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Abstract— We propose and analyze a cloud utility called 

Trust as a Service (TaaS) for service management of Internet of 

Things (IoT) devices in smart cities. The major challenge in IoT 

service management in smart cities is the selection of trustworthy 

IoT service providers. TaaS preserves the notion that trust is 

subjective despite the fact that trust computation is performed by 

the centralized cloud. We validate TaaS with two smart city IoT 

applications and compare its performance against contemporary 

trust-based service management protocols.  

Keywords—Internet of things, smart city, trust management, 

service management. 

1. INTRODUCTION 

A future smart city will consist of a huge number of 
autonomous Internet of Things (IoT) devices capable of 
providing services upon request [2]. The major challenge in 
IoT service management is the selection of trustworthy IoT 
service providers because not all IoT devices will be 
trustworthy and some IoT devices may behave maliciously to 
disrupt the IoT service management framework (e.g., in a 
terrorist attack scenario) or just for their own gain (e.g., to 
monopoly a particular type of service). In this paper, we 
propose and analyze a cloud utility called Trust as a Service 
(TaaS) for service management of IoT objects in smart cities. 
Under TaaS, an IoT device can query the “service 
trustworthiness” score in the range of 0 to 1 of a target IoT 
device for a particular type of service through the cloud utility. 
Based on the service trustworthiness score received, the IoT 
device can then determine if it wants to request or receive 
service from the target IoT service provider.  

In our design, TaaS is made possible by a group of cloud 
servers (in a public cloud) whose size scales linearly with the 
number of IoT devices. TaaS is realized by following a novel 
“report-and-query” paradigm. Specifically, a user upon a 
service completion simply reports to its home cloud server of 
the user satisfaction result. To know if a target IoT device is 
trustworthy in providing a particular service, a user simply 
sends a query to its home cloud server even if the user has not 
had any service experience with the target IoT device. The 
server will return a trust value formed by considering self-
observations from the user (if any exists) as well as 
recommendations from other users filtered by the user’s own 
opinion if these recommenders are credible. Our design 
preserves the notion that trust is “subjective” despite the fact 
that trust computation is performed in the centralized cloud.  

We validate TaaS by applying TaaS to two smart city IoT 
applications. We compare the performance of TaaS against 
two most-cited trust-based IoT service management protocols 
to-date, namely, Adaptive IoT Trust [8] and ObjectiveTrust 
[19], in selecting trustworthy service providers to maximize 
the application performance. The contribution of our work lies 
in design and validation of TaaS demonstrating its 
applicability as well as its superiority over contemporary trust-
based IoT service management protocols when applying to 
smart city IoT applications. 

The rest of the paper is organized as follows. Section 2 
surveys related work and contrasts TaaS with existing trust-
based IoT service management protocols. Section 3 discusses 
the system model. Section 4 provides a detailed description of 
TaaS design and implementation. In Section 5 we validate 
TaaS with two smart city IoT applications and conduct a 
comparative performance analysis of TaaS against Adaptive 
IoT Trust [8] and ObjectiveTrust [19]. Finally in Section 6 we 
conclude the paper and outline some future research areas. 

2. RELATED WORK 

Trust management protocols for IoT systems are still 
emerging. A comprehensive survey can be found in [12]. 
There are only a handful of IoT trust protocols designed and 
evaluated to-date [1, 3-8, 19, 20, 23]. Among the 
contemporary IoT trust management protocols, we select two 
very recent yet most cited protocols, namely, Adaptive IoT 
Trust [8] and ObjectiveTrust [19], as baseline IoT trust 
protocols against which TaaS is compared for a comparative 
performance analysis.  

The reason we select Adaptive IoT Trust [8] is that it, like 
TaaS, also considers adaptive trust management to 
dynamically combine own experiences with recommendation 
based on the amount of own experiences in hand and uses 
social similarity as credibility for recommendation filtering. 
Also, it was shown in [8] that Adaptive IoT Trust outperforms 
existing distributed P2P trust protocols, including EigenTrust 
[15], PeerTrust [26], and ServiceTrust [25], so we are 
interested in knowing if TaaS, a cloud-based IoT trust 
protocol, can perform better than Adaptive IoT Trust, a proven 
distributed IoT trust protocol. The reason we select 
ObjectiveTrust [19] is that it is the only other centralized IoT 
trust protocol to-date that considers social standing and 
relationships for credibility rating and recommendation 
filtering. 



Below we provide an overview of the two baseline trust-
based IoT service management protocols and compare and 
contrast them with TaaS.  

