseline scheme performs
comparably with CAVBIDS only when the attacker
compromise rate is low (e.g., compromise interval 1 λcom⁄ =
100) at which point CAVBIDS also selects TIDS = 320 as
the optimal defense strength.

For the second baseline comparison, in Fig. 13 shows the
performance comparison of our CAVBIDS scheme with a
baseline IDS scheme that uses a fixed number of host IDS
voters for the ADIoT target voting, without changing the
defense strength in terms of the number of voters in response
to attacker strength (i.e., compromise rate λcom). We again

observe that CAVBIDS outperforms the second baseline
scheme using a small number of voters (i.e. 𝑚 = 3) as the
attacker strength varies from high (e.g., compromise
interval 1 λcom⁄ = 40) to low (e.g., compromise
interval 1 λcom⁄ = 100). The second baseline scheme
performs comparably with CAVBIDS only when the attacker
compromise rate is low (e.g., compromise interval 1 λcom⁄ =
90 − 100) at which point CAVBIDS also selects 𝑚 = 3 as
the optimal defense strength.

FIGURE 12. Comparing MTTF in a baseline IDS scheme where the detection
interval is fixed (𝑻𝑰𝑫𝑺 = 𝟑𝟐𝟎) with our CAVBIDS scheme where 𝑻𝑰𝑫𝑺 is
adjusted based on expected compromise interval (𝟏/𝝀𝒄𝒐𝒎).

FIGURE 13. Comparing MTTF in a baseline IDS scheme where the number
of Host IDS voters is fixed (𝒎 = 𝟑) with our CAVBIDS scheme where 𝒎 is
adjusted based on expected compromise interval (𝟏/𝝀𝒄𝒐𝒎).

All above results obtained in this section are based on

analytical evaluation. That is, given a set of parameter values
characterizing the operational and environmental conditions
of the 128-node ADIoTS as described in [36], we apply SPNP
to run the 128 node SPN models, integrate the results from
128 outputs, and through assigning rewards with states of the
system, identify the best defense settings of m and 𝑇𝐼𝐷𝑆 under
which the system lifetime is maximized. The obtained results
can be further validated by building a testbed for the 128-node
ADIoTS to generate empirical results to match against the
analytical results obtained in this paper. The practical
implications of the obtained results are as follows: Our
analytical results identify optimal defense settings in terms of

0

20

40

60

80

100

120

140

0 640 1280 1920 2560 3200

N
o

d
es

Time (hrs)

Good, 80
Good, 640
Bad, 640
Bad, 80

Byzantine failure occurance
(bad nodes > ⁄1 3 good nodes)

Attrition failure occurance

(good nodes < 𝑛𝑔𝑜𝑜𝑑
𝑇𝐻)

𝑛𝑜𝑑𝑒𝑠, 𝑇𝐼𝐷𝑆

1500

2000

2500

3000

3500

4000

4500

5000

5500

40 50 60 70 80 90 100

M
TT

F

1/λcom

CASSPN Baseline - fixed TIDS

Model

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

40 50 60 70 80 90 100

M
TT

F

1/λcom

CASSPN Baseline - fixed m

Model

 15

the best (𝑇𝐼𝐷𝑆 , m) combination under which the ADIoTS
lifetime is maximized. This includes best defense settings for
sophisticated collusion-based attacks by inside attackers such
as Random, Opportunistic, and Selective attacks. To apply
the findings in this paper, the mission commander can apply
the best defense settings in terms of (𝑇𝐼𝐷𝑆, m) dynamically
based on the current ADIoTS operational and environmental
conditions sensed at runtime to maximize the ADIoTS
lifetime. This is depicted in Fig. 6 where optimal defense
settings are generated offline and stored in the form of a
lookup table based on the analytical results obtained in the
paper (top half of Fig. 6). When new ADIoTS operational and
environmental conditions are sensed, a search is performed
based on closest match or extrapolation techniques to find the
best defense settings of (𝑇𝐼𝐷𝑆, m) to apply so as to maximize
the system lifetime (lower half of Fig. 6).

