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Abstract— We develop an analytical model to capture the 

interplay of attack-defense strategies of an autonomous 

distributed Internet of Things system (ADIoTS). Every node 

participates in intrusion detection of a target node of the same 

type, thus necessitating that every good node plays a set of defense 

strategies and every bad node plays a set of attack strategies for 

achieving their own goals. The end product is a methodology for 

identifying the best defense strategies to maximize the system 

lifetime. 

Keywords—intrusion detection; attack/defense behavior models; 

Internet of Things; mission-oriented IoT systems. 

1. INTRODUCTION 

In this paper, we develop a methodology to capture and 

analyze the interplay of intrusion detection attack-defense 

strategies in an autonomous distributed Internet of Things 

system (ADIoTS). An instance of ADIoTS is a mission-oriented 

military IoT system populated with autonomous, smart IoT 

devices including smart sensors, actuators and control nodes, 

for executing a specific mission. Possible application scenarios 

may involve a team of unmanned aerial vehicles (UAVs), 

soldiers, automobiles, or robots monitoring and patrolling a 

combat area, and relaying critical information to the base for 

combat advantages. Such IoT devices (called nodes in this 

paper for short) can be compromised via capture attacks 

(through physical or cyber space) and turned into insiders 

performing various malicious attacks with the objective to fail 

the mission. Thus, an intrusion detection system (IDS) is called 

for to detect and remove inside attackers in such ADIoTS to 

ensure successful mission execution. 

We design the ADIoTS such that all nodes in the ADIoTS are 

expected to perform IDS duties. Malicious nodes, however, can 

choose from a set of attack strategies with the objective to retain 

malicious nodes (thus causing false negatives) and evict good 

nodes (thus causing false positives) so as to fail the mission. 

Good nodes on the other hand choose from a set of defense 

strategies to prolong the system lifetime. The attack/defense 

behaviors manifest into the false negative probability (i.e., 

missing a malicious node as a good node) and false positive 

probability (i.e., misidentifying a good node as a malicious 

node) which together affect the system lifetime. Here an 

attacker refers to an inside attacker and a defender refers to a 

good node. 

While the importance of designing effective IDS strategies 

for detecting malicious nodes is well recognized, the literature 

[1-10] is thin in modeling the interplay of attack/defense 

strategies and their effects on system reliability. Our work 

follows model-based evaluation. The novelty lies in setting up 

IDS duties that every node must participate in, thus forcing 

attack/defense interplay to go in a direction toward the 

designer’s desirable outcome, i.e., prolonging the system 

lifetime.  

Our work has the following unique contributions: 
1. We develop a new concept of attack/defense strategies by 

attackers/defenders while they execute their required IDS 
functions in the form of voting-based intrusion detection in 
an ADIoTS. At the host-level each node is required to 
monitor every neighbor node based on preloaded anomaly 
detection mechanisms to judge if the neighbor node is 
behaving or misbehaving, At the system-level, a group of 
nodes around a target neighbor node if selected must 
perform “IDS majority voting” to decide if the target 
neighbor node is behaving or misbehaving. More 
specifically, when asked to express its opinion about 
whether a target node in the neighborhood is behaving, a 
node must vote “yes” (meaning behaving) or “no” (meaning 
misbehaving) toward the target node. A malicious node can 
perform “ballot-stuffing” attacks by voting “yes” toward 
another malicious node to keep the malicious target node in 
the system. A malicious node can also perform “bad-
mouthing” attacks by voting “no” toward a good node to 
evict the good target node from the system, especially if 
doing so does not expose itself as a malicious node. When 
the majority of votes is “no” the target node is evicted. For 
the case in which a malicious node is voted “yes” by a 
majority, the system results in a false negative. For the case 
in which a good node is voted “no” by a majority, the system 
results in a false positive. Malicious nodes would apply the 
“best” attack strategies with the goal to shorten the system 
lifetime. Good nodes (i.e., defenders) on the other hand 
would select the “best” defense strategies to prolong the 
system lifetime. The attack/defense behavior therefore is set 
up within the context of IDS voting whose effectiveness is 
measured by the false negative probability and false positive 
probability which together affect the system lifetime. 

2. We develop an analytical model based on Stochastic Petri 
Net (SPN) modeling techniques [11-23] to describe the 
dynamics of IDS attack/defense strategies and examine 
their effect on system lifetime.  

