
Analysis of Attack-Defense Strategies in Autonomous Distributed

IoT Systems

Hamid Al-Hamadi

Computer Science

Kuwait University

hamid@cs.ku.edu.kw

Ing-Ray Chen

Dept. of Computer Science

Virginia Tech

irchen@vt.edu

Ding-Chau Wang

Information Management Dept.

Southern Taiwan University of

Science and Technology

dcwang@mail.stust.edu.tw

Abstract— We develop an analytical model to capture the

interplay of attack-defense strategies of an autonomous

distributed Internet of Things system (ADIoTS). Every node

participates in intrusion detection of a target node of the same

type, thus necessitating that every good node plays a set of defense

strategies and every bad node plays a set of attack strategies for

achieving their own goals. The end product is a methodology for

identifying the best defense strategies to maximize the system

lifetime.

Keywords—intrusion detection; attack/defense behavior models;

Internet of Things; mission-oriented IoT systems.

1. INTRODUCTION

In this paper, we develop a methodology to capture and

analyze the interplay of intrusion detection attack-defense

strategies in an autonomous distributed Internet of Things

system (ADIoTS). An instance of ADIoTS is a mission-oriented

military IoT system populated with autonomous, smart IoT

devices including smart sensors, actuators and control nodes,

for executing a specific mission. Possible application scenarios

may involve a team of unmanned aerial vehicles (UAVs),

soldiers, automobiles, or robots monitoring and patrolling a

combat area, and relaying critical information to the base for

combat advantages. Such IoT devices (called nodes in this

paper for short) can be compromised via capture attacks

(through physical or cyber space) and turned into insiders

performing various malicious attacks with the objective to fail

the mission. Thus, an intrusion detection system (IDS) is called

for to detect and remove inside attackers in such ADIoTS to

ensure successful mission execution.

We design the ADIoTS such that all nodes in the ADIoTS are

expected to perform IDS duties. Malicious nodes, however, can

choose from a set of attack strategies with the objective to retain

malicious nodes (thus causing false negatives) and evict good

nodes (thus causing false positives) so as to fail the mission.

Good nodes on the other hand choose from a set of defense

strategies to prolong the system lifetime. The attack/defense

behaviors manifest into the false negative probability (i.e.,

missing a malicious node as a good node) and false positive

probability (i.e., misidentifying a good node as a malicious

node) which together affect the system lifetime. Here an

attacker refers to an inside attacker and a defender refers to a

good node.

While the importance of designing effective IDS strategies

for detecting malicious nodes is well recognized, the literature

[1-10] is thin in modeling the interplay of attack/defense

strategies and their effects on system reliability. Our work

follows model-based evaluation. The novelty lies in setting up

IDS duties that every node must participate in, thus forcing

attack/defense interplay to go in a direction toward the

designer’s desirable outcome, i.e., prolonging the system

lifetime.

Our work has the following unique contributions:
1. We develop a new concept of attack/defense strategies by

attackers/defenders while they execute their required IDS
functions in the form of voting-based intrusion detection in
an ADIoTS. At the host-level each node is required to
monitor every neighbor node based on preloaded anomaly
detection mechanisms to judge if the neighbor node is
behaving or misbehaving, At the system-level, a group of
nodes around a target neighbor node if selected must
perform “IDS majority voting” to decide if the target
neighbor node is behaving or misbehaving. More
specifically, when asked to express its opinion about
whether a target node in the neighborhood is behaving, a
node must vote “yes” (meaning behaving) or “no” (meaning
misbehaving) toward the target node. A malicious node can
perform “ballot-stuffing” attacks by voting “yes” toward
another malicious node to keep the malicious target node in
the system. A malicious node can also perform “bad-
mouthing” attacks by voting “no” toward a good node to
evict the good target node from the system, especially if
doing so does not expose itself as a malicious node. When
the majority of votes is “no” the target node is evicted. For
the case in which a malicious node is voted “yes” by a
majority, the system results in a false negative. For the case
in which a good node is voted “no” by a majority, the system
results in a false positive. Malicious nodes would apply the
“best” attack strategies with the goal to shorten the system
lifetime. Good nodes (i.e., defenders) on the other hand
would select the “best” defense strategies to prolong the
system lifetime. The attack/defense behavior therefore is set
up within the context of IDS voting whose effectiveness is
measured by the false negative probability and false positive
probability which together affect the system lifetime.

