
Trust-based Service Management for Social

Internet of Things Systems
Ing-Ray Chen, Fenye Bao, and Jia Guo

Abstract— A social Internet of Things (IoT) system can be viewed as a mix of traditional peer-to-peer

networks and social networks, where “things” autonomously establish social relationships according to the

owners’ social networks, and seek trusted “things” that can provide services needed when they come into

contact with each other opportunistically. We propose and analyze the design notion of adaptive trust

management for social IoT systems in which social relationships evolve dynamically among the owners of IoT

devices. We reveal the design tradeoff between trust convergence vs. trust fluctuation in our adaptive trust

management protocol design. With our adaptive trust management protocol, a social IoT application can

adaptively choose the best trust parameter settings in response to changing IoT social conditions such that not

only trust assessment is accurate but also the application performance is maximized. We propose a table-lookup

method to apply the analysis results dynamically and demonstrate the feasibility of our proposed adaptive trust

management scheme with two real-world social IoT service composition applications.

Index Terms— Trust management, Internet of things, social networking, performance analysis, adaptive

control, security.

——————————  ——————————

1 INTRODUCTION

social Internet of Things (IoT) system can be viewed

as a mix of traditional peer-to-peer (P2P) networks and

social networks, where “things” autonomously establish

social relationships according to the owners’ social

networks, and seek trusted things that can provide services

needed when they come into contact with each other

opportunistically in both the physical world and

cyberspace. It is envisioned that the future social IoT will

connect a great amount of smart objects in the physical

world, including radio frequency identification (RFID) tags,

sensors [40], actuators, PDAs, and smartphones, as well as

virtual objects in cyberspace such as data and virtual

desktops on the cloud [2]. The emerging paradigm of the

social Internet of Things (IoT) has attracted a wide variety

of applications running on top of it, including e-health [9,

23], smart-home, smart-city, and smart-community [27].

We will use the terms things, objects, and devices

interchangeably in the paper.

Such future social IoT applications are likely oriented

toward a service oriented architecture where each thing

plays the role of either a service provider or a service

requester, or both, according to the rules set by the owners.

Unlike a traditional service-oriented P2P network, social

networking and social relationship play an important role in

a social IoT, since things (real or virtual) are essentially

operated by and work for humans. Therefore, social

relationships among the users/owners must be taken into

account during the design phase of social IoT applications.

A social IoT system thus can be viewed as a P2P owner-

centric community with devices (owned by humans)

requesting and providing services on behalf of the owners.

IoT devices establish social relationships autonomously

with other devices based on social rules set by their owners,

and interact with each other opportunistically as they come

into contact. To best satisfy the service requester and

maximize application performance, it is crucial to evaluate

the trustworthiness of service providers in social IoT

environments. This paper concerns trust management in

social IoT environments.

The motivation of providing a trust management system

for a social IoT system is clear: There are misbehaving

owners and consequently misbehaving devices that may

perform discriminatory attacks based on their social

relationships with others for their own gain at the expense

of other IoT devices which provide similar services.

Further, misbehaving nodes with close social ties may

collude and monopoly a class of services. Since trust

provisioning in this environment inherently is fully

integrated with service provisioning (i.e., one must decide

whether or not to use a service provided by a device based

on the trust toward the device), the notion of trust-based

service management is of paramount importance.

There is a large body of trust management protocols for

P2P service computing systems (e.g., [7, 13, 17, 18, 22, 26,

37, 39, 41, 43]). These P2P service systems share a

common characteristic with social IoT systems in that

services are provided by nodes in the system so that trust

evaluation of nodes is critical to the functioning of the

A

————————————————

 Ing-Ray Chen, Fenye Bao and Jia Guo are with the Department of
Computer Science, Virginia Tech, Falls Church, VA 22043. E-mail:
(irchen,baofeyne, jiaguo)@vt.edu.

system. However, trust protocols for P2P service computing

systems lack consideration of the social aspects of IoT

device owners, and are not applicable to a social IoT system

comprising real or virtual heterogeneous “things” with

ownership, friendship and community of interest

relationships. IoT devices are connected with each other by

various ways (via the Internet), and operated by their

owners with a variety of social behaviors to collect

information, provide services, provide recommendations,

make decisions, and take actions.

On the other hand, trust protocols for social networks

[10, 20, 24, 30, 38] are more concerned with trust

assessment of social entities based on frequency, duration

and nature of contacts (such as conversation and

propagation [1]) between two social entities, without

considering P2P service computing environments in which

IoT devices seek and provide service when they come into

contact with each other opportunistically.

To date there is little work on trust management for

social IoT systems [5, 14, 32, 36], especially for dealing

with misbehaving owners of IoT devices that provide

services to other devices in the system. We compare and

contrast our trust protocol design principles with prior work

in Section 7 Related Work.

In this paper we propose an adaptive trust management

protocol for social IoT systems. Our method is suitable to

be applied to social IoT experimental platforms as

discussed in [21, 44, 45]. Our goal is to enhance the

security and increase the performance of social IoT

applications. We aim to design and validate an adaptive

trust management protocol that can dynamically adjust trust

design parameter settings in response to changing

environment conditions to provide accurate trust

assessment (with respect to actual status) and to maximize

application performance. The need for adaptive trust

management stems from the fact that social relationships

between owners and thus social behaviors of owners are

evolving. An example is that owners carrying IoT devices

can often move from a friendly environment (e.g., a social

club) to a hostile environment (e.g., a neighborhood one

does not go often).

We are particularly interested in trust protocol design

that can deal with misbehaving nodes. Such a protocol must

possess desirable trust convergence, accuracy, and

resiliency properties. Our contribution relative to existing

trust management protocols for IoT systems [5, 14, 32, 36]

is that we develop an adaptive trust management protocol

in social IoT systems. Unlike trust systems designed for

P2P networks [26, 37, 41, 43], sensor networks [7, 12],

delay tolerant networks [11, 13], and mobile ad hoc

networks [17, 18], our trust management protocol takes

dynamically changing social relationships among the

“owners” of IoT devices into account. We demonstrate that

the desirable convergence, accuracy, and resiliency

properties are satisfied with extensive simulation. Further,

using two real-world social IoT applications, we

demonstrate that our adaptive trust management protocol is

capable of adaptively adjusting the best trust parameter

setting in response to dynamically changing environments

to improve trust assessment accuracy and to maximize

application performance, despite the presence of

misbehaving nodes disrupting the functionality of a social

IoT system.

The rest of the paper is organized as follows: In Section

2 we discuss the system model and assumptions. In Section

3, we describe our adaptive trust management protocol

design for social IoT systems. In Section 4, we validate the

convergence, accuracy, and resiliency properties of our

protocol, and reveal the design tradeoff between trust

convergence and trust fluctuation in adaptive trust

management. In Section 5, we demonstrate the utility of our

adaptive trust protocol design with two social IoT

applications. Section 6 discusses the applicability, i.e., how

one may apply the best protocol settings identified to

achieve the desirable accuracy and maximize application

performance at runtime. In Section 7, we survey related

work to compare and contrast our protocol design with

existing work. Finally in Section 8, we summarize the paper

and outline future work.

2 SYSTEM MODEL

2.1 User-Centric Social IoT Environments

We consider a user-centric social IoT environment with

no centralized trusted authority. Each IoT device has its

unique identity which can be achieved through standard

techniques such as PKI. A device communicates with other

devices through the overlay social network protocols, or the

underlying standard communication network protocols

(wired or wireless). Every device has an owner who could

have many devices. Social relationships between owners is

translated into social relationships between IoT devices as

follows: Each owner has a list of friends (i.e., other

owners), representing its social relationships. This

friendship list varies dynamically as an owner makes or

denies other owners as friends. If the owners of two nodes

are friends, then it is likely they will be cooperative with

each other. A device may be carried or operated by its

owner in certain community-interest environments (e.g.,

work vs. home or a social club). Nodes belonging to a

similar set of communities likely share similar interests or

capabilities.

Our social IoT model is based on social relationships

among humans who are owners of IoT devices. We note

that the device-to-device autonomous social relationship is

also a potential for the social IoT paradigm.

2.2 Attack Model

A malicious node is dishonest and socially

uncooperative in nature and can break the basic

functionality of the social IoT system. A malicious node

can perform the following trust-related attacks:

1. Self-promoting attacks: a malicious node can promote its

importance (by providing good recommendations for

itself) so as to be selected as the service provider, but

then it provides malfunctioned service. Our trust protocol

deals with self-promoting attacks by considering honesty

as a trust property to detect self-promoting attacks.

2. Whitewashing attacks: a malicious node can disappear

and rejoin the application to wash away its bad

reputation. Our trust protocol deals with whitewashing

attacks by remembering trust information of each

identity, and by performing trust decay over time to

account for node inactivity during the period in which a

node disappears from the IoT system.

