
Trust as a Service for IoT Service Management in Smart Cities

Ing-Ray Chen, Jia Guo

Computer Science

Virginia Tech

irchen@vt.edu

jiaguo@vt.edu

Ding-Chau Wang

Information Management

Southern Taiwan

University of Science and

Technology

wangdc.stut@gmail.com

Jeffrey J.P. Tsai

Bioinformatics and

Biomedical

Engineering

Asia University

jjptsai@gmail.com

Hamid Al-Hamadi

Computer Science

Kuwait University

hamid@cs.ku.edu.kw

Ilsun You

Information

Security

Engineering

Soonchunhyang

University

ilsunu@gmail.com

Abstract— We propose and analyze a cloud utility called

Trust as a Service (TaaS) for service management of Internet of

Things (IoT) devices in smart cities. The major challenge in IoT

service management in smart cities is the selection of trustworthy

IoT service providers. TaaS preserves the notion that trust is

subjective despite the fact that trust computation is performed by

the centralized cloud. We validate TaaS with two smart city IoT

applications and compare its performance against contemporary

trust-based service management protocols.

Keywords—Internet of things, smart city, trust management,

service management.

1. INTRODUCTION

A future smart city will consist of a huge number of
autonomous Internet of Things (IoT) devices capable of
providing services upon request [2]. The major challenge in
IoT service management is the selection of trustworthy IoT
service providers because not all IoT devices will be
trustworthy and some IoT devices may behave maliciously to
disrupt the IoT service management framework (e.g., in a
terrorist attack scenario) or just for their own gain (e.g., to
monopoly a particular type of service). In this paper, we
propose and analyze a cloud utility called Trust as a Service
(TaaS) for service management of IoT objects in smart cities.
Under TaaS, an IoT device can query the “service
trustworthiness” score in the range of 0 to 1 of a target IoT
device for a particular type of service through the cloud utility.
Based on the service trustworthiness score received, the IoT
device can then determine if it wants to request or receive
service from the target IoT service provider.

In our design, TaaS is made possible by a group of cloud
servers (in a public cloud) whose size scales linearly with the
number of IoT devices. TaaS is realized by following a novel
“report-and-query” paradigm. Specifically, a user upon a
service completion simply reports to its home cloud server of
the user satisfaction result. To know if a target IoT device is
trustworthy in providing a particular service, a user simply
sends a query to its home cloud server even if the user has not
had any service experience with the target IoT device. The
server will return a trust value formed by considering self-
observations from the user (if any exists) as well as
recommendations from other users filtered by the user’s own
opinion if these recommenders are credible. Our design
preserves the notion that trust is “subjective” despite the fact
that trust computation is performed in the centralized cloud.

We validate TaaS by applying TaaS to two smart city IoT
applications. We compare the performance of TaaS against
two most-cited trust-based IoT service management protocols
to-date, namely, Adaptive IoT Trust [8] and ObjectiveTrust
[19], in selecting trustworthy service providers to maximize
the application performance. The contribution of our work lies
in design and validation of TaaS demonstrating its
applicability as well as its superiority over contemporary trust-
based IoT service management protocols when applying to
smart city IoT applications.

The rest of the paper is organized as follows. Section 2
surveys related work and contrasts TaaS with existing trust-
based IoT service management protocols. Section 3 discusses
the system model. Section 4 provides a detailed description of
TaaS design and implementation. In Section 5 we validate
TaaS with two smart city IoT applications and conduct a
comparative performance analysis of TaaS against Adaptive
IoT Trust [8] and ObjectiveTrust [19]. Finally in Section 6 we
conclude the paper and outline some future research areas.

2. RELATED WORK

Trust management protocols for IoT systems are still
emerging. A comprehensive survey can be found in [12].
There are only a handful of IoT trust protocols designed and
evaluated to-date [1, 3-8, 19, 20, 23]. Among the
contemporary IoT trust management protocols, we select two
very recent yet most cited protocols, namely, Adaptive IoT
Trust [8] and ObjectiveTrust [19], as baseline IoT trust
protocols against which TaaS is compared for a comparative
performance analysis.

The reason we select Adaptive IoT Trust [8] is that it, like
TaaS, also considers adaptive trust management to
dynamically combine own experiences with recommendation
based on the amount of own experiences in hand and uses
social similarity as credibility for recommendation filtering.
Also, it was shown in [8] that Adaptive IoT Trust outperforms
existing distributed P2P trust protocols, including EigenTrust
[15], PeerTrust [26], and ServiceTrust [25], so we are
interested in knowing if TaaS, a cloud-based IoT trust
protocol, can perform better than Adaptive IoT Trust, a proven
distributed IoT trust protocol. The reason we select
ObjectiveTrust [19] is that it is the only other centralized IoT
trust protocol to-date that considers social standing and
relationships for credibility rating and recommendation
filtering.

Below we provide an overview of the two baseline trust-
based IoT service management protocols and compare and
contrast them with TaaS.

Adaptive IoT Trust [8] is a distributed IoT trust
management protocol where each IoT device evaluates other
IoT devices using both direct service experiences and indirect
recommendations. Adaptive trust management is achieved by
determining the best way to combine direct trust (from direct
experiences) and indirect trust (from recommendations)
dynamically to minimize convergence time and trust
estimation bias in the presence of malicious nodes performing
collusion attacks. Direct service experiences are collected
based on own service experiences, while recommendations are
collected at the time nodes encounter each other through
social contacts. They used social similarity to rate
recommenders. A common problem with a distributed IoT
trust protocol such as Adaptive IoT Trust [8] is that a node
may not encounter each other often to collect enough
recommendations to make informed decisions. Also all trust
data are stored by individual IoT devices, which can be a
problem for resource-constrained IoT devices, especially
when the number of IoT devices is high in a large-scale IoT
system. Our approach based on TaaS does not have such
constraints.