2. We develop an analytical model based on Stochastic Petri
Net (SPN) modeling techniques [11-23] to describe the
dynamics of IDS attack/defense strategies and examine
their effect on system lifetime.

3. We develop a novel iterative computational procedure with
computational complexity of 𝑂(𝑛) where 𝑛 is the number

of nodes in an ADIoTS to make it computationally feasible
to analyze a large ADIoTS.

The rest of the paper is organized as follows: Section 2
discusses intrusion detection attack-defense strategies. Section
3 develops an analytical model and an iterative computational
procedure for quantifying the effect of attack/defense strategies
on system lifetime. Section 4 conducts a performance
evaluation. Finally, Section 5 summarizes the paper and
outlines future work.

2. ATTACK/DEFENSE BEHAVIOR MODELING

2.1 System Failure Types

Table 2 summarizes possible system failure types:

• Byzantine failure [24]: A Byzantine failure occurs if one
third or more IoT devices in the ADIoTS have been
compromised as there is no way to reach a consensus for
decision making.

• Attrition failure: An attrition failure occurs if the ADIoTS

does not have enough IoT devices left to carry out its

mission.

• Resource depletion failure: A resource depletion failure

occurs if energy of IoT devices is too depleted to be able

to accomplish the mission.

2.2 Attack Strategies

Table 2 summarizes possible attack strategies used by a

malicious node (as an inside attacker) during IDS majority
voting:

• Persistent: A malicious node attacks recklessly. When
serving as a voter during IDS majority voting, it will
always vote “no” to evict a good node (to cause a false
positive), and “yes” to retain a bad node (to cause a false
negative).

• Random: The attack behavior is the same as a persistent
attacker except that a malicious node only attacks
randomly with probability 𝑝𝑎 (0 to 1) to avoid detection.

• Opportunistic: The attack behavior is the same as a
persistent attacker except that a malicious node only
attacks opportunistically. That is, when serving as a voter,
a malicious node will vote to evict a good node, or to
retain a bad node, only if there is a majority of bad nodes
among m nodes being selected to perform majority voting.

2.3 Defense Strategies

Table 3 summarizes the defense strategies used by all good
nodes (as dictated by the defense system) during IDS majority
voting. The defense strength can be controlled by adjusting the
following two parameters:

• The number of voters (m) selected from a target node’s
location for executing IDS majority voting

• The intrusion detection interval (𝑇𝐼𝐷𝑆) to control the
detection frequency at which IDS voting is performed.

TABLE 1: SYSTEM FAILURE TYPES.

System Failure Type Meaning

Byzantine failure

A Byzantine failure occurs if one third or more IoT devices in the ADIoTS have been
compromised as there is no way to reach a consensus for decision making.

Attrition failure

An attrition failure occurs if the ADIoTS does not have enough IoT devices left to carry out
its mission.

Resource depletion failure A resource depletion failure occurs if energy of IoT devices is too depleted to be able to

accomplish the mission.

TABLE 2: ATTACK STRATEGIES.

Attack Strategies

Persistent Attack with probability 1

Random Attack with probability 𝑃𝑎 to evade
detection

Opportunistic Attack only when it sees bad nodes
selected for IDS voting form a majority

TABLE 3: DEFENSE STRATEGIES.

Defense Strategies

Control the number of voters (m)
selected for IDS voting on a
suspicious node

Higher m means higher
detection strength

Control the detection frequency
at which IDS voting is
performed, i.e., select the

detection interval (𝑇𝐼𝐷𝑆)

Smaller 𝑇𝐼𝐷𝑆 means higher
detection frequency

3. PERFORMANCE MODEL

In this section, we develop a performance model to describe

the IDS attack-defense dynamics and analyze the effect of

attack/defense strategies executed by attackers/defenders on

system lifetime. We also develop an iterative computational

procedure to make it computationally feasible for a large

ADIoTS consisting of a large number of IoT devices.

A performance model must provide the following two pieces

of information to facilitate modeling of attack/defense

dynamics:

1. Location: we like to know the probability that node i is

located in area l at time t, denoted by 𝑃𝑖,𝑙
𝐿 (𝑡). By inspecting

𝑃𝑖,𝑙
𝐿 (𝑡) and 𝑃𝑗,𝑙

𝐿 (𝑡), we will know if node i and node j are in

the same location at time t.