3. Discriminatory attacks: a malicious node can

discriminatively attack non-friends or nodes without

strong social ties (without many common friends)

because of human nature or propensity towards friends in

social IoT systems. Our trust protocol deals with

discriminatory attacks by considering cooperativeness

and community-interest as trust properties.

4. Bad-mouthing attacks: a malicious node can ruin the

reputation of a well-behaved node by providing bad

recommendations so as to decrease the chance of this

good node being selected as a service provider. This is a

form of collusion attacks, i.e., it can collaborate with

other bad nodes to ruin the reputation of a good node.

Our trust protocol deals with bad-mouthing attacks by

considering honesty as a trust property.

5. Ballot-stuffing attacks: a malicious node can boost the

reputation of another bad node by providing good

recommendations for it so as to increase the chance of

this bad node being selected as a service provider. This is

also a form of collusion attacks, i.e., it can collaborate

with other bad nodes to boost the reputation of each

other. Our trust protocol deals with ballot-stuffing

attacks by considering honesty as a trust property.

A collusion attack means that the malicious nodes in the

system boost their allies and focus on particular victims in

the system to victimize. Bad-mouthing and ballot-stuffing

attacks both are a form of collusion attacks to ruin the

reputation of (and thus to victimize) good nodes, and to

boost the reputation of malicious nodes. A malicious node

can perform Sybil and identity attacks, and in general can

perform communication protocol attacks to disrupt IoT

network operations. We assume such attacks will be

handled by intrusion detection techniques [16, 31] and the

attackers will be evicted from the system upon detection.

3 ADAPTIVE TRUST MANAGEMENT

Table I lists the parameters used in the paper. A design

parameter is one that adaptive trust management can

control to optimize performance. A derived parameter is

one that is generated during runtime as a result of running

the trust protocol. An input parameter is one that the

operating environment dictates.

The components of adaptive trust management for a

social IoT system are shown in Figure 1. Our protocol

addresses all aspects of trust management. The trust

composition component addresses the issue of how to select

multiple trust properties according to social IoT application

requirements. The trust propagation and aggregation

component addresses the issue of how to disseminate and

combine trust information such that the trust assessment

converges and is accurate. The trust formation component

addresses the issue of how to form the overall trust out of

individual trust properties and how to make use of trust in

order to maximize application performance. Essentially

adaptive trust management is achieved by (1) selecting the

best trust propagation and aggregation parameter setting to

achieve trust accuracy and convergence and (2) selecting

the best trust formation parameter setting to maximize

application performance, in response to an evolving IoT

environment.

Adaptive trust management must be distributed since a

social IoT system frequently consists of free-will entities

without a centralized mediator. Each node maintains its

own trust assessment towards other nodes. A node is more

likely to share common interests with those nodes it

recently interacts with or it believes to be trustworthy. For

an IoT device with a limited storage, it will only keep trust

and recommendation information for a limited set of nodes

which it is most interested in. In this paper we do not

consider the use of caching to mitigate the limited storage

issue. We refer the readers to [8] for a scalable caching

storage management design to effectively utilize limited

storage space without compromising trust accuracy and

convergence properties. Adaptive trust management is

interaction-based as well as activity-based, meaning that the

trust value is updated dynamically upon an interaction

event or activity. Two nodes involved in a direct interaction

activity can directly observe each other and update their

trust assessment. They also exchange their trust evaluation

results toward other nodes as recommendations.

Table 1: List of Parameters.

Symbol Meaning Type

𝑇𝑖𝑗
𝑋(𝑡) trust of i towards j in X at time t derived

𝐷𝑖𝑗
𝑋(𝑡) direct trust of i towards j in X at time t derived

𝑅𝑗𝑘
𝑋 (𝑡) recommendation from k toward j in X at t derived

𝑇𝑖𝑗(𝑡) overall trust or overall trustworthiness score

of i towards j at time t

derived

𝛼 weight on direct trust w.r.t. experience design

𝛽 weight on recommendation w.r.t. experience design

NT number of IoT devices input

NH number of owners input

NG number of user communities input

 average interaction inter-interval time input

 percentage of malicious nodes input

c node compromise time period input

3.1 Trust Composition

While there is a wealth of social trust metrics available

[38], we choose honesty, cooperativeness, and community-

interest as the most striking metrics for characterizing

social IoT systems, as illustrated in Figure 1 (2
nd

 level).

These trust properties are considered orthogonal but

complementary to each other to characterize a node. Each

trust property is evaluated separately as follows:

 The honesty trust property represents whether or not a

node is honest. In an IoT system, a malicious node can

be dishonest when providing services or trust

recommendations. We select honesty as a trust property

because a dishonest node can severely disrupt trust

management and service continuity of an IoT

application. In an IoT application, a node relies on direct

evidence (upon interacting) and indirect evidence (upon

hearing recommendations vs. own assessment toward a

third-party node) to evaluate the honesty trust property of

another node.

 The cooperativeness trust property represents whether or

not the trustee node is socially cooperative [28] with the

trustor node. A node may follow a prescribed protocol

only when interacting with its friends or nodes with

strong social ties (with many common friends), but

become uncooperative when interacting with other

nodes. In an IoT application, a node can evaluate the

cooperativeness property of other nodes based on social

ties and select socially cooperative nodes in order to

achieve high application performance.

 The community-interest trust represents whether or not

the trustor and trustee nodes are in the same social

communities/groups (e.g. co-location or co-work

relationships [3]) or have similar capabilities (e.g.,

parental object relationships [3]). Two nodes with a

degree of high community-interest trust have more

chances and experiences in interacting with each other,

and thus can result in a better application performance.

We note that while transaction importance or degree of

friendship can complement or refine the above three trust

properties, we will not consider them in this paper for

simplicity. In Section 3.2 below we discuss in detail how a

node evaluates other nodes in honesty, cooperativeness, and

community-interest trust properties by combining first-hand

direct observations (discussed in Section 3.2.1) and second-

hand recommendations (discussed in Section 3.2.2).

3.2 Trust Propagation and Aggregation

Adaptive trust management is a continuing process

which iteratively aggregates past information and new

information. The new information includes both direct

observations (first-hand information) and indirect

recommendations (second-hand information). The trust

assessment of node i towards node j at time t is denoted by

𝑇𝑖𝑗
𝑋(𝑡) where X = honesty, cooperativeness, or community-

interest. The trust value 𝑇𝑖𝑗
𝑋(𝑡) is a real number in the range

of [0, 1] where 1 indicates complete trust, 0.5 ignorance,

and 0 distrust. In IoT environments, nodes interact with

each other when they detect the presence of each other, via

IoT discovery protocols such as [33]. When evaluating

𝑇𝑖𝑗
𝑋(𝑡), we adopt the following notations: node i is the

trustor, node j is the trustee, node k is a recommender to

provide its feedback about node j to node i.

3.2.1 𝑻𝒊𝒋
𝑿(𝒕) Update When Node i Interacts with Node j

When node i directly interacts with (or encounters) node

j at time t, node i will update its trust assessment toward

node j, 𝑇𝑖𝑗
𝑋(𝑡), as follows:

𝑇𝑖𝑗
𝑋(𝑡) = (1 − 𝛼)𝑇𝑖𝑗

𝑋(𝑡 − ∆𝑡) + 𝛼𝐷𝑖𝑗
𝑋(𝑡) (1)

Here, ∆𝑡 is the elapsed time since the last trust update. A

trust update is trigged by interaction events. Thus, the value

of ∆𝑡 is the time interval between two consecutive

interactions. Node i will use its new trust assessment

toward node j based on direct observation (i.e., 𝐷𝑖𝑗
𝑋(𝑡)) and

its past trust toward node j (i.e.,𝑇𝑖𝑗
𝑋(𝑡 − ∆𝑡)) to update 𝑇𝑖𝑗

𝑋(𝑡).

A parameter 𝛼 (0 ≤ 𝛼 ≤ 1) is used here to weigh these two

trust values and to consider trust decay over time, i.e., the

decay of the old trust value and the contribution of the new

trust value. A larger 𝛼 means that trust evaluation will rely

more on new direct observations.

Below we detail how each IoT device calculates 𝐷𝑖𝑗
𝑋(𝑡)

for X=honesty, cooperativeness, or community-interest.