3. We develop a novel iterative computational procedure with 
computational complexity of 𝑂(𝑛) where 𝑛 is the number  



of nodes in an ADIoTS to make it computationally feasible 
to analyze a large ADIoTS. 

The rest of the paper is organized as follows: Section 2 
discusses intrusion detection attack-defense strategies. Section 
3 develops an analytical model and an iterative computational 
procedure for quantifying the effect of attack/defense strategies 
on system lifetime. Section 4 conducts a performance 
evaluation. Finally, Section 5 summarizes the paper and 
outlines future work. 
 

2. ATTACK/DEFENSE BEHAVIOR MODELING 

2.1 System Failure Types 

Table 2 summarizes possible system failure types: 

• Byzantine failure [24]:  A Byzantine failure occurs if one 
third or more IoT devices in the ADIoTS have been 
compromised as there is no way to reach a consensus for 
decision making. 

• Attrition failure:  An attrition failure occurs if the ADIoTS 

does not have enough IoT devices left to carry out its 

mission. 

• Resource depletion failure: A resource depletion failure 

occurs if energy of IoT devices is too depleted to be able 

to accomplish the mission. 

2.2 Attack Strategies 

Table 2 summarizes possible attack strategies used by a 

malicious node (as an inside attacker) during IDS majority 
voting: 

• Persistent: A malicious node attacks recklessly. When 
serving as a voter during IDS majority voting, it will 
always vote “no” to evict a good node (to cause a false 
positive), and “yes” to retain a bad node (to cause a false 
negative). 

• Random: The attack behavior is the same as a persistent 
attacker except that a malicious node only attacks 
randomly with probability 𝑝𝑎 (0 to 1) to avoid detection. 

• Opportunistic: The attack behavior is the same as a 
persistent attacker except that a malicious node only 
attacks opportunistically. That is, when serving as a voter, 
a malicious node will vote to evict a good node, or to 
retain a bad node, only if there is a majority of bad nodes 
among m nodes being selected to perform majority voting. 

2.3 Defense Strategies 

Table 3 summarizes the defense strategies used by all good 
nodes (as dictated by the defense system) during IDS majority 
voting. The defense strength can be controlled by adjusting the 
following two parameters: 

• The number of voters (m) selected from a target node’s 
location for executing IDS majority voting 

• The intrusion detection interval ( 𝑇𝐼𝐷𝑆)   to control the 
detection frequency at which IDS voting is performed.  

TABLE 1: SYSTEM FAILURE TYPES. 

System Failure Type Meaning 

Byzantine failure 
 

A Byzantine failure occurs if one third or more IoT devices in the ADIoTS have been 
compromised as there is no way to reach a consensus for decision making.    

Attrition failure 
 

An attrition failure occurs if the ADIoTS does not have enough IoT devices left to carry out 
its mission. 

Resource depletion failure  A resource depletion failure occurs if energy of IoT devices is too depleted to be able to 

accomplish the mission. 

 
TABLE 2:   ATTACK STRATEGIES. 

Attack Strategies 

Persistent Attack with probability 1 

Random Attack with probability 𝑃𝑎 to evade 
detection 

Opportunistic Attack only when it sees bad nodes 
selected for IDS voting form a majority 

 

 
TABLE 3:  DEFENSE STRATEGIES. 

Defense Strategies 

Control the number of voters (m) 
selected for IDS voting on a 
suspicious node 

 

Higher m means higher 
detection strength 

 

Control the detection frequency 
at which IDS voting is 
performed, i.e., select the 

detection interval (𝑇𝐼𝐷𝑆)  

Smaller 𝑇𝐼𝐷𝑆 means higher 
detection frequency 
 

 

 



3. PERFORMANCE MODEL 

In this section, we develop a performance model to describe 

the IDS attack-defense dynamics and analyze the effect of 

attack/defense strategies executed by attackers/defenders on 

system lifetime. We also develop an iterative computational 

procedure to make it computationally feasible for a large 

ADIoTS consisting of a large number of IoT devices.  

A performance model must provide the following two pieces 

of information to facilitate modeling of attack/defense 

dynamics: 

1. Location: we like to know the probability that node i is 

located in area l at time t, denoted by 𝑃𝑖,𝑙
𝐿 (𝑡). By inspecting 

𝑃𝑖,𝑙
𝐿 (𝑡) and 𝑃𝑗,𝑙

𝐿 (𝑡), we will know if node i and node j are in 

the same location at time t. 