2. Good/Bad/Evicted status: we like to know the probability

that node i is good, bad, or evicted at time t, denoted by

𝑃𝑖
𝑔(𝑡), 𝑃𝑖

𝑏(𝑡)and 𝑃𝑖
𝑒(𝑡), respectively, with 𝑃𝑖

𝑔(𝑡) + 𝑃𝑖
𝑏(𝑡) +

𝑃𝑖
𝑒(𝑡) = 1. By inspecting 𝑃𝑖

𝑔(𝑡), 𝑃𝑖
𝑏(𝑡)and 𝑃𝑖

𝑒(𝑡)for node i,

𝑃𝑗
𝑔(𝑡), 𝑃𝑗

𝑏(𝑡)and 𝑃𝑗
𝑒(𝑡)for node j, 𝑃𝑘

𝑔(𝑡), 𝑃𝑘
𝑏(𝑡)and 𝑃𝑘

𝑒(𝑡)

for node k, etc. we know the attack/defense strength at time

t. If a good target node is surrounded by many bad nodes,

then there is a high probability that the good target node will

be misidentified as a bad node (thus causing a false positive)

and a bad target node will be misidentified as a good node

(thus causing a false negative).

We use Stochastic Petri Net (SPN) modeling techniques to

provide us the above two pieces of information. We utilize a

tool called SPNP [11] to define and evaluate SPN node models

describing node attack-defense behaviors and status, so as to

measure the system performance metrics for performance

analysis.

Figure 1 shows the SPN node model for node i for modeling

the location and status of node i over time. It consists of a

location subnet (top left) providing the location information of

node I at time t, a timer/energy subnet (top right) providing the

energy status of node i, and a compromise undetected/detected

status subnet (bottom) keeping track of if node i has been

compromised at time t and if the compromise has been detected.

These subnets are described in more detail in the following

subsections. Each node in the system is separately modeled by

a SPN node model. Therefore, there will be many SPN node

models in the system (i.e., one for each node), but each can be

run and evaluated separately with our hierarchical modeling

technique.

Figure 1: Node SPN Model.

3.1 Modeling Node Status

The location subnet (at the top left of Figure 1) for node i

provides us information about 𝑃𝑖,𝑙
𝐿 (𝑡). The id of the current

location of node i is indicated by the number of tokens in place

LOC. The autonomous distributed IoT environment can be

modeled as a M×M location grid, with the unit length equal to

the wireless radio range (R) and each location is labeled with a

unique location id. We allow each node to have its own mobility

pattern specified by a sequence of time-ordered (location id,

residence time) tuples, meaning that the IoT device stays at a

location with the location id so indicated for this much time

with the residence time so indicated. The mobility pattern can

be generated by simulating the movement of a node following

a mobility model such as the random movement model or the

social SWIM mobility model [25]. The transition

T_LOCATION is triggered when node i moves from its current

location to the next location with the transition rate calculated

as 1 𝑅𝑇⁄ where RT is the residence time in the current location.

Depending on the next location, the number of tokens in place

LOC is adjusted to reflect the id of the location it resides under

(after the movement is made), so by looking at the number of

tokens in place LOC at time t we know the location of node i at

time t.

The compromise undetected/detected status subnet (at the

bottom of Figure 1) for node i gives us information

about 𝑃𝑖
𝑔(𝑡), 𝑃𝑖

𝑏(𝑡) and 𝑃𝑖
𝑒(𝑡). The status of node i is indicated

by a token which flows from one place to another. Place UCN

indicates that node i is compromised. A node is compromised

when transition T_COMPRO with rate 𝜆𝑐𝑜𝑚 fires where 𝜆𝑐𝑜𝑚

is the per-node capture rate. The transition T_COMPRO is

enabled if the node is not yet compromised or evicted. When

node i is compromised, a token goes to UCN, meaning that node

i is now a malicious node not yet detected by IDS, so it may

perform persistent, random, or opportunistic attacks. Place

DCN means that node i is evicted. An eviction can occur in two

ways. The first way is that node i was compromised (i.e., the

token was in place UCN) and is correctly identified by the

system IDS, causing the token to flow from into DCN and node

i to be evicted immediately. The transition rate of T_IDS is

(1 − 𝑃𝑓𝑛
𝐼𝐷𝑆) 𝑇𝐼𝐷𝑆⁄ where 𝑃𝑓𝑛

𝐼𝐷𝑆 (derived in Equation 1 below) is

the false negative probability of the system IDS and 𝑇𝐼𝐷𝑆 is the

IDS detection interval. The second way is that node i was a

good node but is misidentified as a bad node by the system IDS,

causing the token to be deposited in place DCN and node i to

be evicted immediately. The transition rate of T_IDSFA is

𝑃𝑓𝑝
𝐼𝐷𝑆 𝑇𝐼𝐷𝑆⁄ where 𝑃𝑓𝑝

𝐼𝐷𝑆(derived in Equation 1 below) is the false

positive probability of the system IDS.