Honesty - 𝐷𝑖𝑗
ℎ𝑜𝑛𝑒𝑠𝑡𝑦(𝑡): Direct honesty trust refers to the

belief of node i that node j is honest based on node i’s direct

interaction experiences toward node j at time t. First, node i

detects bad-mouthing/ballot-stuffing attacks by node j by

comparing node j’s recommendation (provided to node i as

a recommendation) toward another node, say, node q, with

the trust value of node i toward node q itself. Node j’s

recommendation toward q is just 𝐷𝑗𝑞
ℎ𝑜𝑛𝑒𝑠𝑡𝑦(𝑡 − ∆𝑡) if node j

is an honest node not performing attacks; otherwise, it can

Community-based
IoT

① Honesty
 ② Cooperativeness
 ③ Community-interest

Application
requirements

Best trust parameter
yielding accurate trust

assessment

Best trust formation
maximizing application

performance

Σ

Π

Dynamic trust
management using

adaptive control

Trust composition

Trust propagation
and aggregation

Trust formation

1. direct observations
2. recommendations

Figure 1: Components of adaptive trust management for a social IoT

system: (1) trust composition – honesty, cooperativeness, and

community-interest, (2) trust propagation and aggregation – combining

first-hand (direct observations) and second-hand information

(recommendations), (3) trust formation – forming the overall trust out

of three individual trust properties, (4) adaptive trust management –

adaptively adjusting parameter settings to improve trust evaluation

accuracy and trust formation to maximize application performance.

be 0 (or 1) if node j is a dishonest node performing bad-

mouthing attacks against (or ballot-staffing attacks for)

node q. Node i‘s trust toward node q on the other hand is

just 𝐷𝑖𝑞
ℎ𝑜𝑛𝑒𝑠𝑡𝑦(𝑡 − ∆𝑡) kept by node i. If the percentage

difference relative to 𝐷𝑖𝑞
ℎ𝑜𝑛𝑒𝑠𝑡𝑦(𝑡 − ∆𝑡) is higher than a

threshold, it is considered suspicious and thus a negative

honesty experience. A high threshold reduces false

negatives (misidentifying a bad node as a good node) but

increases false positives (misidentifying a good node as a

bad node), and vice versa. We set the threshold to 50% to

balance false negatives with false positives. Second, node i

detects self-promoting attacks by node j by detecting if

node j promotes its importance by boosting its

cooperativeness and/or community-interest trust (see below)

so as to improve its chance of being selected as the service

provider, but then provides a bad service. These direct

positive/negative experiences collected are used to assess

𝐷𝑖𝑗
ℎ𝑜𝑛𝑒𝑠𝑡𝑦(𝑡), computed by the number of positive

experiences over the total experiences collected.

Cooperativeness - 𝐷𝑖𝑗
𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(𝑡): This trust property

provides the degree of cooperativeness of node j as

evaluated by node i based on direct observations at time t

upon encountering. We use the social friendship [28]

among device owners to characterize the cooperativeness

property. The rationale is that friends are likely to be

cooperative toward each other. Each device keeps a list of

its owner’s friends which may be updated dynamically by

its owner. 𝐷𝑖𝑗
𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(𝑡) is computed as the ratio of

common friends between i and j, i.e.,
|𝑓𝑟𝑖𝑒𝑛𝑑𝑠(𝑖) ∩ 𝑓𝑟𝑖𝑒𝑛𝑑𝑠(𝑗)|

|𝑓𝑟𝑖𝑒𝑛𝑑𝑠(𝑖) ∪ 𝑓𝑟𝑖𝑒𝑛𝑑𝑠(𝑗)|
,

where 𝑓𝑟𝑖𝑒𝑛𝑑𝑠(𝑖) denotes the set of friends to the owner of

node i. A node is included in its own friend list (i.e.,

𝑖 ∈ 𝑓𝑟𝑖𝑒𝑛𝑑𝑠(𝑖)) to deal with the case where two nodes are

the only friends to each other. When node i and node j

directly interact with each other, they exchange their friend

lists. Node i can validate a friend in node j’s list if it is their

common friend. Therefore, the direct observation of

cooperativeness will be close to actual status.

To preserve privacy, node i and node j with permission

from their owners agree on a one-way hash function (with a

session key) upon interacting while exchanging the friend

lists. Thus, the friend lists exchanged are encrypted with a

one-way hash function, so each party can only compare its

(encrypted) list with the other party’s (encrypted) list to

find matches of common friends, but cannot know the other

party’s list. This way, only common friends will be

identified while the identities of uncommon friends will not

be revealed. Also, hashing is a very low cost operation and

would not drain the battery of low-capacity IoT devices.

Here we note that an honest node will submit its friend

list faithfully (although with hashing to hide identity). A

dishonest node, however, can perform self-promoting

attacks to submit a fake friend list in order to boost its

“cooperativeness” trust. This in turn can lead to its “honesty”

trust greatly decreased due to the honesty detection

mechanisms used in our protocol design.

Community-Interest - 𝐷𝑖𝑗
𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦−𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑡): This trust

property provides the degree of the common interest or

similar capability of node j as evaluated by node i based on

direct observations at time t upon encountering. Each

device keeps a list of its owner’s communities/groups of

interest which may be changed dynamically.

𝐷𝑖𝑗
𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦−𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑡) is computed as the ratio of common

communities of interests between nodes i and j, i.e.,
|𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦(𝑖)∩ 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦(𝑗)|

|𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦(𝑖)∪ 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦(𝑗)|
, where 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦(𝑖) denotes

the set of communities of interests to the owner of node i.

When node i and node j directly interact with each other,

with permission granted from their owners they also

exchange their service and device profiles, so node i can

validate whether node j and itself are in a particular

community/group. Therefore, the direct observation of

community-interest trust will be close to actual status. To

preserve privacy, node i and node j agree on a one-way

hash function (with a session key) upon interesting while

exchanging the community lists so as not to reveal the

identities of their uncommon communities. Again we note

that an honest node will submit its community-interest list

faithfully (although with hashing to hide identity). A

dishonest node, however, can perform self-promoting

attacks to submit a fake community-interest list in order to

boost its “community-interest” trust. This in turn can lead

to its “honesty” trust greatly decreased due to the honesty

detection mechanisms used in our protocol design.

Here we note that the friend-list/community-interest list

exchange is not during the service request time from node i

to node j, but during the encountering time of node i with

node j for the purpose of assessing each other’s

cooperativeness and community-interest trust values.

3.2.2 𝑻𝒊𝒋
𝑿(𝒕) Update When Node i Interacts with Node k, 𝒌 ≠ 𝒋

Whenever node i encounters node k, 𝑘 ≠ 𝑗, who had

prior interaction experience with node j, node k will serve

as a recommender to provide its trust recommendation

about node j, 𝑅𝑘𝑗
𝑋 (𝑡), to node i which will update 𝑇𝑖𝑗

𝑋(𝑡)as

follows:

𝑇𝑖𝑗
𝑋(𝑡) = (1 − 𝛾)𝑇𝑖𝑗

𝑋(𝑡 − ∆𝑡) + 𝛾𝑅𝑘𝑗
𝑋 (𝑡) (2)

In this case, node i will not have direct interaction

experience with node j and instead will use its past trust

value 𝑇𝑖𝑗
𝑋(𝑡 − ∆𝑡) and the new recommendation received

from node k (second-hand information 𝑅𝑘𝑗
𝑋 (𝑡) where k is

the recommender) whom it interacted to update 𝑇𝑖𝑗
𝑋(𝑡). The

parameter γ is used here to weigh the new recommendation

vs. past experience and to consider trust decay over time.

Here we note that the recommendation 𝑅𝑘𝑗
𝑋 (𝑡) provided

by node k to node i about node j depends on the status of a

node. If node k is a good node, node k (being a good node)

will faithfully use its trust evaluation towards node j in

component X as the recommendation, i.e., 𝑅𝑘𝑗
𝑋 (𝑡) is simply

equal to 𝐷𝑘𝑗
𝑋 (𝑡). If node k is a bad node, node k (being a bad

node) can perform bad-mouthing attacks by recommending

𝑅𝑘𝑗
𝑋 (𝑡) = 0 if node j is a good node, and can perform ballot-

stuffing attacks by recommending 𝑅𝑘𝑗
𝑋 (𝑡) = 1 if node j is a

bad node.

To defend against bad-mouthing and ballot-stuffing

attacks from a recommender (node k), node i uses its direct

trust toward node k, 𝐷𝑖𝑘
𝑋 (𝑡), to assess if node k is a

trustworthy recommender in trust property X. Hence, we

introduce another parameter 𝛽 ≥ 0 as follows:

𝛾 =
𝛽𝐷𝑖𝑘

𝑋 (𝑡)

1 + 𝛽𝐷𝑖𝑘
𝑋 (𝑡)

 (3)

Essentially 𝛽 is a user controllable parameter to specify

the impact of a recommendation on 𝑇𝑖𝑗
𝑋(𝑡) such that the

weight 𝛾 assigned to 𝑅𝑘𝑗
𝑋 (𝑡) in Equation 2 is normalized to

𝛽𝐷𝑖𝑘
𝑋 (𝑡) relative to 1 assigned to past information. Thus, the

contribution of 𝑅𝑘𝑗
𝑋 (𝑡) received from node k increases

proportionally as either 𝐷𝑖𝑘
𝑋 (𝑡) or 𝛽 increases.