Adaptive IoT Trust [8] is a distributed IoT trust 
management protocol where each IoT device evaluates other 
IoT devices using both direct service experiences and indirect 
recommendations. Adaptive trust management is achieved by 
determining the best way to combine direct trust (from direct 
experiences) and indirect trust (from recommendations) 
dynamically to minimize convergence time and trust 
estimation bias in the presence of malicious nodes performing 
collusion attacks. Direct service experiences are collected 
based on own service experiences, while recommendations are 
collected at the time nodes encounter each other through 
social contacts. They used social similarity to rate 
recommenders. A common problem with a distributed IoT 
trust protocol such as Adaptive IoT Trust [8] is that a node 
may not encounter each other often to collect enough 
recommendations to make informed decisions. Also all trust 
data are stored by individual IoT devices, which can be a 
problem for resource-constrained IoT devices, especially 
when the number of IoT devices is high in a large-scale IoT 
system. Our approach based on TaaS does not have such 
constraints. 

ObjectiveTrust [19] is a centralized IoT trust management 
system that assesses the trust score of a node through a 
weighted sum of the “centrality” score and the average 
opinion score (long term and short term) after applying the 
recommender’s credibility score to filter untrustworthy 
recommendations. Specifically, ObjectiveTrust computes the 
centrality score (in the range of 0 to 1) of j based on if j is 
central in the network and if it is involved in many 
transactions. The credibility score of k (a recommender that 
provides opinions about i) is proportional to k’s trust score 
because a trustworthy node does not lie, but is inversely 
proportional to the capability of k, the strong object 
relationship (including ownership, co-location, co-work, 
social, and parental) between i and k, and the number of 
transactions between i and k because high-capability and 
intimate nodes may collude. A common problem of a 
centralized IoT trust protocol such as ObjectiveTrust [19] is 
that it only computes the “objective trust” (common belief or 
reputation), not the “subjective trust” of an IoT device as TaaS 
and Adaptive IoT Trust do, so it does not preserve the notion 
that trust is subjective and is inherently one-to-one. This is 
especially problematic for IoT systems since IoT devices are 
owned by humans who have social relationships among 
themselves and the trust of one user toward another user is 
inherently one-to-one and subjective. 

3. SYSTEM MODEL 

3.1 TaaS Model 

As illustrated in Figure 1, we consider a smart city 
environment populated with a large number of smart IoT 
devices which can be service providers (SPs) when they 
provide service or service requestors (SRs) when they request 
for service, with NC cloud servers (in a public cloud) being 
allocated to implement TaaS as a cloud utility to users 
participating in a particular IoT service community such as an 

ozone (O3) health group. Users in the O3 health group 
voluntarily sense and report the O3 levels of the locations they 
roam into. These cloud servers are assumed to be trusted and, 
among many service functions, provide TaaS for an IoT device 
to query the one-to-one “subjective” trust level of a target IoT 
device for the purpose of determining if the O3 level reported 
by the target IoT device is trustworthy.  

We assume that each node (a user or an IoT device) has its 
unique identity. A user’s unique id is at the cloud service level. 
An IoT device’s unique id is at the device level. Each user 
maps to a “home” cloud server using its unique id based on 
distributed hash table techniques. In Figure 1, 𝐶𝑆2 is the home 
cloud server of user 𝑢2  and 𝐶𝑆3 is the home cloud server of 
user 𝑢3. For the case in which a user owns several IoT devices, 
all IoT devices also map to the owner’s home cloud server as 
their home cloud server. 
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Figure 1: Information Flow in TaaS. 

Whether a user has confidence on a recommender is based 
on social relationships among humans who are owners of IoT 
devices. Hence the trustor is a user and the trustee is an IoT 
device (owned by another user). The trust relationship is not 
between a user trustor and a user trustee because a user may 
own several IoT devices with vastly heterogeneous 
capabilities. Specifically, we use the social relationships 
between a trustor and a recommender (who provides a service 
trustworthiness score or service rating toward a trustee) as the 
trustor’s “subjective” credibility toward the recommender. We 
consider three core social metrics for measuring social 
relationships which are multifaceted [24]: friendship 
(representing intimacy), social contact (representing closeness), 
and community of interest (representing knowledge and 
standard on the subject matter). The idea is that two users 
sharing similar social relationships are likely to have similar 
subjective views towards services provided by a trustee IoT 
device. Social relationships between owners are translated into 
social relationships between IoT devices as follows: 

1. Friendship: Each owner has a list of friends (i.e., other 
owners), representing its social relationships. Specifically, 
each user 𝑢𝑥  maintains a set of friends, denoted by 𝐹𝑥  = 
{𝑢1, 𝑢2, … }. This friendship list varies dynamically as an 
owner makes or denies other owners as friends. If the 
owners of two IoT devices are friends, then it is likely they 
will be cooperative with each other.   