 UCN

T_COMPRO

DCN

DCN

T_IDS

LOC

T_LOCATION

T_IDSFA

TIME

(Energy)

T_TIMER

The timer subnet (at the top right of Figure 1) keeps track of

elapsed time in the node SPN model. After 𝑇𝐼𝐷𝑆 is elapsed,

T_TIMER fires and a token is added to place TIME. T_TIMER

is disabled when the node is evicted (i.e., when a token is in

place DCN). By looking at the number of tokens in place TIME,

one can tell the current time. This information allows 𝑃𝑓𝑝
𝐼𝐷𝑆and

𝑃𝑓𝑛
𝐼𝐷𝑆to be updated in increment of 𝑇𝐼𝐷𝑆 dynamically to reflect

the effect of IDS attacker/defense dynamics on 𝑃𝑓𝑝
𝐼𝐷𝑆and 𝑃𝑓𝑛

𝐼𝐷𝑆.

We also use the timer subnet as the energy subnet with each

token deposited in place TIME indicating the amount of energy

spent by node i in an intrusion detection cycle. By knowing the

number of IDS cycles elapsed (from place TIME) and the

percentage of energy spent by node i per cycle for executing

monitoring, reporting, and performing IDS functions, denoted

by 𝑃𝑒 , we can estimate the remaining energy of node i at time t.

3.2 Modeling Attacker/Defender Strategies

An attacker can perform persistent, random, or opportunistic

attacks while participating in the majority voting IDS function.

The attack strategy chosen affects the system IDS performance

measured by the false negative probability (𝑃𝑓𝑛
𝐼𝐷𝑆) and the false

positive probability (𝑃𝑓𝑝
𝐼𝐷𝑆).

We derive the false positive probability (𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡, 𝑙)) and false

negative probability (𝑃𝑓𝑛
𝐼𝐷𝑆(𝑡, 𝑙)) for diagnosing a target node at

location l and time t surrounded by 𝑛𝑔𝑜𝑜𝑑(𝑡, 𝑙) good nodes and

𝑛𝑏𝑎𝑑(𝑡, 𝑙) bad nodes. Henceforth, the notation (𝑡, 𝑙) at the end

of a symbol is omitted for brevity.

Equation 1 above gives a closed-form solution for 𝑃𝑓𝑝
𝐼𝐷𝑆and

𝑃𝑓𝑛
𝐼𝐷𝑆 under random attack behavior where 𝐶 (

𝑎

𝑏
) is the # of

combinations to select a from b, 𝑛𝑏𝑎𝑑
𝑎 and 𝑛𝑏𝑎𝑑

𝑖 are the numbers

of “active” and “inactive” bad nodes, given by 𝑛𝑏𝑎𝑑 × 𝑝𝑎 and

𝑛𝑏𝑎𝑑 × (1 − 𝑝𝑎), respectively; 𝑚𝑚𝑎𝑗 is the minimum majority

of m, e.g., 3 is the minimum majority of 5; and ⍵ is 𝐻𝑝𝑓𝑝 for

calculating 𝑃𝑓𝑝
𝐼𝐷𝑆 and 𝐻𝑝𝑓𝑛 for calculating 𝑃𝑓𝑛

𝐼𝐷𝑆. Here 𝐻𝑝𝑓𝑝 and

𝐻𝑝𝑓𝑛 are the host-level false positive probability and false

negative probability, respectively, as a result of each node

executing host-level IDS duties monitoring behaving or

misbehaving of a neighbor node as described earlier. They are

given as input at the system start-up time.

Here we note that persistent attack is a special case of random

attack with 𝑝𝑎 = 1. Equation 1 can also be used to model

opportunistic attack behavior such that 𝑝𝑎 = 1 when during

IDS voting, more than one half of the nodes selected for IDS

voting are bad nodes, thus resulting in 𝑃𝑓𝑝
𝐼𝐷𝑆 = 1 and 𝑃𝑓𝑛

𝐼𝐷𝑆 = 1.

If more than one half of the nodes selected for IDS voting are

good nodes, an opportunistic attacker would simply fall back to

random attack behavior because there is still a chance good

nodes can still vote to evict a good target node (with probability

𝐻𝑝𝑓𝑝), or retain a bad target node (with probability 𝐻𝑝𝑓𝑛).