ObjectiveTrust [19] is a centralized IoT trust management
system that assesses the trust score of a node through a
weighted sum of the “centrality” score and the average
opinion score (long term and short term) after applying the
recommender’s credibility score to filter untrustworthy
recommendations. Specifically, ObjectiveTrust computes the
centrality score (in the range of 0 to 1) of j based on if j is
central in the network and if it is involved in many
transactions. The credibility score of k (a recommender that
provides opinions about i) is proportional to k’s trust score
because a trustworthy node does not lie, but is inversely
proportional to the capability of k, the strong object
relationship (including ownership, co-location, co-work,
social, and parental) between i and k, and the number of
transactions between i and k because high-capability and
intimate nodes may collude. A common problem of a
centralized IoT trust protocol such as ObjectiveTrust [19] is
that it only computes the “objective trust” (common belief or
reputation), not the “subjective trust” of an IoT device as TaaS
and Adaptive IoT Trust do, so it does not preserve the notion
that trust is subjective and is inherently one-to-one. This is
especially problematic for IoT systems since IoT devices are
owned by humans who have social relationships among
themselves and the trust of one user toward another user is
inherently one-to-one and subjective.

3. SYSTEM MODEL

3.1 TaaS Model

As illustrated in Figure 1, we consider a smart city
environment populated with a large number of smart IoT
devices which can be service providers (SPs) when they
provide service or service requestors (SRs) when they request
for service, with NC cloud servers (in a public cloud) being
allocated to implement TaaS as a cloud utility to users
participating in a particular IoT service community such as an

ozone (O3) health group. Users in the O3 health group
voluntarily sense and report the O3 levels of the locations they
roam into. These cloud servers are assumed to be trusted and,
among many service functions, provide TaaS for an IoT device
to query the one-to-one “subjective” trust level of a target IoT
device for the purpose of determining if the O3 level reported
by the target IoT device is trustworthy.

We assume that each node (a user or an IoT device) has its
unique identity. A user’s unique id is at the cloud service level.
An IoT device’s unique id is at the device level. Each user
maps to a “home” cloud server using its unique id based on
distributed hash table techniques. In Figure 1, 𝐶𝑆2 is the home
cloud server of user 𝑢2 and 𝐶𝑆3 is the home cloud server of
user 𝑢3. For the case in which a user owns several IoT devices,
all IoT devices also map to the owner’s home cloud server as
their home cloud server.

d3

d2

Home cloud

server of u3

u3

u2

d1

CS1

CS3

u1

Home cloud

server of u2

ResponseReport and Query

CS2

Figure 1: Information Flow in TaaS.

Whether a user has confidence on a recommender is based
on social relationships among humans who are owners of IoT
devices. Hence the trustor is a user and the trustee is an IoT
device (owned by another user). The trust relationship is not
between a user trustor and a user trustee because a user may
own several IoT devices with vastly heterogeneous
capabilities. Specifically, we use the social relationships
between a trustor and a recommender (who provides a service
trustworthiness score or service rating toward a trustee) as the
trustor’s “subjective” credibility toward the recommender. We
consider three core social metrics for measuring social
relationships which are multifaceted [24]: friendship
(representing intimacy), social contact (representing closeness),
and community of interest (representing knowledge and
standard on the subject matter). The idea is that two users
sharing similar social relationships are likely to have similar
subjective views towards services provided by a trustee IoT
device. Social relationships between owners are translated into
social relationships between IoT devices as follows:

1. Friendship: Each owner has a list of friends (i.e., other
owners), representing its social relationships. Specifically,
each user 𝑢𝑥 maintains a set of friends, denoted by 𝐹𝑥 =
{𝑢1, 𝑢2, … }. This friendship list varies dynamically as an
owner makes or denies other owners as friends. If the
owners of two IoT devices are friends, then it is likely they
will be cooperative with each other.

2. Social Contact: A device may be carried or operated by its
owner in certain environments (e.g., at work, school, home,
or social-event locations). Two devices have high social
contact opportunities when their owners have similar
mobility patterns or go to the same locations. Specifically,
each user 𝑢𝑥 maintains a set of locations that 𝑢𝑥 frequently
visited for social contact, denoted by a set 𝑆𝑥 = {𝐿𝑜𝑐1 ,
𝐿𝑜𝑐2, … }.

3. Community of Interest (CoI): Each owner has a list of
communities of interest such as health, sport, travel, etc.
Nodes belonging to a similar set of communities likely
share similar interests or capabilities [1]. Specifically, each
user 𝑢𝑥 maintains a set of communities of interest that 𝑢𝑥 is
a member of, denoted by a set 𝐶𝑥 = {𝐶𝑜𝐼1, 𝐶𝑜𝐼2, … }.

3.2 Attack Model

A malicious node in general can perform communication
protocol attacks to disrupt network operations. We assume
such attack is handled by intrusion detection techniques [10,
17, 18] and is not addressed in this paper. We are concerned
with trust-related attacks that can disrupt the trust system. Bad-
mouthing and ballot-stuffing attacks are the most common
forms of recommendation attacks. Bad-mouthing and ballot-
stuffing attacks can be considered as a form of collaborative
attacks to the trust system to ruin the trust of (and thus to
victimize) good nodes and to boost the trust of malicious
nodes. Self-promoting and opportunistic service attacks are the
most common forms of attacks based on self-interest [9, 11,
27]. In this paper we consider a malicious IoT device (because
its owner is malicious) capable of performing the following
trust-related attacks (on top of on-off attacks) and our TaaS
protocol design must maintain desirable accuracy,
convergence, and resiliency properties against these attacks:

1. Self-promoting attacks: a service provider can promote its
importance (by providing good recommendations for itself)
for it to be selected as a service provider, but then can
provide bad or malfunctioned service.

2. Bad-mouthing attacks: a recommender can ruin the
reputation of a well-behaved IoT service provider (by
providing bad recommendations against it) so as to
decrease the chance of that good device being selected as a
service provider.