2. Social Contact: A device may be carried or operated by its 
owner in certain environments (e.g., at work, school, home, 
or social-event locations). Two devices have high social 
contact opportunities when their owners have similar 
mobility patterns or go to the same locations. Specifically, 
each user 𝑢𝑥 maintains a set of locations that 𝑢𝑥 frequently 
visited for social contact, denoted by a set 𝑆𝑥  = {𝐿𝑜𝑐1 , 
𝐿𝑜𝑐2, … }. 

3. Community of Interest (CoI): Each owner has a list of 
communities of interest such as health, sport, travel, etc. 
Nodes belonging to a similar set of communities likely 
share similar interests or capabilities [1]. Specifically, each 
user 𝑢𝑥 maintains a set of communities of interest that 𝑢𝑥 is 
a member of, denoted by a set 𝐶𝑥 = {𝐶𝑜𝐼1, 𝐶𝑜𝐼2, … }. 

3.2 Attack Model 

A malicious node in general can perform communication 
protocol attacks to disrupt network operations. We assume 
such attack is handled by intrusion detection techniques [10, 
17, 18] and is not addressed in this paper. We are concerned 
with trust-related attacks that can disrupt the trust system. Bad-
mouthing and ballot-stuffing attacks are the most common 
forms of recommendation attacks. Bad-mouthing and ballot-
stuffing attacks can be considered as a form of collaborative 
attacks to the trust system to ruin the trust of (and thus to 
victimize) good nodes and to boost the trust of malicious 
nodes. Self-promoting and opportunistic service attacks are the 
most common forms of attacks based on self-interest [9, 11, 
27]. In this paper we consider a malicious IoT device (because 
its owner is malicious) capable of performing the following 
trust-related attacks (on top of on-off attacks) and our TaaS 
protocol design must maintain desirable accuracy, 
convergence, and resiliency properties against these attacks: 

1. Self-promoting attacks: a service provider can promote its 
importance (by providing good recommendations for itself) 
for it to be selected as a service provider, but then can 
provide bad or malfunctioned service. 

2. Bad-mouthing attacks: a recommender can ruin the 
reputation of a well-behaved IoT service provider (by 
providing bad recommendations against it) so as to 
decrease the chance of that good device being selected as a 
service provider.  

3. Ballot-stuffing attacks: a recommender can boost the 
reputation of a misbehaving IoT service provider (by 
providing good recommendations) so as to increase the 
chance of that bad device being selected as a service 
provider.  

4. Discriminatory attacks (or conflicting behavior attacks): a 
service provider can discriminatively attack non-friends or 
nodes without strong social ties (without many common 
friends) because of human nature or propensity towards 
friends in social IoT systems. 

5. Opportunistic service attacks: a malicious node can provide 
good service to gain high reputation opportunistically 
especially when it senses its reputation is dropping because 
of providing bad service. With good reputation, it can 

effectively collude with other bad node to perform bad-
mouthing and ballot-stuffing attacks. 

4. TAAS PROTOCOL DESCRIPTION 

4.1 Reporting  

Whenever a service is rendered, a user (using its primary 
IoT device) reports whether it is satisfied with the service 
provided by an IoT device to the user’s home cloud server via 
a service rating report. Let the current user satisfaction 
experience of user 𝑢𝑥  toward device 𝑑𝑖  be represented by a 
value, 𝑓𝑥,𝑖  which can be a real number in the range of 0 to 1 

indicating the user satisfaction level, or simply a binary value, 
with 1 indicating satisfied and 0 not satisfied. Here 𝑓𝑥,𝑖 is the 

first piece of information sent from 𝑢𝑥  to its home cloud 
server. For example in Figure 1, 𝑢3 will send 𝑓3,1 to 𝐶𝑆3, the 

home cloud server of 𝑢3, whenever a service is rendered by 
𝑑1.  A timestamp is also sent in the report to indicate the time 
at which this service rating happens. This allows cloud servers 
to know the event occurrence times of reports for regression 
analysis if necessary. 