3.3 Computational Procedure

The underlying model of a node SPN model as shown in

Figure 1 is a continuous-time semi-Markov process with 4 state

components, LOC, TIME, UCN and DCN, describing the

behavior of a node as time progresses.

One could put all node SPN models into one big SPN model

and run it in SPNP [11] to yield the system mean time to failure

(MTTF) as the performance metric. However, the

computational complexity is 𝑂(𝑐𝑛) where 𝑐 = 4 is the number

of state components (LOC, TIME, UCN and DCN) and 𝑛 is the

number of nodes in the ADIoTS. It is computationally

infeasible for a large n because of the state explosion problem.

We develop an iterative computational procedure with linear

complexity of 𝑂(𝑛) to make it computationally feasible for a

large ADIoTS. The computational complexity is 𝑂(𝑛) because

we run each node SPN model one at a time and then integrate

their outputs. This computation is performed iteratively until

convergence.

The basic idea of our iterative computational procedure is to

update the false positive probability 𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡) and false negative

probability 𝑃𝑓𝑛
𝐼𝐷𝑆(𝑡) iteratively until convergence, as follows:

1) Run each node SPN model for node i to completion

using SPNP [11] until node i is in an absorbing state, i.e., until

node i is evicted (i.e., a token is in place DCN) or until energy

is exhausted (i.e., maximum tokens are in place TIME). Set

𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡) and 𝑃𝑓𝑛

𝐼𝐷𝑆(𝑡) to 5% in the first iteration. Reset them to

the new values computed in step 3 in subsequent iterations.

2) For each node SPN model for node i, generate the output

𝑃𝑖,𝑙
𝐿 (𝑡), 𝑃𝑖

𝑔(𝑡), 𝑃𝑖
𝑏(𝑡), and 𝑃𝑖

𝑒(𝑡) in increment of 𝑇𝐼𝐷𝑆.

3) Compute the false positive probability 𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡) and false

negative probability 𝑃𝑓𝑛
𝐼𝐷𝑆(𝑡) in increment of 𝑇𝐼𝐷𝑆 for node i

based on 𝑃𝑖,𝑙
𝐿 (𝑡), 𝑃𝑖

𝑔(𝑡), 𝑃𝑖
𝑏(𝑡) and 𝑃𝑖

𝑒(𝑡) reported by all nodes

in step 2. The time t at which the computation is performed can

be looked up by inspecting the number of tokens in place TIME.

Specifically,

𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡) = ∑ 𝑃𝑖,𝑙

𝐿 (𝑡)𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡, 𝑙) (2)

𝑙

𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡, 𝑙) 𝑜𝑟 𝑃𝑓𝑛

𝐼𝐷𝑆(𝑡, 𝑙) =

∑

[

 𝐶 (

𝑛𝑏𝑎𝑑
𝑎

𝑚𝑚𝑎𝑗 + 𝑖
) × 𝐶 (

𝑛𝑔𝑜𝑜𝑑 + 𝑛𝑏𝑎𝑑
𝑖

𝑚 − (𝑚𝑚𝑎𝑗 + 𝑖)
)

𝐶 (𝑛𝑏𝑎𝑑
𝑎 + 𝑛𝑏𝑎𝑑

𝑖 + 𝑛𝑔𝑜𝑜𝑑

𝑚
)

]

 𝑚−𝑚𝑚𝑎𝑗

𝑖=0

+ ∑

[

 𝐶 (

𝑛𝑏𝑎𝑑
𝑎

𝑖
) × ∑ [𝐶 (

𝑛𝑔𝑜𝑜𝑑 + 𝑛𝑏𝑎𝑑
𝑖

𝑗
) × ⍵𝑗 × 𝐶 (

𝑛𝑔𝑜𝑜𝑑 + 𝑛𝑏𝑎𝑑
𝑖 − 𝑗

𝑚 − 𝑖 − 𝑗
) × (1 − ⍵)𝑚−𝑖−𝑗]𝑚−𝑖

𝑗=𝑚𝑚𝑎𝑗−𝑖

𝐶 (𝑛𝑏𝑎𝑑
𝑎 + 𝑛𝑏𝑎𝑑

𝑖 + 𝑛𝑔𝑜𝑜𝑑

𝑚
)

]

 𝑚−𝑚𝑚𝑎𝑗

𝑖=0

(1)

where 𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡, 𝑙) is computed based on Equation 1 with

𝑛𝑏𝑎𝑑(𝑡, 𝑙) = ∑ 𝑃𝑘,𝑙
𝐿 (𝑡)𝑃𝑘

𝑏(𝑡)𝑘≠𝑖
𝑘 and 𝑛𝑔𝑜𝑜𝑑(𝑡, 𝑙) =

∑ 𝑃𝑘,𝑙
𝐿 (𝑡)𝑃𝑘

𝑔(𝑡)𝑘≠𝑖
𝑘 .