2. Good/Bad/Evicted status: we like to know the probability 

that node i is good, bad, or evicted at time t, denoted by 

𝑃𝑖
𝑔(𝑡), 𝑃𝑖

𝑏(𝑡)and 𝑃𝑖
𝑒(𝑡), respectively, with 𝑃𝑖

𝑔(𝑡) + 𝑃𝑖
𝑏(𝑡) + 

𝑃𝑖
𝑒(𝑡) = 1.  By inspecting 𝑃𝑖

𝑔(𝑡), 𝑃𝑖
𝑏(𝑡)and 𝑃𝑖

𝑒(𝑡)for node i, 

𝑃𝑗
𝑔(𝑡), 𝑃𝑗

𝑏(𝑡)and 𝑃𝑗
𝑒(𝑡)for node j, 𝑃𝑘

𝑔(𝑡), 𝑃𝑘
𝑏(𝑡)and 𝑃𝑘

𝑒(𝑡) 

for node k, etc. we know the attack/defense strength at time 

t. If a good target node is surrounded by many bad nodes, 

then there is a high probability that the good target node will 

be misidentified as a bad node (thus causing a false positive) 

and a bad target node will be misidentified as a good node 

(thus causing a false negative). 

We use Stochastic Petri Net (SPN) modeling techniques to 

provide us the above two pieces of information. We utilize a 

tool called SPNP [11] to define and evaluate SPN node models 

describing node attack-defense behaviors and status, so as to 

measure the system performance metrics for performance 

analysis.  

Figure 1 shows the SPN node model for node i for modeling 

the location and status of node i over time. It consists of a 

location subnet (top left) providing the location information of 

node I at time t, a timer/energy subnet (top right) providing the 

energy status of node i, and a compromise undetected/detected 

status subnet (bottom) keeping track of if node i has been 

compromised at time t and if the compromise has been detected. 

These subnets are described in more detail in the following 

subsections. Each node in the system is separately modeled by 

a SPN node model. Therefore, there will be many SPN node 

models in the system (i.e., one for each node), but each can be 

run and evaluated separately with our hierarchical modeling 

technique.  

  

 
Figure 1: Node SPN Model. 

3.1 Modeling Node Status 

The location subnet (at the top left of Figure 1) for node i 

provides us information about 𝑃𝑖,𝑙
𝐿 (𝑡).  The id of the current 

location of node i is indicated by the number of tokens in place 

LOC. The autonomous distributed IoT environment can be 

modeled as a M×M location grid, with the unit length equal to 

the wireless radio range (R) and each location is labeled with a 

unique location id. We allow each node to have its own mobility 

pattern specified by a sequence of time-ordered (location id, 

residence time) tuples, meaning that the IoT device stays at a 

location with the location id so indicated for this much time 

with the residence time so indicated. The mobility pattern can 

be generated by simulating the movement of a node following 

a mobility model such as the random movement model or the 

social SWIM mobility model [25]. The transition 

T_LOCATION is triggered when node i moves from its current 

location to the next location with the transition rate calculated 

as 1 𝑅𝑇⁄  where RT is the residence time in the current location. 

Depending on the next location, the number of tokens in place 

LOC is adjusted to reflect the id of the location it resides under 

(after the movement is made), so by looking at the number of 

tokens in place LOC at time t we know the location of node i at 

time t. 