When user 𝑢𝑥  encounters user 𝑢𝑦  they exchange their 

(𝐹𝑥, 𝑆𝑥 , 𝐶𝑥 ) and (𝐹𝑦 , 𝑆𝑦 , 𝐶𝑦 ) profiles so as to measure their 

mutual social similarity. For privacy and authentication, user 
𝑢𝑥 uses a cryptographic hash function in combination with a 
secret session key K to generate a hash-based message 

authentication code HMAC(K, x) for x  (𝐹𝑥, 𝑆𝑥 , 𝐶𝑥) and then 
transmits HMAC(K, x) along with HMAC(K, HMAC(K, x)) to 
𝑢𝑦. When 𝑢𝑦 receives the message, it can unilaterally generate 

HMAC(K, HMAC(K, x)) using HMAC(K, x) sent by 𝑢𝑥. If 
this matches with HMAC(K, HMAC(K, x)) sent by 𝑢𝑥, then 
𝑢𝑦 verifies the authentication of the message received. Then 

𝑢𝑦 can compare HMAC(K, x) with HMAC(K, y) for y  

(𝐹𝑦, 𝑆𝑦 , 𝐶𝑦 ). If HMAC(K, x)=HMAC(K, y) then x=y and a 

common friend/device is identified. If HMAC(K, 
x)≠HMAC(K, y), it prevents the identities of uncommon 
friends/devices from being revealed to preserve privacy. With 
the (F, S, X) profile exchanged, user 𝑢𝑥 applies cosine 
similarity as in [8] to compute the social similarity between 𝑢𝑥 
and 𝑢𝑦 in friendship, social contact and CoI, denoted 

by  𝑠𝑖𝑚𝑖(𝑢𝑥 , 𝑢𝑦), 𝑖 ∈ {𝑓, 𝑠, 𝑐},  which is the second piece of 

information sent from 𝑢𝑥 to its home cloud server. The above 
three social similarity measures ( 𝑠𝑖𝑚𝑓 , 𝑠𝑖𝑚𝑠, 𝑠𝑖𝑚𝑐)  are 

computed upon encountering of user 𝑢𝑥 and user 𝑢𝑦, and are 

stored in the home cloud servers of user 𝑢𝑥  and user 𝑢𝑦 .  For 

example, in Figure 1 after 𝑢2  encounters 𝑢3  they will each 
compute the three social similarity measures 
(𝑠𝑖𝑚𝑓 , 𝑠𝑖𝑚𝑠, 𝑠𝑖𝑚𝑐)  and store the results in the home cloud 

servers 𝐶𝑆2  and  𝐶𝑆3 , respectively. When a home server 
receives these similarity scores, the home server applies a 

social relationship weighted sum formula 𝑠𝑖𝑚(𝑢𝑥, 𝑢𝑦) =

∑ 𝑤𝑖 𝑠𝑖𝑚𝑖(𝑢𝑥, 𝑢𝑦)𝑖∈{𝑓,𝑠,𝑐}  to compute the overall similarity 

score between 𝑢𝑥 and 𝑢𝑦.  The weights assigned to 

𝑠𝑖𝑚𝑖(𝑢𝑥, 𝑢𝑦), 𝑖 ∈ {𝑓, 𝑠, 𝑐},  depend on the application 

characteristics and the designer’s belief of what similarity 
metric is more important than others in composing the overall 
similarity score between two users. We consider 𝑤𝑓 = 𝑤𝑠 =



𝑤𝑐 = 1/3 in this paper. 

4.2 Querying and Replying  

Whenever a user wants to know the trust value of an IoT 
device, it simply sends a query to its home cloud server. For 
example, in Figure 1, 𝑢2 will send a query to its home cloud 
server 𝐶𝑆2  to know the “subjective” trust value of 𝑑2  which 
belongs to 𝑢3.    

Let the “subjective” trust value of user 𝑢𝑥  toward 𝑑𝑖  be 
denoted by 𝑡𝑥,𝑖 . The home cloud server of 𝑢𝑥 computes 𝑡𝑥,𝑖  by 

combining 𝑢𝑥
′ 𝑠 direct trust toward 𝑑𝑖  (𝑡𝑥,𝑖

𝑑 ) based on its own 

service rating reports, and 𝑢𝑥
′ 𝑠 indirect trust toward 𝑑𝑖  (𝑡𝑥,𝑖

𝑟 ) 

based on other service rating reports submitted by other users, 
as follows: 

𝑡𝑥,𝑖 = 𝜇𝑥,𝑖 ∙ 𝑡𝑥,𝑖
𝑑 + (1 − 𝜇𝑥,𝑖) ∙ 𝑡𝑥,𝑖

𝑟  (1)  

Here, 𝜇𝑥,𝑖  is a weight parameter (0 ≤ 𝜇 ≤ 1) to weigh the 

importance of direct trust relative to indirect trust. The 
selection of 𝜇𝑥,𝑖  is critical to trust evaluation. As in [8], we 

apply adaptive filtering to adjust 𝜇𝑥,𝑖  dynamically to 

effectively cope with malicious attacks and to improve trust 
evaluation performance. 