3. Ballot-stuffing attacks: a recommender can boost the
reputation of a misbehaving IoT service provider (by
providing good recommendations) so as to increase the
chance of that bad device being selected as a service
provider.

4. Discriminatory attacks (or conflicting behavior attacks): a
service provider can discriminatively attack non-friends or
nodes without strong social ties (without many common
friends) because of human nature or propensity towards
friends in social IoT systems.

5. Opportunistic service attacks: a malicious node can provide
good service to gain high reputation opportunistically
especially when it senses its reputation is dropping because
of providing bad service. With good reputation, it can

effectively collude with other bad node to perform bad-
mouthing and ballot-stuffing attacks.

4. TAAS PROTOCOL DESCRIPTION

4.1 Reporting

Whenever a service is rendered, a user (using its primary
IoT device) reports whether it is satisfied with the service
provided by an IoT device to the user’s home cloud server via
a service rating report. Let the current user satisfaction
experience of user 𝑢𝑥 toward device 𝑑𝑖 be represented by a
value, 𝑓𝑥,𝑖 which can be a real number in the range of 0 to 1

indicating the user satisfaction level, or simply a binary value,
with 1 indicating satisfied and 0 not satisfied. Here 𝑓𝑥,𝑖 is the

first piece of information sent from 𝑢𝑥 to its home cloud
server. For example in Figure 1, 𝑢3 will send 𝑓3,1 to 𝐶𝑆3, the

home cloud server of 𝑢3, whenever a service is rendered by
𝑑1. A timestamp is also sent in the report to indicate the time
at which this service rating happens. This allows cloud servers
to know the event occurrence times of reports for regression
analysis if necessary.

When user 𝑢𝑥 encounters user 𝑢𝑦 they exchange their

(𝐹𝑥, 𝑆𝑥 , 𝐶𝑥) and (𝐹𝑦 , 𝑆𝑦 , 𝐶𝑦) profiles so as to measure their

mutual social similarity. For privacy and authentication, user
𝑢𝑥 uses a cryptographic hash function in combination with a
secret session key K to generate a hash-based message

authentication code HMAC(K, x) for x  (𝐹𝑥, 𝑆𝑥 , 𝐶𝑥) and then
transmits HMAC(K, x) along with HMAC(K, HMAC(K, x)) to
𝑢𝑦. When 𝑢𝑦 receives the message, it can unilaterally generate

HMAC(K, HMAC(K, x)) using HMAC(K, x) sent by 𝑢𝑥. If
this matches with HMAC(K, HMAC(K, x)) sent by 𝑢𝑥, then
𝑢𝑦 verifies the authentication of the message received. Then

𝑢𝑦 can compare HMAC(K, x) with HMAC(K, y) for y 

(𝐹𝑦, 𝑆𝑦 , 𝐶𝑦). If HMAC(K, x)=HMAC(K, y) then x=y and a

common friend/device is identified. If HMAC(K,
x)≠HMAC(K, y), it prevents the identities of uncommon
friends/devices from being revealed to preserve privacy. With
the (F, S, X) profile exchanged, user 𝑢𝑥 applies cosine
similarity as in [8] to compute the social similarity between 𝑢𝑥
and 𝑢𝑦 in friendship, social contact and CoI, denoted

by 𝑠𝑖𝑚𝑖(𝑢𝑥 , 𝑢𝑦), 𝑖 ∈ {𝑓, 𝑠, 𝑐}, which is the second piece of

information sent from 𝑢𝑥 to its home cloud server. The above
three social similarity measures (𝑠𝑖𝑚𝑓 , 𝑠𝑖𝑚𝑠, 𝑠𝑖𝑚𝑐) are

computed upon encountering of user 𝑢𝑥 and user 𝑢𝑦, and are

stored in the home cloud servers of user 𝑢𝑥 and user 𝑢𝑦 . For

example, in Figure 1 after 𝑢2 encounters 𝑢3 they will each
compute the three social similarity measures
(𝑠𝑖𝑚𝑓 , 𝑠𝑖𝑚𝑠, 𝑠𝑖𝑚𝑐) and store the results in the home cloud

servers 𝐶𝑆2 and 𝐶𝑆3 , respectively. When a home server
receives these similarity scores, the home server applies a

social relationship weighted sum formula 𝑠𝑖𝑚(𝑢𝑥, 𝑢𝑦) =

∑ 𝑤𝑖 𝑠𝑖𝑚𝑖(𝑢𝑥, 𝑢𝑦)𝑖∈{𝑓,𝑠,𝑐} to compute the overall similarity

score between 𝑢𝑥 and 𝑢𝑦. The weights assigned to

𝑠𝑖𝑚𝑖(𝑢𝑥, 𝑢𝑦), 𝑖 ∈ {𝑓, 𝑠, 𝑐}, depend on the application

characteristics and the designer’s belief of what similarity
metric is more important than others in composing the overall
similarity score between two users. We consider 𝑤𝑓 = 𝑤𝑠 =

𝑤𝑐 = 1/3 in this paper.

4.2 Querying and Replying

Whenever a user wants to know the trust value of an IoT
device, it simply sends a query to its home cloud server. For
example, in Figure 1, 𝑢2 will send a query to its home cloud
server 𝐶𝑆2 to know the “subjective” trust value of 𝑑2 which
belongs to 𝑢3.

Let the “subjective” trust value of user 𝑢𝑥 toward 𝑑𝑖 be
denoted by 𝑡𝑥,𝑖 . The home cloud server of 𝑢𝑥 computes 𝑡𝑥,𝑖 by

combining 𝑢𝑥
′ 𝑠 direct trust toward 𝑑𝑖 (𝑡𝑥,𝑖

𝑑) based on its own

service rating reports, and 𝑢𝑥
′ 𝑠 indirect trust toward 𝑑𝑖 (𝑡𝑥,𝑖

𝑟)

based on other service rating reports submitted by other users,
as follows:

𝑡𝑥,𝑖 = 𝜇𝑥,𝑖 ∙ 𝑡𝑥,𝑖
𝑑 + (1 − 𝜇𝑥,𝑖) ∙ 𝑡𝑥,𝑖

𝑟 (1)

Here, 𝜇𝑥,𝑖 is a weight parameter (0 ≤ 𝜇 ≤ 1) to weigh the

importance of direct trust relative to indirect trust. The
selection of 𝜇𝑥,𝑖 is critical to trust evaluation. As in [8], we

apply adaptive filtering to adjust 𝜇𝑥,𝑖 dynamically to

effectively cope with malicious attacks and to improve trust
evaluation performance.