VII. CONCLUSION

In this work, we developed IDS duties that must be executed

by every node of an autonomous distributed IoT system

(ADIoTS) with the objective of maximizing the system

MTTF. We developed SPN-based behavior models as well as

a scalable iterative computational procedure with linear

complexity in the number of nodes, allowing IDS

attack/defense strategies for executing voting-based IDS

functions to be specified and analyzed. We demonstrated the

applicability with a selected set of attack-defense strategies

and identified optimal defense settings in terms of the best

(𝑇𝐼𝐷𝑆, m) combination under which the ADIoTS lifetime is

maximized. We also demonstrated that the per-node defense

capability and the per-node attacker capability will affect not

only the system lifetime but also the optimal detection interval

𝑇𝐼𝐷𝑆 (a defense strategy) under which the system lifetime is

maximized. We also analyzed the effect of attack strategies on

system failure conditions and system lifetime, identified the

most damaging attack strategy among all, and suggested

defense strategies in terms of (𝑇𝐼𝐷𝑆, m) for maximizing the

system MTTF. In the future, we plan to extend this work to

consider additional sophisticated collusion and strategic

attacks, new IDS defense strategies, and more SPN-based

modeling and complexity analysis for IoT system

components. We plan to implement a testbed for the ADIoTS

comprising 128 sensor-carrying mobile nodes as described in

[36] using Raspberry Pi deployed nodes, each having a host

IDS with lightweight detection techniques, By matching the

analytical results obtained in the paper against the empirical

results obtained from the testbed, we can validate the

effectiveness of our collusion-aware voting-based IDS design

proposed in this paper.

REFERENCES
[1] G. Ciardo, J. Muppala, and K. Trivedi, "SPNP: stochastic Petri net

package," in Proceedings of the Third International Workshop on Petri

Nets and Performance Models, PNPM89, 1989, pp. 142-151: IEEE.

[2] E. Benkhelifa, T. Welsh, and W. Hamouda, "A critical review of

practices and challenges in intrusion detection systems for IoT: Toward

universal and resilient systems," IEEE Communications Surveys &

Tutorials, vol. 20, no. 4, pp. 3496-3509, 2018.

[3] C. Wu et al., "A Hybrid Intrusion Detection System for IoT

Applications with Constrained Resources," International Journal of

Digital Crime and Forensics (IJDCF), vol. 12, no. 1, pp. 109-130,

2020.

[4] A. Sforzin, F. G. Mármol, M. Conti, and J. M. Bohli, "RPiDS:

Raspberry Pi IDS—A fruitful intrusion detection system for IoT," in

Intl IEEE Conferences on Ubiquitous Intelligence & Computing,

Advanced and Trusted Computing, Scalable Computing and

Communications, Cloud and Big Data Computing, Internet of People,

and Smart World Congress, 2016, pp. 440-448: IEEE.

[5] Y. N. Soe, Y. Feng, P. I. Santosa, R. Hartanto, and K. Sakurai,

"Towards a Lightweight Detection System for Cyber Attacks in the IoT

Environment Using Corresponding Features," Electronics, vol. 9, no. 1,

p. 144, 2020.

[6] M. Nobakht, V. Sivaraman, and R. Boreli, "A host-based intrusion

detection and mitigation framework for smart home IoT using

OpenFlow," in 11th International conference on availability, reliability

and security (ARES), 2016, pp. 147-156: IEEE.

[7] N. McKeown et al., "OpenFlow: enabling innovation in campus

networks," ACM SIGCOMM Computer Communication Review, vol.

38, no. 2, pp. 69-74, 2008.

[8] I. You, K. Yim, V. Sharma, G. Choudhary, R. Chen, and J.-H. Cho, "On

IoT Misbehavior Detection in Cyber Physical Systems," in 2018 IEEE

23rd Pacific Rim International Symposium on Dependable Computing

(PRDC), 2018, pp. 189-190: IEEE.

[9] B. Alotaibi and K. Elleithy, "A majority voting technique for wireless

intrusion detection systems," in IEEE Long Island Systems,

Applications and Technology Conference (LISAT), 2016, pp. 1-6: IEEE.

[10] E. Anthi, L. Williams, and P. Burnap, "Pulse: an adaptive intrusion

detection for the internet of things," in IET Conference Proceedings,

2018, pp. 35 (4 pp.)-35 (4 pp.): Institution of Engineering and

Technology.

[11] A. Amouri, V. T. Alaparthy, and S. D. Morgera, "A Machine Learning

Based Intrusion Detection System for Mobile Internet of Things,"

Sensors, vol. 20, no. 2, p. 461, 2020.

[12] M. Islabudeen and M. K. Devi, "A Smart Approach for Intrusion

Detection and Prevention System in Mobile Ad Hoc Networks Against

Security Attacks," Wireless Personal Communications, pp. 1-32, 2020.

[13] Y. A. Qadri, R. Ali, A. Musaddiq, F. Al-Turjman, D. W. Kim, and S.

W. Kim, "The limitations in the state-of-the-art counter-measures

against the security threats in H-IoT," Cluster Computing, pp. 1-19,

2020.

[14] N. K. Thanigaivelan, E. Nigussie, R. K. Kanth, S. Virtanen, and J.

Isoaho, "Distributed internal anomaly detection system for Internet-of-

Things," in 13th IEEE Annual Consumer Communications &

Networking Conference (CCNC), 2016, pp. 319-320: IEEE.

[15] R. Mitchell and I. R. Chen, "Behavior rule specification-based intrusion

detection for safety critical medical cyber physical systems," IEEE

Transactions on Dependable and Secure Computing, vol. 12, no. 1, pp.