To compute direct trust 𝑡𝑥,𝑖
𝑑 , we adopt Bayesian framework 

[14] as the underlying model. The reason we choose Bayesian 
because it is well-established and because of its popularity in 
trust/reputation systems. In service computing, a service 
requester would rate a service provider after a service is 
rendered based on nonfunctional characteristics. The 
nonfunctional characteristics include user-observed service 
delay, service quality received, prices, etc. Then, we can 
consider the service rating 𝑓𝑥,𝑖  as a Bernoulli trial with the 

probability of success parameter 𝜃𝑥,𝑖  following a Beta 

distribution (a conjugate prior for the Bernoulli distribution), 
i.e., Beta(𝛼𝑥,𝑖, 𝛽𝑥,𝑖). Then, the posterior p(𝜃𝑥,𝑖 |𝑓𝑥,𝑖) has a Beta 

distribution as well. The model parameters 𝛼𝑥,𝑖  and 𝛽𝑥,𝑖  are 

updated as follows: 

𝛼𝑥,𝑖 = 𝛼𝑥,𝑖
(𝑜𝑙𝑑)

+ 𝑓𝑥,𝑖         

𝛽𝑥,𝑖 = 𝛽𝑥,𝑖
(𝑜𝑙𝑑)

+ 1 − 𝑓𝑥,𝑖

 (2)  

In Equation (2), 𝑓𝑥,𝑖  contributes to positive service 

experience and 1 − 𝑓𝑥,𝑖  contributes to negative service 

experience. The direct trust 𝑡𝑥,𝑖
𝑑  of user 𝑢𝑥  toward device 𝑑𝑖 

then can be computed as the expected value of 𝜃𝑥,𝑖, i.e., 

𝑡𝑥,𝑖
𝑑 = 𝐸[𝜃𝑥,𝑖] =

𝛼𝑥,𝑖

𝛼𝑥,𝑖 + 𝛽𝑥,𝑖

 (3)  

Specifically, the home cloud server of 𝑢𝑥  updates 𝛼𝑥,𝑖 and 

𝛽𝑥,𝑖whenever it receives 𝑓𝑥,𝑖 (a service rating report) from user 

𝑢𝑥  based on Equation (2) and then computes 𝑡𝑥,𝑖
𝑑  based on 

Equation (3).  
To compute indirect trust 𝑡𝑥,𝑖

𝑟 ,  the home cloud server of 

𝑢𝑥 first locates social similarity records 𝑠𝑖𝑚(𝑢𝑥, 𝑢𝑦)′𝑠  in its 

local storage. The home cloud server of 𝑢𝑥 then selects top-R 
recommendations from R users with the highest similarity 
values with 𝑢𝑥 and calculates the indirect trust (𝑡𝑥,𝑖

𝑟 ) towards 

device 𝑑𝑖 as follows: 

𝑡𝑥,𝑖
𝑟 = ∑

𝑠𝑖𝑚(𝑢𝑥, 𝑢𝑦)

∑ 𝑠𝑖𝑚(𝑢𝑥, 𝑢𝑧)𝑢𝑧∈𝑈

· 𝑡𝑦,𝑖
𝑑

𝑢𝑦∈𝑈

 (4)  

Here, 𝑈 is a set of up to R users (R=5 in this paper) whose 

𝑠𝑖𝑚(𝑢𝑥, 𝑢𝑦) values are the highest, and 𝑡𝑦,𝑖
𝑑  is the rating or 

recommendation provided by user 𝑢𝑦 toward device 𝑑𝑖 , which 

is stored in the home cloud server of 𝑢𝑦  but obtainable after 

the home cloud server of 𝑢𝑥  communicates with the home 
cloud server of 𝑢𝑦.   

In Equation (4), the feedback from 𝑢𝑦  toward 𝑑𝑖 

(i. e. , 𝑡𝑦,𝑖
𝑑 ) is weighted by the ratio of the similarity score 

toward the rater to the sum of the similarity scores toward all 
raters. Here we note that if 𝑢𝑦 is malicious, then it can provide 

𝑡𝑦,𝑖
𝑑 =0 against a good IoT device to perform bad-mouthing 

attacks, and 𝑡𝑦,𝑖
𝑑 =1 for a bad IoT device to perform ballot-

stuffing attacks. 

5. APPLYING TAAS TO SMART CITY IOT APPLICATIONS  

In this section, we apply TaaS to two smart city IoT 
applications. We compare TaaS performanace against 
Adaptive IoT Trust [8] and ObjectiveTrust [19]. 