To compute direct trust 𝑡𝑥,𝑖
𝑑 , we adopt Bayesian framework

[14] as the underlying model. The reason we choose Bayesian
because it is well-established and because of its popularity in
trust/reputation systems. In service computing, a service
requester would rate a service provider after a service is
rendered based on nonfunctional characteristics. The
nonfunctional characteristics include user-observed service
delay, service quality received, prices, etc. Then, we can
consider the service rating 𝑓𝑥,𝑖 as a Bernoulli trial with the

probability of success parameter 𝜃𝑥,𝑖 following a Beta

distribution (a conjugate prior for the Bernoulli distribution),
i.e., Beta(𝛼𝑥,𝑖, 𝛽𝑥,𝑖). Then, the posterior p(𝜃𝑥,𝑖 |𝑓𝑥,𝑖) has a Beta

distribution as well. The model parameters 𝛼𝑥,𝑖 and 𝛽𝑥,𝑖 are

updated as follows:

𝛼𝑥,𝑖 = 𝛼𝑥,𝑖
(𝑜𝑙𝑑)

+ 𝑓𝑥,𝑖

𝛽𝑥,𝑖 = 𝛽𝑥,𝑖
(𝑜𝑙𝑑)

+ 1 − 𝑓𝑥,𝑖

 (2)

In Equation (2), 𝑓𝑥,𝑖 contributes to positive service

experience and 1 − 𝑓𝑥,𝑖 contributes to negative service

experience. The direct trust 𝑡𝑥,𝑖
𝑑 of user 𝑢𝑥 toward device 𝑑𝑖

then can be computed as the expected value of 𝜃𝑥,𝑖, i.e.,

𝑡𝑥,𝑖
𝑑 = 𝐸[𝜃𝑥,𝑖] =

𝛼𝑥,𝑖

𝛼𝑥,𝑖 + 𝛽𝑥,𝑖

 (3)

Specifically, the home cloud server of 𝑢𝑥 updates 𝛼𝑥,𝑖 and

𝛽𝑥,𝑖whenever it receives 𝑓𝑥,𝑖 (a service rating report) from user

𝑢𝑥 based on Equation (2) and then computes 𝑡𝑥,𝑖
𝑑 based on

Equation (3).
To compute indirect trust 𝑡𝑥,𝑖

𝑟 , the home cloud server of

𝑢𝑥 first locates social similarity records 𝑠𝑖𝑚(𝑢𝑥, 𝑢𝑦)′𝑠 in its

local storage. The home cloud server of 𝑢𝑥 then selects top-R
recommendations from R users with the highest similarity
values with 𝑢𝑥 and calculates the indirect trust (𝑡𝑥,𝑖

𝑟) towards

device 𝑑𝑖 as follows:

𝑡𝑥,𝑖
𝑟 = ∑

𝑠𝑖𝑚(𝑢𝑥, 𝑢𝑦)

∑ 𝑠𝑖𝑚(𝑢𝑥, 𝑢𝑧)𝑢𝑧∈𝑈

· 𝑡𝑦,𝑖
𝑑

𝑢𝑦∈𝑈

 (4)

Here, 𝑈 is a set of up to R users (R=5 in this paper) whose

𝑠𝑖𝑚(𝑢𝑥, 𝑢𝑦) values are the highest, and 𝑡𝑦,𝑖
𝑑 is the rating or

recommendation provided by user 𝑢𝑦 toward device 𝑑𝑖 , which

is stored in the home cloud server of 𝑢𝑦 but obtainable after

the home cloud server of 𝑢𝑥 communicates with the home
cloud server of 𝑢𝑦.

In Equation (4), the feedback from 𝑢𝑦 toward 𝑑𝑖

(i. e. , 𝑡𝑦,𝑖
𝑑) is weighted by the ratio of the similarity score

toward the rater to the sum of the similarity scores toward all
raters. Here we note that if 𝑢𝑦 is malicious, then it can provide

𝑡𝑦,𝑖
𝑑 =0 against a good IoT device to perform bad-mouthing

attacks, and 𝑡𝑦,𝑖
𝑑 =1 for a bad IoT device to perform ballot-

stuffing attacks.

5. APPLYING TAAS TO SMART CITY IOT APPLICATIONS

In this section, we apply TaaS to two smart city IoT
applications. We compare TaaS performanace against
Adaptive IoT Trust [8] and ObjectiveTrust [19].

5.1 Smart City IoT Application 1: IoT Cloud Participatory
Sensing of Air Quality

This IoT application is taken from [16] where IoT devices
(e.g., smart phones carried by humans or smart cars driven by
humans) can act as participants to collect air quality data and
submit to a processing center located in the cloud for
environmental data analysis. It is especially applicable to a
health IoT group where the main concern is about a pollutant
(O3 in our case study). Users in the group report their O3
sensing results upon receiving a query from a member who
wishes to find out a location’s O3 level at a particular time to
decide if it should enter the location based on its susceptibility
to the O3 level detected.

We use real traces of O3 levels and mobility traces of users
in the O3 health group in the city of Houston and apply it to
our participatory sensing case study. The original dataset in
[22] covers the socio-demographically relevant activity
sequences and the movements of each individual in 4.9 million
synthetic individuals in the Houston metropolitan area. We
extract a portion of this huge database to cover a smaller set of
members in the O3 health group along with their mobility and
activity data around a smaller area. In the case study, we
assume a percentage of nodes, denoted by PM in the range of
[0, 30%], are malicious.