4) Check if the Mean Percentage Difference (MPD) of an

important parameter 𝑋𝑖(𝑡) of node i (such as 𝑃𝑓𝑛
𝐼𝐷𝑆(𝑡)) in

iteration j and iteration j+1 is less than the minimum threshold

(set at 1%), i.e., |𝑋𝑖
𝑗+1 (𝑡) − 𝑋𝑖

𝑗 (𝑡)|/𝑋𝑖
𝑗(𝑡) < 1%. If no, go to step

1 to continue the iterative computational process. If yes,

compute the MTTF of the system based on the failure

conditions defined in Table 1 and exit. For attrition failure,

MTTF can be identified by first sorting the mean time to

bad/evicted status for all nodes and then the first time at which

the number of good nodes falls below the system allowable

minimum threshold (𝑛𝑔𝑜𝑜𝑑
𝑇𝐻) is the MTTF. For Byzantine

failure, the first time at which the number of bad nodes is equal

to or greater than 1/3 of the total number of good and bad nodes

is the MTTF. For resource depletion failure, the first time at

which no token is in place TIME in the timer subnet is the

MTTF.

4. EVALUATION

TABLE 4: PARAMETERS FOR AN ADIOTS.

Parameter Meaning Value

n Number of nodes 128

𝑛𝑔𝑜𝑜𝑑
𝑇𝐻 Minimum threshold for attrition failure 32

𝐻𝑝𝑓𝑛 Host IDS false negative probability 5%

𝐻𝑝𝑓𝑝 Host IDS false positive probability 5%

𝜆𝑐𝑜𝑚 Per-node capture rate 1/hr

m Number of voters per IDS voting 3-11

𝑇𝐼𝐷𝑆 IDS interval 0-1400 sec

𝑃𝑒 Percentage energy spent per 𝑇𝐼𝐷𝑆 0.01%

𝑃𝑎 Random attack probability [0, 1]

𝑀𝑥𝑀 Operation area 64x64 m2

R Radio range 100 m

Mobility SWIM Ref [25]

In this section, we conduct an experiment to analyze the
effect of the interplay of attack/defense strategies on the MTTF
of an ADIoTS characterized by the set of operational and
environmental parameter values as listed in Table 4 above.

There are 128 mobile IoT devices randomly deployed in a
64x64 m2 operational area, each following the SWIM mobility
model [25] after deployment. The radio range is 100 m for peer-
to-peer communication for the 128 nodes. When there are less
than 32 devices in the system, the system is not able to perform
its intended function, leading to an attrition failure. At the host
level, each device monitors its immediate neighbors with a false
negative probability 𝐻𝑝𝑓𝑛 of 5% and a false positive probability

𝐻𝑝𝑓𝑝 of 5%. IoT devices are compromised due to capture

attacks by which a good device that is being captured is
converted into a bad device. The per-node capture rate 𝜆𝑐𝑜𝑚 is
1/hr. Assume that the amount of energy consumed for each IoT
device in an IDS period is 0.01%. The performance metric is
the system MTTF which is measured when the system fails due
to Byzantine, attrition, or energy depletion failure.

Figure 2 shows the system MTTF (s) vs 𝑇𝐼𝐷𝑆 (s) for the
ADIoTS in the case in which the attack strategy is persistent
attack (𝑃𝑎= 1) to quickly fail the system. The defense strategies
considered are the number of voters (m) in majority voting IDS
and the IDS detection interval (𝑇𝐼𝐷𝑆). With the persistent attack
strategy in place, an attacker always performs ballot-stuffing
(saying a bad node is a good node) and bad-mouthing attacks
(saying a good node is a bad node) whenever it has a chance, so
as to cause Byzantine and attrition failures at the fastest pace.