5.1 Smart City IoT Application 1: IoT Cloud Participatory 
Sensing of Air Quality  

This IoT application is taken from [16] where IoT devices 
(e.g., smart phones carried by humans or smart cars driven by 
humans) can act as participants to collect air quality data and 
submit to a processing center located in the cloud for 
environmental data analysis. It is especially applicable to a 
health IoT group where the main concern is about a pollutant 
(O3 in our case study). Users in the group report their O3 
sensing results upon receiving a query from a member who 
wishes to find out a location’s O3 level at a particular time to 
decide if it should enter the location based on its susceptibility 
to the O3 level detected.  

We use real traces of O3 levels and mobility traces of users 
in the O3 health group in the city of Houston and apply it to 
our participatory sensing case study. The original dataset in 
[22] covers the socio-demographically relevant activity 
sequences and the movements of each individual in 4.9 million 
synthetic individuals in the Houston metropolitan area. We 
extract a portion of this huge database to cover a smaller set of 
members in the O3 health group along with their mobility and 
activity data around a smaller area. In the case study, we 
assume a percentage of nodes, denoted by PM in the range of 
[0, 30%], are malicious.  

Every day this “good” member issues queries to its home 
cloud server before it enters a particular location to know the 
O3 level in the location it is about to step into. After collecting 
a number of O3 reports from other members, it then performs a 
trust-weighted computation to deduce the O3 reading 
(described later). If the O3 level is below a threshold, it would 
follow its route; otherwise, it will not enter the location or it 
will detour to avoid the location because the location has a high 
O3 level that can harm its owner’s health.  After the query-and-
response event is completed, this “good” member will assess if 
an O3 sensing report submitted by another member is 
satisfactory and will submit the service experience to its home 



server so as to facilitate the implementation of the TaaS cloud 
utility with TaaS as the underlying trust protocol. 

A node (node i) in the O3 health group can query the ozone 
level in a particular location and at a particular time via a 
mobile IoT cloud application installed in its smartphone. The 
mobile application would send the query to all O3 health 
members that are in this particular location via the mobile 
cloud application. Upon receiving O3 sensing reports from 
other members, node i sends queries via TaaS to get the 
trustworthiness scores of these IoT devices who had reported 
sensing reports. To filter out untrustworthy O3 sensing reports, 
node i first accepts a sensing report (𝑆𝑗 ) from j only if j is 

deemed trustworthy for O3 sensing service (i.e., i’s trust score 
toward j, 𝑡𝑖𝑗 , is higher than a minimum trust threshold of 0.5). 

Then it computes a trust-weighted O3 level average as follows: 

𝑆 = ∑(𝑡𝑖𝑗 / ∑ 𝑡𝑖𝑗) 

𝑁

𝑗=1

× 𝑆𝑗 .

𝑁

𝑗=1

 (5) 

where N is the number of trustworthy members providing O3 
sensing reports in the particular location. If the average O3 
level exceeds a maximum threshold defined by i’s owner, node 
i will decide not to visit the location because the ozone level 
will cause harm to its owner’s health.  

Using the ns-3 simulator [21], we simulate the participatory 
sensing system. We use real traces of O3 levels and mobility 
traces of users in the O3 health group in the city of Houston  
[22]. The O3 level can be classified as good condition [0, 50] 
ug/m3, medium condition [51, 168] ug/m3 (unhealthy for 
sensitive groups), poor condition [169, 208] ug/m3, and severe 
condition [209+] ug/m3. The percentage of bad nodes is set at 
PM in the range of [0, 30%]. A malicious node always reports 
O3 readings in poor condition range [169, 208] ug/m3 
regardless of location with the intention to break the system. 
Also a malicious node will perform bad-mouthing attacks 
(saying a good node’s sensing result is not trustworthy in the 
user satisfaction report) and ballot-stuffing attacks (saying a 
bad node’s sensing result is trustworthy) when it submits a 
service rating report recording its satisfaction experience 𝑠𝑖 
toward device 𝑑𝑖 . 

We compare TaaS with Adaptive IoT Trust [8] and 
ObjectiveTrust [19]. See Section 2 why we select these two 
protocols as the baseline protocols for performance 
comparison. We measure two performance metrics for 
performance evaluation:  
1. the trust-weighted average O3 reading vs. ground truth (i.e., 

the actual O3 level at a specific location and a particular 
time);  

2. the accuracy of selecting trustworthy participants.   

 
Figure 2: Trust-weighted O3 Readings vs. Query Time for 
TaaS against Adaptive IoT Trust and ObjectiveTrust. 