3.2.3 Trust Parameters 𝜶 and 𝜷

Our trust aggregation and propagation protocol

described above has two parameters: 𝛼 and 𝛽. Parameter 𝛼

is to tune the tradeoff between new direct trust vs. past

information. Increasing 𝛼 will put more weight on new

direct observations 𝐷𝑖𝑗
𝑋(𝑡). Parameter 𝛽 is to tune the

tradeoff between new indirect recommendations vs. past

information, taking into consideration of the trust toward

the recommender. Increasing 𝛽 will put more weight on

new recommendations 𝑅𝑘𝑗
𝑋 (𝑡). A key concept of our

adaptive trust management protocol is that instead of

having fixed weight ratios α and 𝛽, we allow the weight

ratios to be adjusted dynamically in response to changing

network conditions to improve trust assessment accuracy

and provide resiliency against slandering attacks such as

bad-mouthing and ballot-stuffing attacks.

3.3 Trust Formation

𝑇𝑖𝑗
𝑋(𝑡)′s where X = honesty, cooperativeness, and

community-interest are separately assessed by node i. How

to form an overall trust out of the three 𝑇𝑖𝑗
𝑋(𝑡)′𝑠 is a trust

formation issue and depends on the trust requirement of the

IoT application running on top of our trust management

protocol. The goal of our adaptive trust management design

in trust formation is to dynamically discover the best way to

form trust out of identified trust components to maximize

the application performance, in response to dynamically

changing conditions. We will discuss and illustrate our

adaptive trust formation design with two real-world social

IoT service composition applications in Section 5.

3.4 Cost Analysis

Based on our trust propagation and aggregation protocol

design, a node updates its trust toward other nodes upon

encountering or interacting with another node. Two nodes

involved in a direct interaction activity (as described in

Section 3.2.1) can directly observe each other and update

their trust assessments. Two nodes encountering each other

(as described in Section 3.2.2) exchange their trust

recommendations toward other nodes. The storage cost per

node is therefore O(NTNX) where NT is the number of IoT

devices, and NX is the number of trust properties (3 in our

protocol design). This storage requirement can still be

excessive for IoT devices with limited memory space. We

refer the readers to a caching design in [8] as a possible

solution to mitigate this problem without overly sacrificing

trust accuracy and convergence properties. The

communication overhead per node (from node i’s

perspective) is O(NX∑ 𝜋𝑖𝑗
𝑁𝑇

𝑗=1
) where 𝜋𝑖𝑗 is the encountering

rate of node i with node j which can be derived by

analyzing the encounter or interaction pattern, e.g., a

power-law distribution, as supported by the analysis of

many real traces [25]. Essentially upon encountering node j,

node i exchanges messages with node j for both direct trust

assessment of node j of NX trust properties (i.e., through

hashed friend and community-interest lists) and indirect

trust assessment of other nodes in the system (i.e., through

trust recommendations). In practice the message overhead

is lower because one can combine several pieces of

information into one message during transmission.

4 PROTOCOL PERFORMANCE EVALUATION

In this section, we evaluate our proposed adaptive trust

management protocol based on ns3 simulation to validate

the convergence, accuracy, and resiliency properties of our

protocol design. The readers are referred to [6] for a formal

proof. Later in Section 5, we will demonstrate the utility of

our adaptive trust management protocol design with two

real-world social IoT applications.

4.1 Social IoT Environment Setup

In our experimental setup the status of each node is

changing dynamically. The input is specified by a set of

input parameters in Table 1. We consider a hostile

environment where the percentage of malicious nodes

𝜆 ∈ [10, 90%] is randomly selected out of all IoT devices.

The default value of 𝜆 is 30% and we will test the

sensitivity of performance results with respect to 𝜆. A node

selected to be in this “malicious” population is benign

initially, but turns malicious after a period of time 𝑇𝑐 ∈
[0, 100 hrs] randomly generated is elapsed, after which it

will perform attacks as described in Section 2. On the other

hand, a node not selected in this “malicious” population

remains benign throughout the simulation. With this setup,

while the objective trust or ground truth of a good node

remains constant, the objective trust or ground truth of a

malicious node changes dynamically.

We consider a social IoT environment with NT=50

heterogeneous smart objects/devices with all of them

providing various services. These devices are randomly

distributed to NH=20 owners. The social cooperativeness

relationship among the devices is characterized by a

friendship relationship (matrix) [28] among device owners.

That is, if the owners of devices i and j are friends, then

there is a 1 in the ij position. While our protocol allows

dynamic friend lists, the friend list kept by each device is

simulated initially and remains the same throughout the

simulation. Devices are used by their owners in one or more

social communities or groups. A device can belong to up to

NG=10 communities or groups. This is also simulated and

remains fixed throughout the simulation. We assume that

the encounter or interaction pattern follows a bounded

power law distribution ([10mins, 2 days]) with the slope

equal to 1.4, resulting in the average interaction-contact

time T being 4 hours. The settings are close to those

obtained from real traces [25]. The total simulation time is

100 hours.

The initial trust value of all devices is set to ignorance

with a trust level of 0.5. Our intent is to show that an IoT

device upon hostility changes can adaptively select trust

protocol settings in terms of 𝛼 and 𝛽 to best tradeoff the

trust convergence rate and trust fluctuation rate to obtain an

acceptable mean absolute error (MAE) between the trust

value obtained vs. ground truth.

4.2 Effect of 𝜶 on Trust Evaluation

We first investigate the effect of design parameter 𝛼 on

trust evaluation. Recall that α is the weight associated with

direct trust with respect to past experience in Equation 1.

For sensitivity analysis of 𝛼, we vary 𝛼 by selecting

different values (0.1, 0.3, and 0.9) and set 𝛽 to 0 to isolate

its effect. The percentage of malicious nodes 𝜆 is 30%.

Here we only give the results for the honesty trust property

evaluation. The other two trust properties follow the same

trend.

Figure 2(a) shows the effect of 𝛼 on honesty trust

evaluation toward a “good” node whose ground truth status

does not change as time increases. The ground truth

honesty status for this good node is constant at 1. The dash

lines show the empirical confidence intervals with 90%

confidence. We can see that the trust evaluation approaches

ground truth as time increases. Further, we observe that as

the value of 𝛼 increases, the trust value converges to ground

truth faster, but the trust fluctuation also becomes higher.

Here we observe that the trust convergence time is 5 to 10

hours because the average inter-arrival interaction time T

following a bounded power law distribution is set to 4

hours.

Figure 2(b) shows the results of trust evaluation for

honesty toward a “malicious” node randomly selected

whose status goes from benign to malicious after 𝑇𝑐 = 50 is

elapsed. We can see that after the status change, the trust

evaluation converges towards the new ground truth status.

In addition, as the value of 𝛼 increases, the trust evaluation

converges to the new ground truth status faster, albeit with

(a) Trust of a good node randomly picked.

(b) Trust of a malicious node randomly picked.

Figure 2: Effect of 𝜶 on honesty trust evaluation (a) toward a good node

and (b) toward a malicious node which turns bad at 𝑻𝒄=50 hours. Trust

converges in both cases. There is an inherent trade-off between trust

convergence time vs. trust fluctuation. Specifically, as the value of 𝜶

increases, the trust value converges to ground truth faster, but the trust

fluctuation also becomes higher.

(a) Trust of a good node randomly picked.

(b) Trust of a malicious node randomly picked.

Figure 3: Effect of 𝜷 on honesty trust evaluation (a) toward a good

node and (b) toward a malicious node which turns bad at 𝑻𝒄=50 hours.

Trust converges in both cases. There exists a trade-off between trust

convergence time vs. trust fluctuation. As 𝜷 increases, the trust

evaluation converges to the ground truth faster, but the trust

fluctuation becomes higher. The effect of 𝜷 is not as significant

compared to the effect of 𝜶.

a higher fluctuation. This result validates the convergence,

accuracy, and resiliency properties of our protocol design.

4.3 Effect of 𝜷 on Trust Evaluation

Next, we investigate the effect of design parameter 𝛽 on

trust evaluation. Recall that β is related to γ by Equation 3,

representing the weight associated with the indirect

recommendation with respect to past experience in

Equation 2. For sensitivity analysis of 𝛽, we vary 𝛽 by

selecting different values (0, 0.1, and 1), and set 𝛼 to 0.5 to

isolate its effect.

Figure 3(a) shows the effect of 𝛽 on honesty trust

evaluation of a good node. Again, we can see that our trust

evaluation approaches ground truth status as time increases.

We also observe that as 𝛽 increases, the trust evaluation

converges to the ground truth faster, but the trust

fluctuation becomes higher. The reason is that using more

recommendations (higher 𝛽) helps trust convergence

through effective trust propagation. However, one can see

that the effect of 𝛽 is insignificant compared to the effect of

𝛼. The reason is that very often in a social IoT environment,

the chance of a trustor interacting with a recommender is

higher than the chance of the trustor directly interacting

with a trustee. As long as 𝛽 > 0, adaptive trust management

is able to effectively aggregate trust using recommendations

from a large number of recommenders, thus making the

effect of further increasing the value of 𝛽 insignificant.