Every day this “good” member issues queries to its home
cloud server before it enters a particular location to know the
O3 level in the location it is about to step into. After collecting
a number of O3 reports from other members, it then performs a
trust-weighted computation to deduce the O3 reading
(described later). If the O3 level is below a threshold, it would
follow its route; otherwise, it will not enter the location or it
will detour to avoid the location because the location has a high
O3 level that can harm its owner’s health. After the query-and-
response event is completed, this “good” member will assess if
an O3 sensing report submitted by another member is
satisfactory and will submit the service experience to its home

server so as to facilitate the implementation of the TaaS cloud
utility with TaaS as the underlying trust protocol.

A node (node i) in the O3 health group can query the ozone
level in a particular location and at a particular time via a
mobile IoT cloud application installed in its smartphone. The
mobile application would send the query to all O3 health
members that are in this particular location via the mobile
cloud application. Upon receiving O3 sensing reports from
other members, node i sends queries via TaaS to get the
trustworthiness scores of these IoT devices who had reported
sensing reports. To filter out untrustworthy O3 sensing reports,
node i first accepts a sensing report (𝑆𝑗) from j only if j is

deemed trustworthy for O3 sensing service (i.e., i’s trust score
toward j, 𝑡𝑖𝑗 , is higher than a minimum trust threshold of 0.5).

Then it computes a trust-weighted O3 level average as follows:

𝑆 = ∑(𝑡𝑖𝑗 / ∑ 𝑡𝑖𝑗)

𝑁

𝑗=1

× 𝑆𝑗 .

𝑁

𝑗=1

 (5)

where N is the number of trustworthy members providing O3
sensing reports in the particular location. If the average O3
level exceeds a maximum threshold defined by i’s owner, node
i will decide not to visit the location because the ozone level
will cause harm to its owner’s health.

Using the ns-3 simulator [21], we simulate the participatory
sensing system. We use real traces of O3 levels and mobility
traces of users in the O3 health group in the city of Houston
[22]. The O3 level can be classified as good condition [0, 50]
ug/m3, medium condition [51, 168] ug/m3 (unhealthy for
sensitive groups), poor condition [169, 208] ug/m3, and severe
condition [209+] ug/m3. The percentage of bad nodes is set at
PM in the range of [0, 30%]. A malicious node always reports
O3 readings in poor condition range [169, 208] ug/m3
regardless of location with the intention to break the system.
Also a malicious node will perform bad-mouthing attacks
(saying a good node’s sensing result is not trustworthy in the
user satisfaction report) and ballot-stuffing attacks (saying a
bad node’s sensing result is trustworthy) when it submits a
service rating report recording its satisfaction experience 𝑠𝑖
toward device 𝑑𝑖 .

We compare TaaS with Adaptive IoT Trust [8] and
ObjectiveTrust [19]. See Section 2 why we select these two
protocols as the baseline protocols for performance
comparison. We measure two performance metrics for
performance evaluation:
1. the trust-weighted average O3 reading vs. ground truth (i.e.,

the actual O3 level at a specific location and a particular
time);

2. the accuracy of selecting trustworthy participants.

Figure 2: Trust-weighted O3 Readings vs. Query Time for
TaaS against Adaptive IoT Trust and ObjectiveTrust.

Figure 2 shows the trust-weighted average O3 readings vs.

the O3-level query time by a selected IoT device acting as a
service requester (SR) asking for O3 readings at various
locations it roams into. The percentage of bad nodes PM is set
at 30% representing a high attacker density scenario. In the
experiment, the SR repeatedly queries the ozone level in the
location that he will visit next over a 250 hour span. Each data
point under a particular trust protocol is the average O3 level
obtained from Equation 5. For example, at time t = 10 hours,
the SR node sends queries via TaaS to get the trustworthiness
scores of those IoT devices that have supplied O3 readings in
the particular location. The SR node accepts results (𝑆𝑗) from

557 trustworthy IoT devices (for which the trust score is higher
than 0.5) for the O3 sensing service out of all 764 members in
that particular location at that particular time and it then
computes the average O3 level based on Equation 5.

The results indicate that TaaS (red line) can provide O3
readings very close to ground truth (black line) as time
progresses. Further, TaaS outperforms Adaptive IoT Trust
(orange line) and ObjectiveTrust (green line) in terms of
accuracy (i.e., the difference between ground truth and the
average O3 levels) and resiliency (against malicious attacks of
30% bad nodes). We attribute this to its ability to effectively
and adaptively aggregate trust evidence from all nodes in the
system through our effective and efficient localized report-and-
query mechanism design. We draw a line “Dangerous O3
Level” for a user whose “dangerous O3 level” is 68 as
diagnosed by his/her doctor as vulnerable to O3 exposure for
long hours. We see that at time t=130, 180, or 235 (the last
three peaks in the figure) only TaaS will correctly identify the
fact that O3 level is below the dangerous level, while either
Adaptive IoT Trust or ObjectiveTrust will raise a false alarm
that the dangerous O3 level for this user is already reached.

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

Time (hours)

O
3
 L

e
ve

l (
u
g
/m

3
)

Dangerous O
3
 Level

P
M

=30%

Adaptive IoT Trust

ObjectiveTrust

TaaS

Ground Truth

Figure 3: Percentage of Bad IoT Devices Selected to

Provide O3 Sensing Service vs. Query Time for TaaS against
Adaptive IoT Trust and ObjectiveTrust.

Figure 3 shows the percentage of bad nodes selected to

provide sensing results to the SR. TaaS outperforms Adaptive
IoT Trust and ObjectiveTrust as time progresses as more
evidence are collected. The results can be explained as follows:
Compared with Adaptive IoT Trust, TaaS is not being limited
by encountering experiences and can leverage cloud service to
aggregate broad evidence from all nodes who have had sensing
service experiences with participating IoT devices. Compared
with ObjectiveTrust which is based on “objective trust” (i.e.,
common belief), TaaS is based on “subjective trust” (with one-
to-one belief) and can adaptively put a higher weight on a
participant if it has had good O3 sensing experiences with the
particular participant. This allows TaaS to more effectively
select trustworthy participants among all participants that had
submitted O3 sensing reports.