 
Figure 2 shows the trust-weighted average O3 readings vs. 

the O3-level query time by a selected IoT device acting as a 
service requester (SR) asking for O3 readings at various 
locations it roams into. The percentage of bad nodes PM is set 
at 30% representing a high attacker density scenario. In the 
experiment, the SR repeatedly queries the ozone level in the 
location that he will visit next over a 250 hour span. Each data 
point under a particular trust protocol is the average O3 level 
obtained from Equation 5. For example, at time t = 10 hours, 
the SR node sends queries via TaaS to get the trustworthiness 
scores of those IoT devices that have supplied O3 readings in 
the particular location. The SR node accepts results (𝑆𝑗) from 

557 trustworthy IoT devices (for which the trust score is higher 
than 0.5) for the O3 sensing service out of all 764 members in 
that particular location at that particular time and it then 
computes the average O3 level based on Equation 5.   

The results indicate that TaaS (red line) can provide O3 
readings very close to ground truth (black line) as time 
progresses. Further, TaaS outperforms Adaptive IoT Trust 
(orange line) and ObjectiveTrust (green line) in terms of 
accuracy (i.e., the difference between ground truth and the 
average O3 levels) and resiliency (against malicious attacks of 
30% bad nodes). We attribute this to its ability to effectively 
and adaptively aggregate trust evidence from all nodes in the 
system through our effective and efficient localized report-and-
query mechanism design. We draw a line “Dangerous O3 
Level” for a user whose “dangerous O3 level” is 68 as 
diagnosed by his/her doctor as vulnerable to O3 exposure for 
long hours. We see that at time t=130, 180, or 235 (the last 
three peaks in the figure) only TaaS will correctly identify the 
fact that O3 level is below the dangerous level, while either 
Adaptive IoT Trust or ObjectiveTrust will raise a false alarm 
that the dangerous O3 level for this user is already reached.   
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Figure 3: Percentage of Bad IoT Devices Selected to 

Provide O3 Sensing Service vs. Query Time for TaaS against 
Adaptive IoT Trust and ObjectiveTrust. 

 
Figure 3 shows the percentage of bad nodes selected to 

provide sensing results to the SR. TaaS outperforms Adaptive 
IoT Trust and ObjectiveTrust as time progresses as more 
evidence are collected. The results can be explained as follows: 
Compared with Adaptive IoT Trust, TaaS is not being limited 
by encountering experiences and can leverage cloud service to 
aggregate broad evidence from all nodes who have had sensing 
service experiences with participating IoT devices.  Compared 
with ObjectiveTrust which is based on “objective trust” (i.e., 
common belief), TaaS is based on “subjective trust” (with one-
to-one belief) and can adaptively put a higher weight on a 
participant if it has had good O3 sensing experiences with the 
particular participant. This allows TaaS to more effectively 
select trustworthy participants among all participants that had 
submitted O3 sensing reports.   

 

5.2 Smart City IoT Application 2: Travel Planning 

This smart city IoT application is taken from [7]: Ed has 
never visited New York City. He wants to plan his travel early 
on from Seattle, including airline reservation from Seattle to 
New York, ground transportation after reaching New York, 
hotel reservation at New York, entertainments and attractions 
while in New York, hotel shuttle to the airport, etc. Ed instructs 
his smart phone to first construct a workflow structure for the 
travel and then select from a myriad of IoT SPs to populate the 
workflow structure.  

Figure 4 shows the service flow structure constructed by 
his smartphone. There are 9 atomic services connected by 
three types of workflow structures, namely, sequential, 
parallel (AND), and selection (OR). Each service would have 
multiple SP candidates. The “service trustworthiness score” of 
a candidate service composition based on the service flow 
structure in Figure 4 can be calculated recursively in the same 
way the reliability of a series-parallel connected system is 
calculated. Specifically, the service trustworthiness score of a 
composite service (whose trustworthiness score is 𝑇𝑠) that 
consists of two subservices (whose trustworthiness scores are 
𝑇1  and 𝑇2)  depends on the structure connecting the two 
subservices as follows:  

• Sequential structure: 𝑇𝑠 = 𝑇1 × 𝑇2; 

• Selection structure (OR): 𝑇𝑠 = max (𝑇1, 𝑇2); 

• Parallel structure (AND): 𝑇𝑠 = 1 − (1 − 𝑇1) × (1 − 𝑇2). 

Hence given the knowledge of the trustworthiness scores of 
individual IoT service providers (SPs) in a composite service 
and the configuration of the service composite, we can 
recursively compute the overall trustworthiness score of the 
composite service.  

We again compare TaaS with ObjectiveTrust [19] and 
Adaptive IoT Trust [8]. We measure two performance metrics 
for performance evaluation for this IoT application:  

1. the overall trustworthiness score (called utility score) of the 
composite service after service composition and binding;  

2. the accuracy of selecting trustworthy IoT service provider 
for service composition and binding.   