Under this attacker strategy, there exists an optimal
𝑇𝐼𝐷𝑆 under which the system lifetime is maximized. This is due
to the following reasons: When 𝑇𝐼𝐷𝑆 is too low, the frequency
of performing intrusion detection is high, thus causing energy
depletion failures to happen early on. When 𝑇𝐼𝐷𝑆 is too high, it
does not perform intrusion detection often enough to detect and
remove bad nodes from the system. As a result, many bad nodes
remain undetected in the system. This also results in a short
lifetime, due to both Byzantine failure (when at least one third
of the nodes are bad nodes) and attrition failure (when the

number of good nodes falls below 𝑛𝑔𝑜𝑜𝑑
𝑇𝐻).

Figure 2: Optimal Defense Strategies for Maximizing the

MTTF of an ADIoTS as defined by Table 4.

The effect of the number of voters (m) is clearly
demonstrated in Figure 2. We observe that the optimal 𝑇𝐼𝐷𝑆
depends on m and m = 5 is the best choice of this defense
strategy for maximizing the system lifetime for the example
ADIoTS. The reason is as follows: When m is high, it tends to
deplete energy early on thus causing resource depletion failure.
When m is low, it tends to leave too many bad nodes undetected
in the system, thus causing Byzantine or attrition failure.
Consequently, m = 5 can best balance resource depletion failure
versus Byzantine or attrition failure to maximize the system
lifetime.

The most striking observation is that an optimal defense
strategy exists in terms of the best (𝑇𝐼𝐷𝑆, m) combination that
will maximize the system MTTF, given knowledge about the
attacker strategy. Figure 2 is for the case in which the attacker
strategy is persistent attack. While not reported here due to lack
of space, we also observe such best (𝑇𝐼𝐷𝑆, m) combination exists
for other types of attacker strategies (random and opportunistic
attacks).

5. CONCLUSION

In this work, we developed IDS duties that must be executed
by every node of an autonomous distributed IoT system
(ADIoTS) with the objective to maximize the system MTTF.
We developed SPN-based behavior models as well as a scalable
iterative computational procedure with linear complexity in the
number of nodes, allowing IDS attack/defense strategies for
executing voting-based IDS functions to be specified and
analyzed. We demonstrated the applicability with a selected set
of attack-defense strategies and identified optimal defense
settings in terms of the best (𝑇𝐼𝐷𝑆, m) combination under which
the ADIoTS lifetime is maximized.

While we identify the best (𝑇𝐼𝐷𝑆 , m) combination that will
maximize the system MTTF, given knowledge about the
attacker strategy, we fully understand that the attacker strategy
is likely to be deceptive and dynamically changed. In the future,
we plan to extend this work to a game of mechanism design,
allowing IDS attack/defense strategies to be dynamically
selected by attackers/defenders to maximize their payoffs, and
as a result of the interplay the defense system is able to maximize
the MTTF of the ADIoTS as the outcome.

Acknowledgements

This work was partially supported and funded by Kuwait

University Research Grant #QS01/18. This work is also
supported in part by the U.S. AFOSR under grant number
FA2386-17-1-4076.

REFERENCES

[1] A. B. Sharma, F. Ivancic, A. Niculescu-Mizil, H. Chen, and G. Jiang,

“Modeling and Analytics for Cyber-Physical Systems in the Age of Big

Data,” ACM Sigmetrics, 2013.

[2] E. Benkhelifa, T. Welsh, and W. Hamouda, “A Critical Review of Practices

and Challenges in Intrusion Detection Systems for IoT: Towards Universal

and Resilient Systems,” IEEE Communications Surveys & Tutorials, vol.

20, no. 4, 2018, pp. 3496-3509.

[3] I. You, K. Yim, V. Sharma, I.R. Chen, and J.H. Cho, “On IoT Misbehavior

Detection in Cyber Physical Systems,” The 23rd IEEE Pacific Rim

International Symposium on Dependable Computing (PRDC 2018), Dec

2018.

[4] I. You, K. Yim, V. Sharma, I.R. Chen, and J.H. Cho, “Misbehavior

Detection of Embedded IoT Devices in Medical Cyber Physical Systems,”

3rd ACM Chase Workshop on Security, Privacy, and Trustworthiness in

Medical Cyber-Physical Systems, Washington DC, Sept 2018.

[5] R. Mitchell and I.R. Chen, “Modeling and Analysis of Attacks and Counter

Defense Mechanisms for Cyber Physical Systems,” IEEE Trans. Reliability,

vol. 65, no. 1, 2016, pp. 350-358.