5.2 Smart City IoT Application 2: Travel Planning

This smart city IoT application is taken from [7]: Ed has
never visited New York City. He wants to plan his travel early
on from Seattle, including airline reservation from Seattle to
New York, ground transportation after reaching New York,
hotel reservation at New York, entertainments and attractions
while in New York, hotel shuttle to the airport, etc. Ed instructs
his smart phone to first construct a workflow structure for the
travel and then select from a myriad of IoT SPs to populate the
workflow structure.

Figure 4 shows the service flow structure constructed by
his smartphone. There are 9 atomic services connected by
three types of workflow structures, namely, sequential,
parallel (AND), and selection (OR). Each service would have
multiple SP candidates. The “service trustworthiness score” of
a candidate service composition based on the service flow
structure in Figure 4 can be calculated recursively in the same
way the reliability of a series-parallel connected system is
calculated. Specifically, the service trustworthiness score of a
composite service (whose trustworthiness score is 𝑇𝑠) that
consists of two subservices (whose trustworthiness scores are
𝑇1 and 𝑇2) depends on the structure connecting the two
subservices as follows:

• Sequential structure: 𝑇𝑠 = 𝑇1 × 𝑇2;

• Selection structure (OR): 𝑇𝑠 = max (𝑇1, 𝑇2);

• Parallel structure (AND): 𝑇𝑠 = 1 − (1 − 𝑇1) × (1 − 𝑇2).

Hence given the knowledge of the trustworthiness scores of
individual IoT service providers (SPs) in a composite service
and the configuration of the service composite, we can
recursively compute the overall trustworthiness score of the
composite service.

We again compare TaaS with ObjectiveTrust [19] and
Adaptive IoT Trust [8]. We measure two performance metrics
for performance evaluation for this IoT application:

1. the overall trustworthiness score (called utility score) of the
composite service after service composition and binding;

2. the accuracy of selecting trustworthy IoT service provider
for service composition and binding.

In this IoT application we consider service constraints in
terms of a budget limit. Simply selecting the most trustworthy
SPs may lead to infeasible solutions. Suppose that an IoT
device acting as the SR has a budget limit for the travel
planning composite service. Each IoT SP announces its price
when publishing its service (e.g., car rental, public
transportation, or taxi for transportation service). The SR
would calculate the overall utility score and the overall price
for each candidate composite service based on the
configuration of the composite service as described above.
Then the SR would select the composite service candidate with
the highest utility score among all composite service
candidates with the overall price below the budget limit.

car

rental

public

transportation
taxi

airline

attractions restaurant

shuttle

airline

hotel

or

and

Figure 4: A Service Flow Structure for the Smart City

Travel Planning IoT Application.

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

Time (hours)

P
ro

b
.

o
f

B
a
d
 S

P
 S

e
le

c
ti
o
n

P
M

=30%

Adaptive IoT Trust

ObjectiveTrust

TaaS

Figure 5: Utility Score of the Travel Planning IoT

Application for TaaS against Adaptive IoT Trust and
ObjectiveTrust.

Figure 6: Probability of a Bad SP Being Selected for the

Travel Planning IoT Application for TaaS against Adaptive
IoT Trust and ObjectiveTrust.

Figure 5 shows the utility score obtainable vs. query time

for TaaS against Adaptive IoT Trust [8] and ObjectiveTrust
[19] based on ns-3 simulation results with PM=30%. We again
observe that the trend is similar in terms of performance
ranking, with TaaS (red curve) outperforming Adaptive IoT
Trust and ObjectiveTrust.

Figure 6 shows the percentage of bad nodes selected for
service composition with budget limit constraints. TaaS (red
curve) again outperforms Adaptive IoT Trust and
ObjectiveTrust by a significant margin, especially as time
progresses allowing the TaaS to gather broad evidence from all
IoT devices that have had prior service experiences to other
IoT devices. We attribute the superiority of TaaS over
Adaptive IoT Trust and ObjectiveTrust to its adaptability in
response to a high percentage of nodes (30% in this case study)
performing malicious attacks.

6. CONCLUSION

In this paper, we designed and analyzed a cloud utility
called TaaS for service management of IoT objects for smart
cities. We demonstrated via ns-3 simulation the superiority of
TaaS over contemporary, most-cited IoT trust protocols to
date, namely, Adaptive IoT Trust [8] and ObjectiveTrust [19],
in trust-based service management for two real-world smart

city IoT applications. We attribute TaaS’s superiority to its
subjective trust evaluation, report-and-query, and adaptability
designs resulting in high trust accuracy and resiliency against a
high percentage of malicious nodes performing self-promoting,
bad-mouthing, ballot-stuffing, discriminatory, and
opportunistic service attacks.

In the future we plan to validate TaaS with more real-world
smart city IoT applications such as those discussed in [2, 7]. In
this paper we assumed a centralized cloud. This increases the
energy consumption of IoT devices for long haul
communication with the remote cloud. In addition the
centralized cloud is a single point of failure. A future research
direction is to devise a hierarchical cloud architecture that can
achieve scalability, fault tolerance, and resiliency against trust-
related attacks, while reducing the energy consumption of IoT
devices.