The compromise undetected/detected status subnet (at the 

bottom of Figure 1) for node i gives us information 

about 𝑃𝑖
𝑔(𝑡), 𝑃𝑖

𝑏(𝑡) and 𝑃𝑖
𝑒(𝑡). The status of node i is indicated 

by a token which flows from one place to another. Place UCN 

indicates that node i is compromised. A node is compromised 

when transition T_COMPRO with rate 𝜆𝑐𝑜𝑚 fires where 𝜆𝑐𝑜𝑚 

is the per-node capture rate. The transition T_COMPRO is 

enabled if the node is not yet compromised or evicted. When 

node i is compromised, a token goes to UCN, meaning that node 

i is now a malicious node not yet detected by IDS, so it may 

perform persistent, random, or opportunistic attacks. Place 

DCN means that node i is evicted. An eviction can occur in two 

ways. The first way is that node i was compromised (i.e., the 

token was in place UCN) and is correctly identified by the 

system IDS, causing the token to flow from into DCN and node 

i to be evicted immediately. The transition rate of T_IDS is 

(1 − 𝑃𝑓𝑛
𝐼𝐷𝑆) 𝑇𝐼𝐷𝑆⁄  where 𝑃𝑓𝑛

𝐼𝐷𝑆 (derived in Equation 1 below) is 

the false negative probability of the system IDS and 𝑇𝐼𝐷𝑆 is the 

IDS detection interval. The second way is that node i was a 

good node but is misidentified as a bad node by the system IDS, 

causing the token to be deposited in place DCN and node i to 

be evicted immediately. The transition rate of T_IDSFA is 

𝑃𝑓𝑝
𝐼𝐷𝑆 𝑇𝐼𝐷𝑆⁄  where 𝑃𝑓𝑝

𝐼𝐷𝑆(derived in Equation 1 below) is the false 

positive probability of the system IDS. 

 

 UCN 

T_COMPRO 

DCN 

DCN 

T_IDS 

LOC 

T_LOCATION 

T_IDSFA 

TIME 

(Energy) 

T_TIMER 



The timer subnet (at the top right of Figure 1) keeps track of 

elapsed time in the node SPN model. After 𝑇𝐼𝐷𝑆 is elapsed, 

T_TIMER fires and a token is added to place TIME. T_TIMER 

is disabled when the node is evicted (i.e., when a token is in 

place DCN). By looking at the number of tokens in place TIME, 

one can tell the current time. This information allows 𝑃𝑓𝑝
𝐼𝐷𝑆and 

𝑃𝑓𝑛
𝐼𝐷𝑆to be updated in increment of 𝑇𝐼𝐷𝑆 dynamically to reflect 

the effect of IDS attacker/defense dynamics on 𝑃𝑓𝑝
𝐼𝐷𝑆and 𝑃𝑓𝑛

𝐼𝐷𝑆.  

We also use the timer subnet as the energy subnet with each 

token deposited in place TIME indicating the amount of energy 

spent by node i in an intrusion detection cycle. By knowing the 

number of IDS cycles elapsed (from place TIME) and the 

percentage of energy spent by node i per cycle for executing 

monitoring, reporting, and performing IDS functions, denoted 

by 𝑃𝑒 , we can estimate the remaining energy of node i at time t. 

3.2 Modeling Attacker/Defender Strategies 

An attacker can perform persistent, random, or opportunistic 

attacks while participating in the majority voting IDS function. 

The attack strategy chosen affects the system IDS performance 

measured by the false negative probability (𝑃𝑓𝑛
𝐼𝐷𝑆) and the false 

positive probability (𝑃𝑓𝑝
𝐼𝐷𝑆).   

We derive the false positive probability (𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡, 𝑙)) and false 

negative probability (𝑃𝑓𝑛
𝐼𝐷𝑆(𝑡, 𝑙)) for diagnosing a target node at 

location l and time t surrounded by 𝑛𝑔𝑜𝑜𝑑(𝑡, 𝑙) good nodes and 

𝑛𝑏𝑎𝑑(𝑡, 𝑙) bad nodes. Henceforth, the notation (𝑡, 𝑙) at the end 

of a symbol is omitted for brevity.  

Equation 1 above gives a closed-form solution for 𝑃𝑓𝑝
𝐼𝐷𝑆and 

𝑃𝑓𝑛
𝐼𝐷𝑆 under random attack behavior where 𝐶 (

𝑎

𝑏
)  is the # of 

combinations to select a from b, 𝑛𝑏𝑎𝑑
𝑎  and 𝑛𝑏𝑎𝑑

𝑖  are the numbers 

of “active” and “inactive” bad nodes, given by 𝑛𝑏𝑎𝑑 × 𝑝𝑎 and 

𝑛𝑏𝑎𝑑 × (1 − 𝑝𝑎), respectively; 𝑚𝑚𝑎𝑗 is the minimum majority 

of m, e.g., 3 is the minimum majority of 5; and ⍵ is 𝐻𝑝𝑓𝑝 for 

calculating 𝑃𝑓𝑝
𝐼𝐷𝑆 and 𝐻𝑝𝑓𝑛 for calculating 𝑃𝑓𝑛

𝐼𝐷𝑆. Here 𝐻𝑝𝑓𝑝  and 

𝐻𝑝𝑓𝑛 are the host-level false positive probability and false 

negative probability, respectively, as a result of each node 

executing host-level IDS duties monitoring behaving or 

misbehaving of a neighbor node as described earlier. They are 

given as input at the system start-up time. 