Figure 3(b) shows the effect of 𝛽 on honesty trust

evaluation of a malicious node randomly selected whose

status goes from benign to malicious after 𝑇𝑐 = 50 hours is

elapsed. Again, we see that after the ground truth status

changes, our trust protocol quickly converges towards the

new ground truth status. Initially using more

recommendations (𝛽 > 0) in trust evaluation helps trust

convergence. However, after the status change, the

convergence behavior is about the same regardless of 𝛽.
This is partly because the effect of 𝛽 (Figure 3(b)) is

insignificant compared to the effect of 𝛼 (Figure 2(b)) and

partly because an honest recommender can adversely

provide obsolete and inaccurate trust recommendations

toward a malicious node, as it has not interacted with the

malicious node since the malicious node’s status change.

As the trustor will not exclude these inaccurate

recommendations from good nodes, using more

recommendations does not accelerate the pace of trust

convergence.

4.4 Adaptive Trust Management in Response to

Dynamically Changing Hostility Conditions

From Figures 2 and 3, one can see that the trust

evaluation quickly converges and it is remarkably close to

the ground truth status, demonstrating its resiliency against

trust attacks. We further validate resiliency of our adaptive

trust management protocol toward trust attacks in IoT

environments with a varying degree of hostility. We

consider five different hostile environments with the

percentage of malicious nodes 𝜆 being 10%, 30%, 50%,

70%, and 90%.

Figures 4(a), 4(b), and 4(c) show trust evaluation results

of a good node randomly picked toward another good node

also randomly picked for honesty (ground truth trust = 1),

cooperativeness (ground truth trust = 0.28), and

community-interest (ground truth trust = 0.38),

respectively. One can see that the trust value quickly

converges and it is remarkably close to the ground truth

status (marked with solid lines) with MAE less than 10%

when 𝜆 ≤ 50%, demonstrating our protocol’s high

resiliency to trust attacks. As 𝜆 increases, the MAE of trust

evaluation inevitably increases because of more false

recommendations from malicious nodes. Even when most

nodes are malicious with 𝜆 going from 70 to 90%, the MAE

only goes from 12 to 40%. This demonstrates our

protocol’s high resiliency toward attacks even in extremely

hostile environments.

(a) Honesty trust

(b) Cooperativeness trust

(c) Community-Interest trust

Figure 4: Effect of hostility on dynamic trust evaluation of a good node

toward another good node. Our adaptive trust management protocol

can react to changing hostility by dynamically choosing the best (𝜶,𝜷)
values to tradeoff the trust convergence rate and trust fluctuation rate

to obtain an acceptable MAE between the trust value obtained vs.

ground truth.

Here we note that given the knowledge of environment

hostility (expressed in terms of 𝜆), our adaptive trust

management protocol can react to changing hostility by

dynamically choosing the best (𝛼, 𝛽) values to tradeoff the

trust convergence rate and trust fluctuation rate to obtain an

acceptable MAE between the trust value obtained vs.

ground truth. We will discuss how one may apply the

analysis results at runtime in Section 6.

5 IOT APPLICATION PERFORMANCE

To demonstrate the effectiveness of our proposed trust

protocol for IoT systems, we consider two real-world social

IoT applications [2, 3, 4] which require dynamic service

composition and binding [19, 29]. Such social IoT

applications running on top of our trust protocol aim to first

compose a service plan (this is the service composition

part) and then select the most trustworthy IoT nodes (this is

the service binding part) for providing services requested

such that the trustworthiness score representing the

goodness of the service composition is maximized. We

compare the performance of trust-based service

composition with two baseline approaches:

 Ideal Service Composition: it returns the maximum

achievable trustworthiness score by always knowingly

selecting service providers with the highest “ground truth”

trustworthiness scores (based on the actual status). This

scheme in practice is not achievable because we do not

know ground truth status.

 Random Service Composition: it selects service

providers randomly without regard to trust.

5.1 Smart City Air Pollution Detection

We consider a smart city IoT application running on

Alice’s smartphone for air pollution detection [4]. Alice

tries to avoid stepping into high air pollution areas (in terms

of the levels of carbon dioxide, PM10, etc.) for health

reasons. Alice’s smartphone is a member of the air

pollution awareness social network. She decides to invoke

her smartphone to connect to sensor devices in an area she

is about to step (or drive) into. Alice knows that many IoT

devices will respond, so she needs to make a decision on

which sensing results to take. She instructs her smartphone

to accept results only from n=5 most “trustworthy” sensors

and she will follow a trust-weighted majority voting result.

That is, each yes or no recommendation is counted as 1

weighted by Alice’s trust toward the recommender. If the

total trust-weighted “yes” score is higher than the total

trust-weighted “no” score, Alice will step into the area;

otherwise, she will make a detour to avoid the area.

This smart city air pollution detection application is

essentially a simple trust-based service composition IoT

application in which Alice will simply select n=5 IoT

devices for which she trusts the most. Therefore, the

trustworthiness score of this service composition

application which it aims to maximize is simply the sum of

the individual trustworthiness scores. Since this application

involves a simple binary decision (yes or no), we consider a

simple trust formation design as follows. If a selected

service provider does not pass the minimum honesty trust

threshold, the trustworthiness score is zero; otherwise, the

trustworthiness score is determined by the social ties

between the service provider and the service requester, i.e.,

a higher trustworthiness score is given if they have more

common friends, or if they share more community interests.

The rationale of using honesty trust to screen service

providers is to avoid malicious service. The rationale of

using cooperativeness and community interest trust to

subsequently rank service providers is that trustee nodes

with which a trustor node has good social ties can most

likely provide good service in social IoT environments.

Alice decides to set the minimum honesty trust threshold as

0.5. With the reasons given above, her smartphone (as node

i) estimates the trustworthiness score 𝑇𝑖𝑗(𝑡) toward each

service provider (node j) as follows:

𝑇𝑖𝑗(𝑡) =

{

 0, 𝑖𝑓 𝑇𝑖𝑗
ℎ𝑜𝑛𝑒𝑠𝑡𝑦(𝑡) ≤ 0.5

min(
𝑇𝑖𝑗
𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(𝑡),

𝑇𝑖𝑗
𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦−𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑡)

) , 𝑖𝑓 𝑇𝑖𝑗
ℎ𝑜𝑛𝑒𝑠𝑡𝑦(𝑡) > 0.5

 (4)

Figure 5 compares trust-based service composition

against two baseline service comparison methods (random

and ideal). The experimental setup is the same as that in

Section 4. The performance metric is the combined

trustworthiness score for n=5 service providers selected.

We consider 4 versions of trust-based service composition

by selecting 4 different sets of design parameters: (𝛼, 𝛽) =

(a) Low hostility at 𝜆 =10%

(b) High hostility at 𝜆 = 50%

Figure 5: Performance comparison for the smart city air pollution

detection application.

0 20 40 60 80 100
0

0.2

0.4

0.6

Time (hours)

T
ru

s
tw

o
rt

h
in

e
s
s
 S

c
o

re

Ideal Service Composition

Trust-Based Service Composition (=0.5, =0)

Trust-Based Service Composition (=0.5, =0.2)

Trust-Based Service Composition (=0.5, =0.5)

Trust-Based Service Composition (=0.5, =1)

Random Service Composition

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

Time (hours)

T
ru

s
tw

o
rt

h
in

e
s

s
 S

c
o

re

(0.5, 0), (𝛼, 𝛽) = (0.5, 0.2), (𝛼, 𝛽) = (0.5, 0.5), and

(𝛼, 𝛽) = (0.5, 1) for the purpose of testing the effect of

(𝛼, 𝛽)on application performance.

We see that as 𝜆 (the percentage of malicious nodes)

increases, the combined trustworthiness score obtained by

each protocol decreases because of fewer good service

providers exist in the social IoT environment. For example,

a service provider with the highest trustworthiness score

when 𝜆 =10% might become malicious when 𝜆 =50%,

making the combined trustworthiness score lower under

ideal service composition. More importantly in all cases,

trust-based service composition significantly outperforms

random service composition and approaches the maximum

achievable performance by ideal service composition.

In Figure 5, all curves reach trust convergence although

trust fluctuation is higher when β is higher because placing

a higher weight on recommendations will make trust

evaluation more sensitive to bad-mouthing/ballot-stuffing

attacks. We see that there is a crossover point on the

trustworthiness curves of two trust-based service

composition methods. For example, before the crossover

point, trust-based service composition under the setting of

(𝛼, 𝛽) = (0.5, 0.2) performs better, while after the

crossover point, trust-based service composition under the

setting of (𝛼, 𝛽) = (0.5, 0) performs better. The reason is

that while using recommendations helps trust quickly

converge, it also introduces trust bias because of bad-

mouthing and ballot-stuffing attacks. We observe that the

crossover time point increases as the percentage of

malicious nodes increases. Specifically, the crossover point

is at 𝑡 = 12 hours for 𝜆 = 10% and 𝑡 = 26 hours for 𝜆 =

50%. Thus, in a dynamic IoT environment in which the

hostility (in terms of the percentage of malicious nodes)

changes over time, adaptive trust-based service

management is achieved by choosing the best design

parameter settings (α, β) to maximize the service

composition application performance.