Lastly, there is a lack of a holistic design for scalable,
adaptive and survivable trust computation for IoT systems. A
future research direction is to consider a more holistic design to
manage “integrated” mobility, service and trust information of
a large number of IoT devices, in a scalable, secure, reliable,
and efficient manner. A possible solution is to integrate the
design concepts currently existing in hierarchical trust
management [44, 45], hierarchical mobility management [28-
31], resilient failure recovery management [32-38], admission
control [39-43], and tiered cloud architectures with edge
computing capability. While a node in a hierarchical mobility
management architecture is a router responsible for keeping
track of location information only (where and how to route), a
node in a hierarchical cloud management architecture is a
cloud server responsible for keeping track of “integrated”
information including location, trust, and service information.
A lower-level cloud server (e.g., a cloudlet or a private cloud)
keeps track of IoT devices in its directly covered service area.
A higher-level cloud server (e.g., a public cloud) in the
architecture keeps track of status of all IoT devices covered by
all local cloud servers below it. Should an IoT device roam
from one cloud service area to another, a “service handoff”
ensues causing this IoT device’s location, trust and service
information to be transferred between the two involving cloud
servers. Such an IoT framework can track IoT devices not only
in trust status, but also in service and mobility status
dynamically to achieve the potential of anytime anywhere
service-oriented IoT applications in the 21th century.

ACKNOWLEDGMENT

This work is supported in part by the U.S. AFOSR under grant
number FA2386-17-1-4076. This work was also supported in
part by the Institute for Information & Communications
Technology Promotion (IITP) of the Government of South
Korea MSIT under grant number 2017-0-00664 as well as the
Soonchunhyang University Research Fund.

REFERENCES

[1] H. Al-Hamadi and I.R. Chen, “Trust-Based Decision Making for Health

IoT Systems,” IEEE Internet of Things Journal, vol. 4, no. 5, Oct. 2017,
pp. 1408-1419.

[2] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A Survey,”

Computer Networks, vol. 54, pp. 2787-2805, Oct. 2010.

[3] F. Bao and I. R. Chen, “Dynamic Trust Management for Internet of

Things Applications,” 2012 International Workshop on Self-Aware

0 50 100 150 200 250 300 350 400
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Time (hours)

U
ti
lit

y

P
M

=30%

IoT-TaaS

Adaptive IoT Trust

ObjectiveTrust

0 50 100 150 200

0.05

0.1

0.15

0.2

0.25

0.3

Time (hours)

P
ro

b
.
o
f
b
a
d
 S

P
 s

e
le

c
ti
o
n

P
M

=30%

ObjectiveTrust

Adaptive IoT Trust

IoT-TaaS

Internet of Things, San Jose, California, USA, 2012.

[4] F. Bao and I. R. Chen, “Trust Management for the Internet of Things and

Its Application to Service Composition,” IEEE WoWMoM 2012

Workshop on the Internet of Things: Smart Objects and Services, San

Francisco, CA, USA, 2012.

[5] F. Bao, I. R. Chen, and J. Guo, “Scalable, Adaptive and Survivable Trust

Management for Community of Interest Based Internet of Things

Systems,” 11th International Symposium on Autonomous Decentralized

System, Mexico City, Mexico, 2013.

[6] D. Chen, G. Chang, D. Sun, J. Li, J. Jia, and X. Wang, “TRM-IoT: A

Trust Management Model Based on Fuzzy Reputation for Internet of

Things,” Computer Science and Information Systems, vol. 8, no. 4, pp.

1207-1228, Oct., 2011.

[7] I. R. Chen, F. Bao, and J. Guo, "Trust-based Service Management for

Social Internet of Things Systems," IEEE Transactions on Dependable

and Secure Computing, vol. 13, no. 6, Nov-Dec 2016, pp. 684-696.

[8] I. R. Chen, J. Guo, and F. Bao, “Trust Management for SOA-based IoT

and Its Application to Service Composition”, IEEE Transactions on

Service Computing, vol. 9, no. 3, 2016, pp. 482-495.

[9] I.R. Chen, J. Guo, F. Bao and J.H. Cho, “Trust Management in Mobile

Ad Hoc Networks for Bias Minimization and Application Performance
Maximization,” Ad Hoc Networks, vol. 19, August 2014, pp. 59-74.

[10] J.H. Cho and I.R. Chen, “PROVEST: Provenance-Based Trust Model

for Delay Tolerant Networks,”IEEE Transactions on Dependable and

Secure Computing, vol. 15, no. 1, 2018, pp.151-165.

[11] J. H. Cho, A. Swami, and I. R. Chen, “Modeling and analysis of trust

management with trust chain optimization in mobile ad hoc networks,”

Journal of Network and Computer Applications, vol. 35, no. 3, pp. 1001-

1012, May 2012.

[12] J. Guo, I. R. Chen, and J.J.P. Tsai, "A survey of trust computation

models for service management in internet of things systems," Computer

Communications, vol. 97, 2017, pp. 1-14.

[13] Z. Huang, D. Zeng, and H. Chen, “A Comparison of Collaborative-

Filtering Recommendation Algorithms for E-commerce,” IEEE

Intelligent Systems, vol. 22, pp. 68-78, 2007.

[14] A. Jøsang, and R. Ismail, “The Beta Reputation System,” Bled

Electronic Commerce Conference, Bled, Slovenia, 2002, pp. 1-14.

[15] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The EigenTrust

algorithm for reputation management in P2P networks,” 12th

International Conference on World Wide Web, Budapest, Hungary, May

2003.

[16] W.Z. Khan, Y. Xiang, M.Y. Aalsalem, and Q. Arshad, Q, “Mobile

Phone Sensing Systems: A Survey,” IEEE Communications Surveys and

Tutorials, vol. 15, no. 1, 2013, pp. 402–427.

[17] R. Mitchell and I. R. Chen, "A Survey of Intrusion Detection Techniques

for Cyber Physical Systems," ACM Computing Survey, vol. 46, article

no. 4, 2014.

[18] R. Mitchell and I. R. Chen, “Modeling and Analysis of Attacks and

Counter Defense Mechanisms for Cyber Physical Systems,” IEEE

Transactions on Reliability, vol. 65, no. 1, March 2016, pp. 350-358.

[19] M. Nitti, R. Girau, and L. Atzori, “Trustworthiness Management in the

Social Internet of Things,” IEEE Transactions on Knowledge and Data

Management, vol. 26, no. 5, 2014, pp. 1253-1266.