Here we note that persistent attack is a special case of random 

attack with 𝑝𝑎 = 1. Equation 1 can also be used to model 

opportunistic attack behavior such that 𝑝𝑎 = 1 when during 

IDS voting, more than one half of the nodes selected for IDS 

voting are bad nodes, thus resulting in 𝑃𝑓𝑝
𝐼𝐷𝑆 = 1 and 𝑃𝑓𝑛

𝐼𝐷𝑆 = 1. 

If more than one half of the nodes selected for IDS voting are 

good nodes, an opportunistic attacker would simply fall back to 

random attack behavior because there is still a chance good 

nodes can still vote to evict a good target node (with probability 

𝐻𝑝𝑓𝑝 ), or retain a bad target node (with probability 𝐻𝑝𝑓𝑛).   

3.3 Computational Procedure 

The underlying model of a node SPN model as shown in 

Figure 1 is a continuous-time semi-Markov process with 4 state 

components, LOC, TIME, UCN and DCN, describing the 

behavior of a node as time progresses.  

One could put all node SPN models into one big SPN model 

and run it in SPNP [11] to yield the system mean time to failure 

(MTTF) as the performance metric. However, the 

computational complexity is 𝑂(𝑐𝑛) where 𝑐 = 4 is the number 

of state components (LOC, TIME, UCN and DCN) and 𝑛 is the 

number of nodes in the ADIoTS. It is computationally 

infeasible for a large n because of the state explosion problem. 

We develop an iterative computational procedure with linear 

complexity of 𝑂(𝑛) to make it computationally feasible for a 

large ADIoTS. The computational complexity is 𝑂(𝑛) because 

we run each node SPN model one at a time and then integrate 

their outputs. This computation is performed iteratively until 

convergence.   

The basic idea of our iterative computational procedure is to 

update the false positive probability 𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡) and false negative 

probability 𝑃𝑓𝑛
𝐼𝐷𝑆(𝑡) iteratively until convergence, as follows: 

1) Run each node SPN model for node i to completion 

using SPNP [11] until node i is in an absorbing state, i.e., until 

node i is evicted (i.e., a token is in place DCN) or until energy 

is exhausted (i.e., maximum tokens are in place TIME). Set 

𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡) and 𝑃𝑓𝑛

𝐼𝐷𝑆(𝑡) to 5% in the first iteration. Reset them to 

the new values computed in step 3 in subsequent iterations. 

2) For each node SPN model for node i, generate the output 

𝑃𝑖,𝑙
𝐿 (𝑡), 𝑃𝑖

𝑔(𝑡), 𝑃𝑖
𝑏(𝑡), and 𝑃𝑖

𝑒(𝑡) in increment of 𝑇𝐼𝐷𝑆.  

3) Compute the false positive probability 𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡) and false 

negative probability 𝑃𝑓𝑛
𝐼𝐷𝑆(𝑡)  in increment of 𝑇𝐼𝐷𝑆 for node i 

based on 𝑃𝑖,𝑙
𝐿 (𝑡), 𝑃𝑖

𝑔(𝑡), 𝑃𝑖
𝑏(𝑡) and 𝑃𝑖

𝑒(𝑡) reported by all nodes 

in step 2. The time t at which the computation is performed can 

be looked up by inspecting the number of tokens in place TIME. 

Specifically,  

𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡)  = ∑ 𝑃𝑖,𝑙

𝐿 (𝑡)𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡, 𝑙)                                (2)

𝑙
  

𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡, 𝑙) 𝑜𝑟 𝑃𝑓𝑛

𝐼𝐷𝑆(𝑡, 𝑙) = 

∑

[
 
 
 
 𝐶 (

𝑛𝑏𝑎𝑑
𝑎

𝑚𝑚𝑎𝑗 + 𝑖
) ×  𝐶 (

𝑛𝑔𝑜𝑜𝑑 + 𝑛𝑏𝑎𝑑
𝑖

𝑚 − (𝑚𝑚𝑎𝑗 + 𝑖)
)

𝐶 (𝑛𝑏𝑎𝑑
𝑎 + 𝑛𝑏𝑎𝑑

𝑖 + 𝑛𝑔𝑜𝑜𝑑

𝑚
)