5.2 Augmented Map Travel Assistance

Bob has never traveled to Washington DC so he is

excited but also nervous about the quality of service he will

receive during his visit. He is aware of the fact that DC is a

smart city so he registers his smartphone to the travelers-in-

Washington-DC social network. He also downloads an

augmented map social IoT application [2] to run on his

smartphone, allowing his Near Field Communications

(NFC) equipped smartphone to browse a tag-augmented

DC map wherever he goes sightseeing. This tag-augmented

map automatically connects Bob’s smartphone to IoT

devices available upon encountering, which provide

information, food, entertainment (e.g., ticket purchasing),

and transportation services [2]. Bob instructs his

smartphone to make selection decisions dynamically, so it

can leverage new information derived from direct

experiences as well as recommendations received from IoT

devices it encounters. In response to a service request

issued by Bob, his smartphone performs the following

actions:

 Formulate a service plan based on the results gathered.

 Invoke necessary services to meet Bob’s service demand

and requirements.

The augmented map travel assistance application

running on his smartphone composes a service workflow

plan as shown in Figure 6 in response his service request

“Fill me with the best grilled hamburger within 20 minutes

under a $30 budget.” With the service plan formulated,

Bob’s smartphone selects the best service providers out of a

myriad of service providers to execute the service plan. The

objective of the trust-based service composition application

running on Bob’s smartphone is to select the most

trustworthy IoT nodes for providing services specified in

the flow structure subject to the time and budget constraints

(20 minutes and 30 dollars) such that the overall

trustworthiness score representing the goodness of the

service composition is maximized.

Since in this application Bob needs an overall

trustworthiness score to tell him how much he can trust the

service plan formulated, we consider a scaling trust

formation model by which the trustworthiness score of node

i toward node j is computed as:

𝑇𝑖,𝑗(𝑡) = 𝑚𝑖𝑛 (1, 𝑇𝑖𝑗
ℎ𝑜𝑛𝑒𝑠𝑡𝑦(𝑡) ×

𝑇𝑖𝑗
𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(𝑡)

𝑇𝐴𝑉𝐺
𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(𝑡)

×
𝑇𝑖𝑗
𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦−𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑡)

𝑇𝐴𝑉𝐺
𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦−𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑡)

)

(5)

where 𝑇𝐴𝑉𝐺
𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(𝑡) and 𝑇𝐴𝑉𝐺

𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦−𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑡) are the

average cooperative trust and community-interest trust

S3 S4 S5

S1 S2

S6

or

and

Figure 6: A service flow structure for the augmented map travel

assistance application specifying the order of service execution for

Bob’s service request “fill me with the best grilled hamburger within

20 minutes and under a $30 budget.” Here Si represents abstract

service i which can be a piece of information, a taxi service, or a

hamburger service, and will be provided by an IoT service provider

that is selected by Bob’s smartphone. S1 and S2 are connected by a

parallel structure (AND) meaning that they are services to be run

concurrently (e.g., different information service providers about which

hamburger shop within 20 minutes of taxi ride is the best). S3, S4 and S5

are connected by a selection structure (OR) meaning that they are

competitive services (e.g., different taxi companies) and only one will

be chosen to execute. S6 (e.g., the hamburger shop selected) is to be run

sequentially after the upper level service bindings are completed.

values, respectively, toward all IoT nodes for which node i

had interaction experiences or received recommendations.

With Equation 5, node i scales the honesty trust of node j

up or down, depending on node j’s cooperativeness trust

and community-interest trust relative to the respective

average trust value. The scaled honesty trust 𝑇𝑖𝑗
ℎ𝑜𝑛𝑒𝑠𝑡𝑦(𝑡) is

the trustworthiness score of node i towards node j.

In Figure 6, there are 6 atomic services connected by

three types of workflow structures: sequential, parallel

(AND), and selection (OR). Each service would have

multiple service provider candidates. In this case, the

overall trustworthiness score of this service composition

application can be calculated recursively in the same way

the reliability of a series-parallel connected system is

calculated. Specifically, the trustworthiness score of a

composite service (whose trustworthiness score is 𝑇𝑠) that

consists of two subservices (whose trustworthiness scores

are 𝑇1 and 𝑇2) depends on the structure connecting the two

subservices as follows:

 Sequential structure: 𝑇𝑠 = 𝑇1 × 𝑇2;

 Selection structure (OR): 𝑇𝑠 = max (𝑇1, 𝑇2);
 Parallel structure (AND): 𝑇𝑠 = 1 − (1 − 𝑇1) × (1 − 𝑇2).

For the flow structure in Figure 6, the outermost

structure is a sequential structure connecting (S1 S2), (S3 S4

S5), and S6 out of which (S1 S2) is a parallel structure and

(S3 S4 S5) is a selection structure.

Figure 7 compares the trustworthiness score of the trust-

based service composition application against those under

random service composition and ideal service composition.

The experimental setup is the same as that in Section 4.

Overall, the trend exhibited in Figure 7 is remarkably

similar to that in Figure 5, demonstrating the tradeoff

between the increase of convergence rate and the decrease

of trust accuracy as 𝛽 increases.

The overall trustworthiness score of the augmented map

travel application (in Figure 7) is lower than that of the

augmented map travel assistance application (in Figure 5).

This is due to the fact that trust formation is application-

dependent, so these two social IoT applications have their

own ways of computing the overall trustworthiness score.

The overall trustworthiness score of the former application

is computed as how the overall reliability of a system

comprising series-parallel connected components would be

computed based on reliability theory. The overall

trustworthiness score of the latter application is simply

computed as the sum of component trustworthiness scores

since it only involves a binary decision (yes or no) based on

trust-weighted majority voting. It is noteworthy that the

absolute trustworthiness score obtained is not important.

What is important is the performance of trust-based service

composition relative to ideal service composition which

yields the best application performance. From Figure 7, we

once again observe that by selecting the best (𝛼, 𝛽) setting,

trust-based service composition for the augmented map

travel assistance application (with a service flow structure

controlling the service execution) outperforms random

service composition while approaching the best

performance obtainable by ideal service composition. When

there is insufficient time for a user to gather enough

evidence, it can use a higher 𝛽 to intake more

recommendations. For example, Figure 7 shows that 𝛽=0.2

or 0.5 is a better choice for maximizing application

performance than 𝛽=0 before t=10 hours when 𝜆=10% (in

Figure 7(a)) and before t=20 hours when 𝜆=50% (in Figure

7(b)). Conversely, once the user has gathered sufficient

evidence and the trustworthiness score is converged, it is

better to use a lower 𝛽 value to reduce the chance of taking

in false recommendations launched by malicious nodes,

especially in high hostility environments.

6 APPLICABILITY

The effectiveness of adaptive trust management relies

on deploying the best protocol settings dynamically in

response to changing environments. The analysis

methodology proposed in the paper identifies the best

protocol settings (in terms of the two design parameters 𝛼

and 𝛽 listed in Table 1) to best tradeoff the trust

convergence rate and trust fluctuation rate for achieving the

desirable accuracy and maximizing application

performance, when given a set of input parameter values

(defined in Table 1) as input. The analysis is performed at

design time.

One way to apply the results for adaptive trust

management is to build a lookup table at static time listing

(a) Low hostility at 𝜆 =10%

(b) High hostility at 𝜆 = 50%

Figure 7: Performance comparison for the augmented map travel

application.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

Time (hours)

T
ru

s
tw

o
rt

h
in

e
s

s
 S

c
o

re

Ideal Service Composition

Trust-Based Service Composition (=0.5, =0)

Trust-Based Service Composition (=0.5, =0.2)

Trust-Based Service Composition (=0.5, =0.5)

Trust-Based Service Composition (=0.5, =1)

Random Service Composition

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

Time (hours)

T
ru

s
tw

o
rt

h
in

e
s

s
 S

c
o

re

the best 𝛼 and 𝛽 settings over a perceivable range of input

parameter values. The lookup table as shown in Figure 8

would store key-value pairs where the “keys” are

combinations of input parameter values, and the “values”

are the best 𝛼 and 𝛽 design parameter values for achieving

the desirable accuracy and maximizing application

performance under the input parameter values. Then, at

runtime, upon sensing the environment changes in terms of

input parameter values, a node can perform a simple table

lookup operation augmented with extrapolation or

interpolation techniques to determine and apply the best 𝛼

and 𝛽 settings in response to dynamically changing

conditions. The lookup time is O(1) and can be efficiently

applied at runtime.

Figure 8: Lookup Table Mechanism. The “sensed input parameters”

on the left are input to be sensed at runtime. The “design parameters”

on the right are output as a result of a table lookup operation.

Depending on data granularity, a set of input parameter values may

not directly map to a set of output parameter values. Extrapolation or

interpolation techniques may be used to produce the matching output.