[20] M. Nitti, L. Atzori, and I.P. Cvijikj, “Friendship Selection in the Social

Internet of Things: Challenges and Possible Strategies,” IEEE Internet

of Things Journal, vol. 2, no. 3, 2015, pp. 240-247.
[21] ns-3 Network Simulator, http://www.nsnam.org, Release ns-3.27 with

core, network, Internet, and mobility models, Oct. 2017.

[22] B. Pires, et al, “Towards an in silico Experimental Platform for Air
Quality: Houston, TX as a Case Study,” Computational Social Science

Society of America Conference, Santa Fe, NM, USA, 2015.

[23] Y. B. Saied, A. Olivereau, D. Zeghlache, and M. Laurent, “Trust

management system design for the Internet of Things: A context-aware

and multi-service approach,” Computers and Security, vol. 39, Nov.

2013, pp. 351-365.

[24] W. Sherchan, S. Nepal, and C. Paris, “A Survey of Trust in Social

Networks,” ACM Computing Survey, Vol. 45, No. 4, Article 47, August

2013.

[25] Z. Su, L. Liu, M. Li, X. Fan, and Y. Zhou, “Service Trust: Trust

Management in Service Provision Networks,” IEEE International

Conference on Services Computing, Santa Clara, 2013, pp. 272-279.

[26] L. Xiong, and L. Liu, “PeerTrust: Supporting Reputation-Based Trust

for Peer-to-Peer Electronic Communities”, IEEE Trans. on Knowledge

and Data Engineering, v.16, pp. 843-857, July 2004.

[27] Y. Wang, I.R. Chen, J.H. Cho, A. Swami, and K.S. Chan, “Trust-based
Service Composition and Binding with Multiple Objective Optimization
in Service-Oriented Ad Hoc Networks," IEEE Trans. Services
Computing, vol. 10, no. 4, 2017, pp. 1939-1374.

[28] B. Gu and I. R. Chen, “Performance analysis of location-aware mobile

service proxies for reducing network cost in personal communication

systems,” Mobile Networks and Applications, vol. 10, no. 4, 2005, pp.
453-463.

[29] I.R. Chen and N. Verma, "Simulation study of a class of autonomous

host-centric mobility prediction algorithms for wireless cellular and ad
hoc networks,” 36th annual symposium on Simulation, 2003, pp. 65-72.

[30] I.R. Chen, T.M. Chen, and C. Lee, “Performance evaluation of

forwarding strategies for location management in mobile networks,” The
Computer Journal, vol. 41, no. 4, 1998, pp. 243-253.

[31] I. R. Chen, T.M. Chen, and C. Lee, “Agent-based forwarding strategies

for reducing location management cost in mobile networks,” Mobile
Networks and Applications, vol. 6, no. 2, 2001, pp. 105-115.

[32] I.R. Chen, B. Gu, S.E. George, and S.T. Cheng, “On failure

recoverability of client-server applications in mobile wireless
environments,” IEEE Trans. Reliability, vol. 54, no. 1, 2005, pp. 115-

122.

[33] S.E. George, I.R. Chen, and Y. Jin, “Movement-based checkpointing
and logging for recovery in mobile computing systems,” 5th ACM

International Workshop on Data Engineering for Wireless and Mobile

Access, 2006.
[34] I.R. Chen and D.C. Wang, “Analysis of Replicated Data with Repair

Dependency,” The Computer Journal, vol. 39, no. 9, 1996, pp. 767-779.

[35] I.R. Chen and D.C. Wang, “Analyzing dynamic voting using Petri nets,”
15th Symposium on Reliable Distributed Systems, 1996, pp. 44-53.

[36] I.R. Chen and F.B. Bastani, "Effect of Artificial-Intelligence Planning

Procedures on System Reliability," IEEE Trans Reliability, vol. 40, no.
3, pp. 364-369, 1991.

[37] F.B. Bastani, I.R. Chen, and T. Tsao, "Reliability of Systems with

Fuzzy-Failure Criterion," Annual Reliability and Maintainability
Symposium, 1994, pp. 442-448.

[38] I.R. Chen, F.B. Bastani, and T.W. Tsao, "On the Reliability of AI

Planning Software in Real-Time Applications," IEEE Trans Knowledge
and Data Engineering, vol. 7, no. 1, pp. 4-13, 1995.

[39] I.R. Chen, O. Yilmaz, and I.L. Yen, "Admission control algorithms for

revenue optimization with QoS guarantees in mobile wireless

networks," Wireless Personal Communications, vol. 38, no. 3, 2006, pp.

357-376.

[40] I.R. Chen and T.H. Hsi, “Performance analysis of admission control
algorithms based on reward optimization for real-time multimedia

servers,” Performance Evaluation, vol. 33, no. 2, pp. 89-112, 1998.
[41] S.T. Cheng, C.M. Chen, and I.R. Chen, “Dynamic quota-based

admission control with sub-rating in multimedia servers,” Multimedia

Systems, vol. 8, no. 2, 2000, pp. 83-91.
[42] S.T. Cheng, C.M. Chen, and I.R. Chen, “Performance evaluation of an

admission control algorithm: dynamic threshold with negotiations,”

Performance Evaluation, vol. 52, no. 1, 2003, pp. 1-13.
[43] O. Yilmaz and I.R. Chen, "Utilizing Call Admission Control for Pricing

Optimization of Multiple Service Classes in Wireless Cellular

Networks," Computer Communications, vol. 32, no. 2, 2009, pp. 317-
323.

[44] J. Guo, I.R. Chen, and J.J.P. Tsai, “A Mobile Cloud Hierarchical Trust
Management Protocol for IoT Systems,” 5th IEEE International
Conference on Mobile Cloud Computing, Services, and Engineering,
San Francisco, April 2017.

[45] J. Guo, Trust-based Service Management of Internet of Things Systems
and Its Applications, ETD, Virginia Tech, 2018.