]
 
 
 
 𝑚−𝑚𝑚𝑎𝑗

𝑖=0

+ ∑

[
 
 
 
 𝐶 (

𝑛𝑏𝑎𝑑
𝑎

𝑖
) × ∑ [𝐶 (

𝑛𝑔𝑜𝑜𝑑 + 𝑛𝑏𝑎𝑑
𝑖

𝑗
) × ⍵𝑗 × 𝐶 (

𝑛𝑔𝑜𝑜𝑑 + 𝑛𝑏𝑎𝑑
𝑖 − 𝑗

𝑚 − 𝑖 − 𝑗
) × (1 − ⍵)𝑚−𝑖−𝑗]𝑚−𝑖

𝑗=𝑚𝑚𝑎𝑗−𝑖

𝐶 (𝑛𝑏𝑎𝑑
𝑎 + 𝑛𝑏𝑎𝑑

𝑖 + 𝑛𝑔𝑜𝑜𝑑

𝑚
)

]
 
 
 
 𝑚−𝑚𝑚𝑎𝑗

𝑖=0

 

(1)  



where 𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡, 𝑙) is computed based on Equation 1 with 

𝑛𝑏𝑎𝑑(𝑡, 𝑙) = ∑ 𝑃𝑘,𝑙
𝐿 (𝑡)𝑃𝑘

𝑏(𝑡)𝑘≠𝑖
𝑘  and 𝑛𝑔𝑜𝑜𝑑(𝑡, 𝑙) = 

∑ 𝑃𝑘,𝑙
𝐿 (𝑡)𝑃𝑘

𝑔(𝑡)𝑘≠𝑖
𝑘 .   

4) Check if the Mean Percentage Difference (MPD) of an 

important parameter 𝑋𝑖(𝑡)  of node i (such as 𝑃𝑓𝑛
𝐼𝐷𝑆(𝑡))  in 

iteration j and iteration j+1 is less than the minimum threshold 

(set at 1%), i.e., |𝑋𝑖
𝑗+1 (𝑡) − 𝑋𝑖

𝑗 (𝑡)|/𝑋𝑖
𝑗(𝑡) < 1%. If no, go to step 

1 to continue the iterative computational process. If yes, 

compute the MTTF of the system based on the failure 

conditions defined in Table 1 and exit. For attrition failure, 

MTTF can be identified by first sorting the mean time to 

bad/evicted status for all nodes and then the first time at which 

the number of good nodes falls below the system allowable 

minimum threshold (𝑛𝑔𝑜𝑜𝑑
𝑇𝐻 )  is the MTTF. For Byzantine 

failure, the first time at which the number of bad nodes is equal 

to or greater than 1/3 of the total number of good and bad nodes 

is the MTTF.  For resource depletion failure, the first time at 

which no token is in place TIME in the timer subnet is the 

MTTF. 

4. EVALUATION 

TABLE 4: PARAMETERS FOR AN ADIOTS. 

Parameter Meaning Value 

n Number of nodes 128 

𝑛𝑔𝑜𝑜𝑑
𝑇𝐻  Minimum threshold for attrition failure 32 

𝐻𝑝𝑓𝑛 Host IDS false negative probability 5% 

𝐻𝑝𝑓𝑝 Host IDS false positive probability 5% 

𝜆𝑐𝑜𝑚 Per-node capture rate 1/hr 

m Number of voters per IDS voting 3-11 

𝑇𝐼𝐷𝑆 IDS interval 0-1400 sec 

𝑃𝑒 Percentage energy spent per 𝑇𝐼𝐷𝑆 0.01% 

𝑃𝑎 Random attack probability [0, 1] 

𝑀𝑥𝑀 Operation area 64x64 m2 

R Radio range 100 m 

Mobility SWIM Ref [25] 

 

In this section, we conduct an experiment to analyze the 
effect of the interplay of attack/defense strategies on the MTTF 
of an ADIoTS characterized by the set of operational and 
environmental parameter values as listed in Table 4 above.  