7 RELATED WORK

In this section, we survey recently proposed trust

management protocols for IoT systems. We contrast and

compare our work with existing work so as to differentiate

our work from existing work and identify unique features

and contributions of our trust protocol design and trust-

based service management design for IoT systems.

There is little work on trust management in IoT

environments for security enhancement, especially for

dealing with misbehaving owners of IoT devices that

provide services to other IoT devices in the system. Chen et

al. [14] proposed a trust management model based on fuzzy

reputation for IoT systems. However, their trust

management model considers a very specific IoT

environment populated with wireless sensors only, so they

only considered QoS trust metrics like packet

forwarding/delivery ratio and energy consumption for

measuring trust of sensors. On the contrary, our work

considers both QoS trust deriving from communication

networks and social trust deriving from social networks

which give rise to social relationships of owners of IoT

devices in the social IoT environment. Saied et al. [36]

proposed a context-aware and multiservice approach for

trust management in IoT systems against malicious attacks.

However it requires the presence of centralized trusted

servers to collect and disseminate trust data, which is not

viable in IoT environments. Relative to [36], our trust

protocol is totally distributed without requiring any

centralized trusted entity.

Bao and Chen [5] proposed a trust management

protocol considering both social trust and QoS trust metrics

and using both direct observations and indirect

recommendations to update trust in IoT systems. However,

the issue of adaptively adjusting trust evaluation in

response to dynamically changing conditions so as to cope

with misbehaving nodes and maximize the performance of

IoT applications running on top of the trust management

was not addressed. Relative to [5] cited above, we not only

consider multiple trust properties for social IoT

environments, but also analyze the tradeoff between trust

convergence speed and trust fluctuation to identify the best

protocol parameter settings for trust propagation and

aggregation to best exploit this tradeoff for minimizing trust

bias. Furthermore, it addresses the issue of trust formation

for application performance maximization using service

composition as an application example.

Very recently, Nitti et al. [32] considered social

relationships of owners of IoT devices for trust

management in social IoT systems. They proposed two

models for trustworthiness management. Namely, a

subjective model deriving from social networks, with each

node computing the trustworthiness of its friends on the

basis of its own experience and on the opinion of friendly

recommenders, and an objective model deriving from P2P

communication networks with each node storing and

retrieving trust information towards its peers in a

distributed hash table structure, so that any node can make

use of the same information. Their objective model requires

pre-trusted nodes be in place for maintaining the hash table,

which is questionable in IoT environments. Their subjective

model is similar in spirit to our trust model taking into

consideration of the social relationships between owners of

IoT devices. The fundamental difference is that our model

of objective trust is based on ground truth or actual status,

and our trust protocol dynamically adapts to changing

environments by adjusting the best protocol settings to

minimize trust bias (the difference between subjective trust

and objective trust) and to maximize application

performance.

Security has drawn the attention in IoT research [14, 15,

34, 35, 42]. Roman et al. [35] discussed threats to IoT, such

as compromising botnets trying to hinder services and the

domino effect between intertwined services and user

profiling. Traditional approaches to network security, data

and privacy management, identity management, and fault

tolerance will not accommodate the requirements of IoT

due to lack of scalability and not being able to cope with a

high variety of identity and relationship types [35]. Possible

solutions were proposed to each security problem, but no

specific protocol or analysis was given. Ren [34] proposed

a compromise-resilient key management scheme for

heterogeneous wireless IoT. The proposed key management

protocol includes key agreement schemes and key evolution

policies (forward and backward secure key evolution). The

author also designed a quality of service (QoS) aware

Sensed input parameters
 { NT , NH , NG , T , λ , TC }

Design parameters

 { α , β }

Key Value

. . .

. . .

Lookup table

enhancement to the proposed scheme. However, the

proposed scheme does not take social relationships among

IoT identities into consideration. Chen and Helal 15

proposed a device-centric approach to enhance the safety of

IoT. They designed a device description language (DDL) in

which each device can specify its safety concerns,

constraints, and knowledge. Nevertheless, their approach is

specifically designed for sensor and actuator devices, and

does not consider social relationships among device

owners. Zhou and Chao [42] proposed a media-aware

traffic security architecture for IoT. The authors first

designed a multimedia traffic classification, and then

developed this media-aware traffic security architecture to

achieve a good trade-off between system flexibility and

efficiency. A limitation of their work is that they only

considered direct observations to traffic without

considering indirect recommendations.

Relative to the security designs/mechanisms cited

above, our approach is to use trust to implement security

against malicious attacks. We note that our trust system can

work orthogonally with these security designs/mechanisms

to further enhance security of social IoT systems.

8 CONCLUSION

In this paper, we developed and analyzed an adaptive

trust management protocol for social IoT systems and its

application to service management. Our protocol is

distributed and each node only updates trust towards others

of its interest upon encounter or interaction events. The

trust assessment is updated by both direct observations and

indirect recommendations, with parameters 𝛼 and 𝛽 being

the respective design parameters to control trust

propagation and aggregation for these two sources of

information to improve trust assessment accuracy in

response to dynamically changing conditions. We analyzed

the effect of α and β on the convergence, accuracy, and

resiliency properties of our adaptive trust management

protocol using simulation. The results demonstrate that (1)

the trust evaluation of adaptive trust management will

converge and approach ground truth status, (2) one can

tradeoff trust convergence speed for low trust fluctuation,

and (3) adaptive trust management is resilient to

misbehaving attacks. We demonstrated the effectiveness of

adaptive trust management by two real-world social IoT

applications. The results showed our adaptive trust-based

service composition scheme outperforms random service

composition and approaches the maximum achievable

performance based on ground truth. We attributed this to

the ability of dynamic trust management being able to

dynamically choose the best design parameter settings in

response to changing environment conditions.

There are several future research areas. We plan to

further test our adaptive trust management protocol’s

accuracy, convergence and resiliency properties toward a

multitude of dynamically changing environment conditions

under which a social IoT application can automatically and

autonomously adjust the best trust parameter settings

dynamically to maximize application performance. Another

direction is to explore statistical methods to exclude

recommendation outliers to further reduce trust fluctuation

and enhance trust convergence in our adaptive trust

management protocol design.

ACKNOWLEDGEMENTS

This work was supported in part by the US Army Research

Office under Grant W911NF-12-1-0445.

REFERENCES

[1] S. Adali et al., "Measuring Behavioral Trust in Social Networks,"
IEEE International Conference on Intelligence and Security

Informatics, Vancouver, BC, Canada, May 2010.

[2] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A
Survey,” Computer Networks, vol. 54, no. 15, Oct. 2010, pp. 2787-

2805.

[3] L. Atzori, A. Iera, G. Morabito, and M. Nitti, “The Social Internet of
Things (SIoT) - When social networks meet the Internet of Things:

Concept, architecture and network characterization,” Computer

Networks, vol. 56, no. 16, Nov. 2012, pp. 3594-3608.
[4] E. Borgia, "The Internet of Things vision: Key features, applications

and open issues," Computer Communications, vol. 54, 2014, pp. 1-

31.
[5] F. Bao, and I. R. Chen, “Dynamic Trust Management for Internet of

Things Applications,” 2012 International Workshop on Self-Aware

Internet of Things, San Jose, California, USA, September 2012.
[6] F. Bao, Dynamic Trust Management for Mobile Networks and Its

Applications, ETD, Virginia Polytechnic Institute and State

University, May 2013.

[7] F. Bao, I. R. Chen, M. Chang, and J. H. Cho, “Hierarchical Trust

Management for Wireless Sensor Networks and Its Applications to

Trust-Based Routing and Intrusion Detection,” IEEE Trans. on
Network and Service Management, vol. 9, no. 2, 2012, pp. 161-183.

[8] F. Bao, I. R. Chen, and J. Guo, “Scalable, Adaptive and Survivable

Trust Management for Community of Interest Based Internet of
Things Systems,” 11th IEEE International Symposium on

Autonomous Decentralized System, Mexico City, March 2013.

[9] N. Bui, and M. Zorzi, “Health Care Applications: A Solution Based
on The Internet of Things,” the 4th International Symposium on

Applied Sciences in Biomedical and Communication Technologies,

Barcelona, Spain, Oct. 2011, pp. 1-5.
[10] B. Carminati, E. Ferrari, and M. Viviani, Security and Trust in

Online Social Networks, Morgan & Claypool, 2013.

[11] I. R. Chen, F. Bao, M. Chang, and J.H. Cho, “Dynamic Trust
Management for Delay Tolerant Networks and Its Application to

Secure Routing,” IEEE Transactions on Parallel and Distributed

Systems, vol. 25, no. 5, 2014, pp. 1200-1210.
[12] I. R. Chen, F. Bao, M. Chang, and J.H. Cho, “Trust-based intrusion

detection in wireless sensor networks,” IEEE International

Conference on Communications, Kyoto, Japan, June 2011, pp. 1-6.
[13] I.R. Chen, F. Bao, M. Chang, and J. H. Cho, “Trust management for

encounter-based routing in delay tolerant networks,” IEEE Global

Telecommunications Conference (GLOBECOM 2010), 2010, pp. 1-6.
[14] D. Chen, G. Chang, D. Sun, J. Li, J. Jia, and X. Wang, “TRM-IoT: A

Trust Management Model Based on Fuzzy Reputation for Internet of

Things,” Computer Science and Information Systems, vol. 8, no. 4,
Oct. 2011, pp. 1207-1228.