16-30, 2015.

[16] H. Al-Hamadi and I. R. Chen, "Adaptive network defense management

for countering smart attack and selective capture in wireless sensor

networks," IEEE Transactions on Network and Service Management,

vol. 12, no. 3, pp. 451-466, 2015.

[17] A. Saeed, A. Ahmadinia, A. Javed, and H. Larijani, "Intelligent

intrusion detection in low-power IoTs," ACM Transactions on Internet

Technology (TOIT), vol. 16, no. 4, pp. 1-25, 2016.

[18] Z. A. Khan and P. Herrmann, "A trust based distributed intrusion

detection mechanism for internet of things," in IEEE 31st International

Conference on Advanced Information Networking and Applications

(AINA), 2017, pp. 1169-1176: IEEE.

[19] M. Ajmone Marsan, G. Conte, and G. Balbo, "A class of generalized

stochastic Petri nets for the performance evaluation of multiprocessor

systems," ACM Transactions on Computer Systems (TOCS), vol. 2, no.

2, pp. 93-122, 1984.

[20] G. Cavone, M. Dotoli, and C. Seatzu, "A survey on Petri net models for

freight logistics and transportation systems," IEEE Transactions on

Intelligent Transportation Systems, vol. 19, no. 6, pp. 1795-1813, 2017.

[21] K. M. Ng, M. B. I. Reaz, and M. A. M. Ali, "A review on the

applications of Petri nets in modeling, analysis, and control of urban

traffic," IEEE Transactions on Intelligent Transportation Systems, vol.

14, no. 2, pp. 858-870, 2013.

16

[22] L. Zabala, R. Solozabal, A. Ferro, and B. Blanco, "Model of a Virtual

Firewall Based on Stochastic Petri Nets," presented at the IEEE 17th

International Symposium on Network Computing and Applications

(NCA), 2018.

[23] M. Ghazel, "Using stochastic Petri nets for level-crossing collision risk

assessment," IEEE transactions on intelligent transportation systems,

vol. 10, no. 4, pp. 668-677, 2009.

[24] R. Zeng, Y. Jiang, C. Lin, and X. Shen, "Dependability analysis of

control center networks in smart grid using stochastic petri nets," IEEE

Transactions on Parallel and Distributed Systems, vol. 23, no. 9, pp.

1721-1730, 2012.

[25] R. Mitchell and I. R. Chen, "Modeling and analysis of attacks and

counter defense mechanisms for cyber physical systems," IEEE

Transactions on Reliability, vol. 65, no. 1, pp. 350-358, 2016.

[26] R. Mitchell and I. R. Chen, "Effect of Intrusion Detection and Response

on Reliability of Cyber Physical Systems," IEEE Transactions on

Reliability, vol. 62, no. 1, pp. 199-210, 2013.

[27] E. Andrade and B. Nogueira, "Dependability evaluation of a disaster

recovery solution for IoT infrastructures," The Journal of

Supercomputing, pp. 1-22, 2018.

[28] W. C. Moody, H. Hu, and A. Apon, "Defensive maneuver cyber

platform modeling with Stochastic Petri Nets," presented at the 10th

IEEE International Conference on Collaborative Computing:

Networking, Applications and Worksharing, 2014.

[29] D. Miehle, B. Häckel, S. Pfosser, and J. Übelhör, "Modeling IT

Availability Risks in Smart Factories: a Stochastic Petri Nets

Approach," Business & Information Systems Engineering, 2019.

[30] MQTT 3.1.1 specification. OASIS. December 10, 2015. Retrieved

April 25, 2017.

[31] Lightweight Machine to Machine Requirements: Version 1.1 – 10 Jul

2018 Open Mobile Alliance (OMA-RD-LightweightM2M-V1_1-

20180710-A).

[32] L. Lamport, R. Shostak, and M. Pease, "The Byzantine Generals

Problem," ACM Trans. Programming Languages and Systems, vol. 4,

no. 3, pp. 382-401, 1982.

[33] R. M. Alvarez, F. J. Boehmke, and J. Nagler, "Strategic voting in British

elections," Electoral Studies, vol. 25, no. 1, pp. 1-19, 2006.

[34] J. H. Aldrich, A. Blais, and L. B. Stephenson, The Many Faces of

Strategic Voting: Tactical Behavior in Electoral Systems Around the

World. University of Michigan Press, 2018.

[35] S. Kosta, A. Mei, and J. Stefa, "Large-scale synthetic social mobile

networks with SWIM," IEEE Transactions on Mobile Computing, vol.

13, no. 1, pp. 116-129, 2012.

[36] U.S. Department of Homeland Security, Geospatial Location

Accountability and Navigation System for Emergency Responders

(GLANSER) 2009.