There are 128 mobile IoT devices randomly deployed in a 
64x64 m2 operational area, each following the SWIM mobility 
model [25] after deployment. The radio range is 100 m for peer-
to-peer communication for the 128 nodes. When there are less 
than 32 devices in the system, the system is not able to perform 
its intended function, leading to an attrition failure. At the host 
level, each device monitors its immediate neighbors with a false 
negative probability 𝐻𝑝𝑓𝑛 of 5% and a false positive probability 

𝐻𝑝𝑓𝑝  of 5%. IoT devices are compromised due to capture 

attacks by which a good device that is being captured is 
converted into a bad device. The per-node capture rate 𝜆𝑐𝑜𝑚 is 
1/hr. Assume that the amount of energy consumed for each IoT 
device in an IDS period is 0.01%. The performance metric is 
the system MTTF which is measured when the system fails due 
to Byzantine, attrition, or energy depletion failure.  

Figure 2 shows the system MTTF (s) vs 𝑇𝐼𝐷𝑆  (s) for the 
ADIoTS in the case in which the attack strategy is persistent 
attack (𝑃𝑎= 1) to quickly fail the system. The defense strategies 
considered are the number of voters (m) in majority voting IDS 
and the IDS detection interval (𝑇𝐼𝐷𝑆). With the persistent attack 
strategy in place, an attacker always performs ballot-stuffing 
(saying a bad node is a good node) and bad-mouthing attacks 
(saying a good node is a bad node) whenever it has a chance, so 
as to cause Byzantine and attrition failures at the fastest pace.  

Under this attacker strategy, there exists an optimal 
𝑇𝐼𝐷𝑆 under which the system lifetime is maximized. This is due 
to the following reasons: When 𝑇𝐼𝐷𝑆 is too low, the frequency 
of performing intrusion detection is high, thus causing energy 
depletion failures to happen early on. When 𝑇𝐼𝐷𝑆 is too high, it 
does not perform intrusion detection often enough to detect and 
remove bad nodes from the system. As a result, many bad nodes 
remain undetected in the system. This also results in a short 
lifetime, due to both Byzantine failure (when at least one third 
of the nodes are bad nodes) and attrition failure (when the 

number of good nodes falls below 𝑛𝑔𝑜𝑜𝑑
𝑇𝐻 ). 

 

 
Figure 2: Optimal Defense Strategies for Maximizing the 

MTTF of an ADIoTS as defined by Table 4. 
 

The effect of the number of voters (m) is clearly 
demonstrated in Figure 2. We observe that the optimal 𝑇𝐼𝐷𝑆 
depends on m and m = 5 is the best choice of this defense 
strategy for maximizing the system lifetime for the example 
ADIoTS. The reason is as follows: When m is high, it tends to 
deplete energy early on thus causing resource depletion failure. 
When m is low, it tends to leave too many bad nodes undetected 
in the system, thus causing Byzantine or attrition failure. 
Consequently, m = 5 can best balance resource depletion failure 
versus Byzantine or attrition failure to maximize the system 
lifetime. 

The most striking observation is that an optimal defense 
strategy exists in terms of the best (𝑇𝐼𝐷𝑆, m) combination that 
will maximize the system MTTF, given knowledge about the 
attacker strategy. Figure 2 is for the case in which the attacker 
strategy is persistent attack. While not reported here due to lack 
of space, we also observe such best (𝑇𝐼𝐷𝑆, m) combination exists 
for other types of attacker strategies (random and opportunistic 
attacks). 



5. CONCLUSION 

In this work, we developed IDS duties that must be executed 
by every node of an autonomous distributed IoT system 
(ADIoTS) with the objective to maximize the system MTTF. 
We developed SPN-based behavior models as well as a scalable 
iterative computational procedure with linear complexity in the 
number of nodes, allowing IDS attack/defense strategies for 
executing voting-based IDS functions to be specified and 
analyzed. We demonstrated the applicability with a selected set 
of attack-defense strategies and identified optimal defense 
settings in terms of the best (𝑇𝐼𝐷𝑆, m) combination under which 
the ADIoTS lifetime is maximized.  

While we identify the best (𝑇𝐼𝐷𝑆 , m) combination that will 
maximize the system MTTF, given knowledge about the 
attacker strategy, we fully understand that the attacker strategy 
is likely to be deceptive and dynamically changed. In the future, 
we plan to extend this work to a game of mechanism design, 
allowing IDS attack/defense strategies to be dynamically 
selected by attackers/defenders to maximize their payoffs, and 
as a result of the interplay the defense system is able to maximize 
the MTTF of the ADIoTS as the outcome. 
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