[15] C. Chen, and S. Helal, “A Device-Centric Approach to a Safer

Internet of Things,” the 2011 International Workshop on Networking
and Object Memories for the Internet of Things, Beijing, China, Sep.

2011, pp. 1-6.

[16] J.H. Cho, I.R. Chen, and P. Feng “Effect of Intrusion Detection on

Reliability of Mission-Oriented Mobile Group Systems in Mobile Ad

Hoc Networks,” IEEE Trans. on Reliability, vol. 59, 2010, pp. 231-
241.

[17] J. H. Cho, A. Swami, and I. R. Chen, “Modeling and Analysis of

Trust Management for Cognitive Mission-Driven Group

Communication Systems in Mobile Ad Hoc Networks,”
International Conference on Computational Science and

Engineering, vol. 2, 2009, pp. 641-650.

[18] J. H. Cho, A. Swami, and I. R. Chen, “Modeling and analysis of trust
management with trust chain optimization in mobile ad hoc

networks,” Journal of Network and Computer Applications, vol. 35,

no. 3, 2012, pp. 1001-1012.
[19] K. Dar, A. Taherkordi, R. Rouvoy, and F. Eliassen, “Adaptable

Service Composition for Very-Large-Scale Internet of Things

Systems,” ACM Middleware, Lisbon, Portugal, Dec. 2011.
[20] T. Dubois, J. Golbeck, and A. Srinivasan, "Predicting Trust and

Distrust in Social Networks," IEEE 3rd International Conference on

Social Computing, Boston, MA, USA, Oct. 2011, pp. 418-424.
[21] A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, and T.

Razafindralambo, “A Survey on Facilities for Experimental Internet

of Things Research,” IEEE Communications Magazine, vol. 49, no.
11, Nov. 2011, pp. 58-67.

[22] A. Gutscher, “A Trust Model for an Open, Decentralized Reputation

System,” IFIP International Federation for Information Processing,

vol. 238, 2007, pp. 285-300.

[23] A. J. Jara, M. A. Zamora, and A. F. G. Skarmeta, “An Internet of

Things-Based Personal Device for Diabetes Therapy Management in
Ambient Assisted Living (AAL),” Personal and Ubiquitous

Computing, vol. 15, no. 4, 2011, pp. 431-440.

[24] A. Josang, R. Ismail, and C. Boyd, “A Survey of Trust and
Reputation Systems for Online Service Provision,” Decision Support

Systems, vol. 43, no. 2, March 2007, pp. 618-644.
[25] T. Karagiannis, J.-Y. Le Boudec, and M. Vojnović, “Power Law and

Exponential Decay of Intercontact Times between Mobile Devices,”

IEEE Transactions on Mobile Computing, vol. 8, no. 10, 2007, pp.
1377-1390.

[26] S. Lee, R. Sherwood, and B. Bhattacharjee, “Cooperative Peer

Groups in NICE,” INFOCOM 2003, vol. 2, pp. 1272-1282, San
Francisco, March 2003.

[27] X. Li, R. Lu, X. Liang, X. Shen, J. Chen, and X. Lin, “Smart

Community: An Internet of Things Application,” IEEE
Communications Magazine, vol. 49, no. 11, Nov. 2011, pp. 68-75.

[28] Q. Li, S. Zhu, and G. Cao, “Routing in Socially Selfish Delay

Tolerant Networks,” IEEE Conference on Computer
Communications, San Diego, CA, March 2010, pp. 1-9.

[29] L. Liu, X. Liu, and X. Li, “Cloud-Based Service Composition

Architecture for Internet of Things,” International Workshop on
Internet of Things, Changsha, China, August 2012, pp. 559-564.

[30] G. Liu, Y. Wang, M.A. Orgun, and H. Liu,“Discovering Trust

Networks for the Selection of Trustworthy Service Providers in
Complex Contextual Social Networks,” 19th IEEE International

Conference on Web Services, 2012, pp. 384-391.

[31] R. Mitchell and I.R. Chen, “Effect of Intrusion Detection and
Response on Reliability of Cyber Physical Systems,” IEEE

Transactions on Reliability, vol. 62, no. 1, March 2013, pp. 199-210.

[32] M. Nitti, R. Girau, and L. Atzori, “Trustworthiness Management in

the Social Internet of Things,” IEEE Transactions on Knowledge and

Data Management, vol. 26, no. 5, 2014, pp. 1-11.

[33] F. Paganelli and D. Parlanti, “A DHT-Based Discovery Service for
the Internet of Things,” Computer Networks and Communications,

vol. 2012, Article ID 107041, 11 pages, 2012.

[34] W. Ren, “QoS-aware and compromise-resilient key management
scheme for heterogeneous wireless Internet of Things,” International

Journal of Network Management, vol. 21, no. 4, July 2011, pp. 284-

299.
[35] R. Roman, P. Najera, and J. Lopez, “Securing the Internet of

Things,” Computer, vol. 44, no. 9, Sep. 2011, pp. 51-58.

[36] Y.B. Saied, A. Olivereau, D. Zeghlache and M. Laurent, “Trust
Management System Design for the Internet of Things: A Context-

aware and Multi-service Approach,” Computers and Security, vol.

39, part B, Nov. 2013, pp. 351–365.
[37] A. A. Selçuk , E. Uzun , and M. R. Pariente, “A Reputation-based

Trust Management System for P2P Networks,” Network Security,

vol.6, no.3, May 2008, pp. 235-245.
[38] W. Sherchan, S. Nepal, and C. Paris, "A Survey of Trust in Social

Networks," ACM Computing Survey, Vol. 45, No. 4, Article 47,

August 2013.

[39] Z. Su et al., “ServiceTrust: Trust Management in Service Provision
Networks,” IEEE International Conference on Services Computing,

Santa Clara, CA, 2013.

[40] S. Tozlu, M. Senel, W. Mao, and A. Keshavarzian, “Wi-Fi Enabled
Sensors for Internet of Things: A Practical Approach,” IEEE

Communications Magazine, vol. 50, no. 6, June 2012, pp. 134-143.

[41] L. Xiong, and L. Liu, “PeerTrust: Supporting reputation-based trust
for peer-to-peer electronic communities,” IEEE Transactions on

Knowledge and Data Engineering, vol. 16, no. 7, 2004, pp. 843–857.

[42] L. Zhou, and H.-C. Chao, “Multimedia Traffic Security Architecture
for the Internet of Things,” IEEE Network, vol. 25, no. 3, May-June

2011, pp. 35-40.

[43] R. Zhou, K. Hwang, and M. Cai, “Gossiptrust for fast reputation
aggregation in peer-to-peer networks,” IEEE Transactions on

Knowledge and Data Management, vol. 20, 2008, pp. 1282–1295.

[44] A. Pintus, D. Carboni, and A. Piras, "Paraimpu: a platform for a
social web of things," 21st International Conference Companion on

World Wide Web, New York, NY, USA, 2012, pp. 401-404.

[45] R. Girau, M. Nitti, and L. Atzori, "Implementation of an

Experimental Platform for the Social Internet of Things," 7th

International Conference on Innovative Mobile and Internet Services

in Ubiquitous Computing, July 2013, Taichung, Taiwan. pp.500-
505.

AUTHOR BIOGRAPHIES
Ing-Ray Chen received the BS degree from the

National Taiwan University, Taipei, Taiwan, and

the MS and PhD degrees in computer science

from the University of Houston. He is a professor

in the Department of Computer Science at

Virginia Tech. His research interests include

mobile computing, wireless systems, security,

trust management, and reliability and performance

analysis. Dr. Chen currently serves as an editor for IEEE Communications

Letters, IEEE Transactions on Network and Service Management,

Wireless Personal Communications, The Computer Journal, and Security

and Network Communications. He is a member of the IEEE and ACM.

Fenye Bao received the B.S. degree in computer

science from Nanjing University of Aeronautics

and Astronautics, Nanjing, China in 2006, the

M.E. degree in software engineering from

Tsinghua University, Beijing, China in 2009 and

his PhD degree in computer science from

Virginia Tech in 2013. His research interests

include trust management, security, wireless

networks, wireless sensor networks, mobile

computing, and dependable computing. Currently he is a technical staff

member at LinkedIn, California, USA.

Jia Guo received his BS degree in computer

science from Jilin University, China in 2011. His

research interests include trust management,

mobile ad hoc and sensor networks, Internet of

things, delay tolerant computing, and secure and

dependable computing. Currently he is pursuing

his Ph.D. degree in the Computer Science

Department at Virginia Tech.