[6] R. Mitchell and I.R. Chen, “Effect of intrusion detection and response on

reliability of cyber physical systems,” IEEE Trans. Reliability, Vol. 62, No.

1, 2013, pp. 199-210.

[7] H. Al-Hamadi and I.R. Chen, “Trust-Based Decision Making for Health IoT

Systems,” IEEE Internet of Things Journal, vol. 4, no. 5, Oct. 2017, pp.

1408-1419.

[8] R. Mitchell and I.R. Chen, “Behavior Rule Specification-based Intrusion

Detection for Safety Critical Medical Cyber Physical Systems,” IEEE

Trans. Dependable and Secure Computing, vol. 12, no. 1, 2015, pp. 16-30.

[9] H. Al-Hamadi and I.R. Chen, “Adaptive Network Management for

Countering Smart Attack and Selective Capture in Wireless Sensor

Networks,” IEEE Transactions on Network and Service Management, vol.

12, no. 3, 2015, pp. 451-466.

[10] Jin-Hee Cho and Ing-Ray Chen, “PROVEST: Provenance-based Trust

Model for Delay Tolerant Networks,” IEEE Transactions on Dependable

and Secure Computing, vol. 15, no. 1, 2018, pp. 151-165.

[11] G. Ciardo, R.M. Fricks, J.K. Muppala and K.S. Trivedi, Stochastic Petri

Net Package (SPNP), Dept. Electrical Engineering, Duke University, 1999.

[12] I.R. Chen and D.C. Wang, “Analyzing dynamic voting using Petri nets,”

15th Symposium on Reliable Distributed Systems, 1996, pp. 44-53.

[13] B. Gu and I. R. Chen, “Performance analysis of location-aware mobile

service proxies for reducing network cost in personal communication

systems,” Mobile Networks and Applications, vol. 10, no. 4, 2005, pp. 453-

463.

[14] I.R. Chen, T.M. Chen, and C. Lee, “Performance evaluation of forwarding

strategies for location management in mobile networks,” The Computer

Journal, vol. 41, no. 4, 1998, pp. 243-253.

[15] I. R. Chen, T.M. Chen, and C. Lee, “Agent-based forwarding strategies for

reducing location management cost in mobile networks,” Mobile Networks

and Applications, vol. 6, no. 2, 2001, pp. 105-115.

[16] I.R. Chen, B. Gu, S.E. George, and S.T. Cheng, “On failure recoverability

of client-server applications in mobile wireless environments,” IEEE

Trans. Reliability, vol. 54, no. 1, 2005, pp. 115-122.

[17] I.R. Chen and D.C. Wang, “Analysis of Replicated Data with Repair

Dependency,” The Computer Journal, vol. 39, no. 9, 1996, pp. 767-779.

[18] I.R. Chen and F.B. Bastani, “Effect of Artificial-Intelligence Planning

Procedures on System Reliability,” IEEE Trans Reliability, vol. 40, no. 3,

pp. 364-369, 1991.

[19] F.B. Bastani, I.R. Chen, and T. Tsao, “Reliability of Systems with Fuzzy-

Failure Criterion,” Annual Reliability and Maintainability Symposium,

1994, pp. 442-448.

[20] I.R. Chen, O. Yilmaz, and I.L. Yen, “Admission control algorithms for

revenue optimization with QoS guarantees in mobile wireless networks,"

Wireless Personal Communications, vol. 38, no. 3, 2006, pp. 357-376.

[21] S.T. Cheng, C.M. Chen, and I.R. Chen, “Dynamic quota-based admission

control with sub-rating in multimedia servers,” Multimedia Systems, vol.

8, no. 2, 2000, pp. 83-91.

[22] S.T. Cheng, C.M. Chen, and I.R. Chen, “Performance evaluation of an

admission control algorithm: dynamic threshold with negotiations,”

Performance Evaluation, vol. 52, no. 1, 2003, pp. 1-13.

[23] O. Yilmaz and I.R. Chen, “Utilizing Call Admission Control for Pricing

Optimization of Multiple Service Classes in Wireless Cellular Networks,”

Computer Communications, vol. 32, no. 2, 2009, pp. 317-323.

[24] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals problem,”

ACM Transactions on Programming Languages and Systems, vol. 4, no.

3, 1982, pp. 382-401.

[25] S. Kosta, A. Mei, and J. Stefa, “Large-Scale Synthetic Social Mobile

Networks with SWIM,” IEEE Trans. Mobile Computing, vol. 13, no. 1,

pp. 116-129, 2014.