In this IoT application we consider service constraints in 
terms of a budget limit. Simply selecting the most trustworthy 
SPs may lead to infeasible solutions. Suppose that an IoT 
device acting as the SR has a budget limit for the travel 
planning composite service. Each IoT SP announces its price 
when publishing its service (e.g., car rental, public 
transportation, or taxi for transportation service). The SR 
would calculate the overall utility score and the overall price 
for each candidate composite service based on the 
configuration of the composite service as described above. 
Then the SR would select the composite service candidate with 
the highest utility score among all composite service 
candidates with the overall price below the budget limit. 
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Figure 4: A Service Flow Structure for the Smart City 

Travel Planning IoT Application. 
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Figure 5: Utility Score of the Travel Planning IoT 

Application for TaaS against Adaptive IoT Trust and 
ObjectiveTrust. 

 

 
Figure 6: Probability of a Bad SP Being Selected for the 

Travel Planning IoT Application for TaaS against Adaptive 
IoT Trust and ObjectiveTrust. 

 
Figure 5 shows the utility score obtainable vs. query time 

for TaaS against Adaptive IoT Trust [8] and ObjectiveTrust 
[19] based on ns-3 simulation results with PM=30%. We again 
observe that the trend is similar in terms of performance 
ranking, with TaaS (red curve) outperforming Adaptive IoT 
Trust and ObjectiveTrust.   

Figure 6 shows the percentage of bad nodes selected for 
service composition with budget limit constraints. TaaS (red 
curve) again outperforms Adaptive IoT Trust and 
ObjectiveTrust by a significant margin, especially as time 
progresses allowing the TaaS to gather broad evidence from all 
IoT devices that have had prior service experiences to other 
IoT devices. We attribute the superiority of TaaS over 
Adaptive IoT Trust and ObjectiveTrust to its adaptability in 
response to a high percentage of nodes (30% in this case study) 
performing malicious attacks. 

6. CONCLUSION 

In this paper, we designed and analyzed a cloud utility 
called TaaS for service management of IoT objects for smart 
cities. We demonstrated via ns-3 simulation the superiority of 
TaaS over contemporary, most-cited IoT trust protocols to 
date, namely, Adaptive IoT Trust [8] and ObjectiveTrust [19], 
in trust-based service management for two real-world smart 

city IoT applications. We attribute TaaS’s superiority to its 
subjective trust evaluation, report-and-query, and adaptability 
designs resulting in high trust accuracy and resiliency against a 
high percentage of malicious nodes performing self-promoting, 
bad-mouthing, ballot-stuffing, discriminatory, and 
opportunistic service attacks.    

In the future we plan to validate TaaS with more real-world 
smart city IoT applications such as those discussed in [2, 7]. In 
this paper we assumed a centralized cloud. This increases the 
energy consumption of IoT devices for long haul 
communication with the remote cloud. In addition the 
centralized cloud is a single point of failure. A future research 
direction is to devise a hierarchical cloud architecture that can 
achieve scalability, fault tolerance, and resiliency against trust-
related attacks, while reducing the energy consumption of IoT 
devices.  

Lastly, there is a lack of a holistic design for scalable, 
adaptive and survivable trust computation for IoT systems. A 
future research direction is to consider a more holistic design to 
manage “integrated” mobility, service and trust information of 
a large number of IoT devices, in a scalable, secure, reliable, 
and efficient manner. A possible solution is to integrate the 
design concepts currently existing in hierarchical trust 
management [44, 45], hierarchical mobility management [28-
31], resilient failure recovery management [32-38], admission 
control [39-43], and tiered cloud architectures with edge 
computing capability. While a node in a hierarchical mobility 
management architecture is a router responsible for keeping 
track of location information only (where and how to route), a 
node in a hierarchical cloud management architecture is a 
cloud server responsible for keeping track of “integrated” 
information including location, trust, and service information. 
A lower-level cloud server (e.g., a cloudlet or a private cloud) 
keeps track of IoT devices in its directly covered service area. 
A higher-level cloud server (e.g., a public cloud) in the 
architecture keeps track of status of all IoT devices covered by 
all local cloud servers below it. Should an IoT device roam 
from one cloud service area to another, a “service handoff” 
ensues causing this IoT device’s location, trust and service 
information to be transferred between the two involving cloud 
servers. Such an IoT framework can track IoT devices not only 
in trust status, but also in service and mobility status 
dynamically to achieve the potential of anytime anywhere 
service-oriented IoT applications in the 21th century. 
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