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Abstract— A social Internet of Things (IoT) system can be viewed as a mix of traditional peer-to-peer 

networks and social networks, where “things” autonomously establish social relationships according to the 

owners’ social networks, and seek trusted “things” that can provide services needed when they come into 

contact with each other opportunistically. We propose and analyze the design notion of adaptive trust 

management for social IoT systems in which social relationships evolve dynamically among the owners of IoT 

devices. We reveal the design tradeoff between trust convergence vs. trust fluctuation in our adaptive trust 

management protocol design. With our adaptive trust management protocol, a social IoT application can 

adaptively choose the best trust parameter settings in response to changing IoT social conditions such that not 

only trust assessment is accurate but also the application performance is maximized. We propose a table-lookup 

method to apply the analysis results dynamically and demonstrate the feasibility of our proposed adaptive trust 

management scheme with two real-world social IoT service composition applications.  

Index Terms— Trust management, Internet of things, social networking, performance analysis, adaptive 

control, security. 
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1 INTRODUCTION 

social Internet of Things (IoT) system can be viewed 

as a mix of traditional peer-to-peer (P2P) networks and 

social networks, where “things” autonomously establish 

social relationships according to the owners’ social 

networks, and seek trusted things that can provide services 

needed when they come into contact with each other 

opportunistically in both the physical world and 

cyberspace. It is envisioned that the future social IoT will 

connect a great amount of smart objects in the physical 

world, including radio frequency identification (RFID) tags, 

sensors [40], actuators, PDAs, and smartphones, as well as 

virtual objects in cyberspace such as data and virtual 

desktops on the cloud [2]. The emerging paradigm of the 

social Internet of Things (IoT) has attracted a wide variety 

of applications running on top of it, including e-health [9, 

23], smart-home, smart-city, and smart-community [27]. 

We will use the terms things, objects, and devices 

interchangeably in the paper. 

Such future social IoT applications are likely oriented 

toward a service oriented architecture where each thing 

plays the role of either a service provider or a service 

requester, or both, according to the rules set by the owners. 

Unlike a traditional service-oriented P2P network, social 

networking and social relationship play an important role in 

a social IoT, since things (real or virtual) are essentially 

operated by and work for humans. Therefore, social 

relationships among the users/owners must be taken into 

account during the design phase of social IoT applications. 

A social IoT system thus can be viewed as a P2P owner-

centric community with devices (owned by humans) 

requesting and providing services on behalf of the owners. 

IoT devices establish social relationships autonomously 

with other devices based on social rules set by their owners, 

and interact with each other opportunistically as they come 

into contact. To best satisfy the service requester and 

maximize application performance, it is crucial to evaluate 

the trustworthiness of service providers in social IoT 

environments. This paper concerns trust management in 

social IoT environments.  

The motivation of providing a trust management system 

for a social IoT system is clear: There are misbehaving 

owners and consequently misbehaving devices that may 

perform discriminatory attacks based on their social 

relationships with others for their own gain at the expense 

of other IoT devices which provide similar services. 

Further, misbehaving nodes with close social ties may 

collude and monopoly a class of services. Since trust 

provisioning in this environment inherently is fully 

integrated with service provisioning (i.e., one must decide 

whether or not to use a service provided by a device based 

on the trust toward the device), the notion of trust-based 

service management is of paramount importance. 

There is a large body of trust management protocols for 

P2P service computing systems (e.g., [7, 13, 17, 18, 22, 26, 

37, 39, 41, 43]). These P2P service systems share a 

common characteristic with social IoT systems in that 

services are provided by nodes in the system so that trust 

evaluation of nodes is critical to the functioning of the 
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system. However, trust protocols for P2P service computing 

systems lack consideration of the social aspects of IoT 

device owners, and are not applicable to a social IoT system 

comprising real or virtual heterogeneous “things” with 

ownership, friendship and community of interest 

relationships. IoT devices are connected with each other by 

various ways (via the Internet), and operated by their 

owners with a variety of social behaviors to collect 

information, provide services, provide recommendations, 

make decisions, and take actions.  

On the other hand, trust protocols for social networks 

[10, 20, 24, 30, 38] are more concerned with trust 

assessment of social entities based on frequency, duration 

and nature of contacts (such as conversation and 

propagation [1]) between two social entities, without 

considering P2P service computing environments in which 

IoT devices seek and provide service when they come into 

contact with each other opportunistically.  

To date there is little work on trust management for 

social IoT systems [5, 14, 32, 36], especially for dealing 

with misbehaving owners of IoT devices that provide 

services to other devices in the system. We compare and 

contrast our trust protocol design principles with prior work 

in Section 7 Related Work.  

In this paper we propose an adaptive trust management 

protocol for social IoT systems. Our method is suitable to 

be applied to social IoT experimental platforms as 

discussed in [21, 44, 45]. Our goal is to enhance the 

security and increase the performance of social IoT 

applications. We aim to design and validate an adaptive 

trust management protocol that can dynamically adjust trust 

design parameter settings in response to changing 

environment conditions to provide accurate trust 

assessment (with respect to actual status) and to maximize 

application performance. The need for adaptive trust 

management stems from the fact that social relationships 

between owners and thus social behaviors of owners are 

evolving. An example is that owners carrying IoT devices 

can often move from a friendly environment (e.g., a social 

club) to a hostile environment (e.g., a neighborhood one 

does not go often). 

We are particularly interested in trust protocol design 

that can deal with misbehaving nodes. Such a protocol must 

possess desirable trust convergence, accuracy, and 

resiliency properties. Our contribution relative to existing 

trust management protocols for IoT systems [5, 14, 32, 36] 

is that we develop an adaptive trust management protocol 

in social IoT systems. Unlike trust systems designed for 

P2P networks [26, 37, 41, 43], sensor networks [7, 12], 

delay tolerant networks [11, 13], and mobile ad hoc 

networks [17, 18], our trust management protocol takes 

dynamically changing social relationships among the 

“owners” of IoT devices into account. We demonstrate that 

the desirable convergence, accuracy, and resiliency 

properties are satisfied with extensive simulation. Further, 

using two real-world social IoT applications, we 

demonstrate that our adaptive trust management protocol is 

capable of adaptively adjusting the best trust parameter 

setting in response to dynamically changing environments 

to improve trust assessment accuracy and to maximize 

application performance, despite the presence of 

misbehaving nodes disrupting the functionality of a social 

IoT system. 

The rest of the paper is organized as follows: In Section 

2 we discuss the system model and assumptions. In Section 

3, we describe our adaptive trust management protocol 

design for social IoT systems. In Section 4, we validate the 

convergence, accuracy, and resiliency properties of our 

protocol, and reveal the design tradeoff between trust 

convergence and trust fluctuation in adaptive trust 

management. In Section 5, we demonstrate the utility of our 

adaptive trust protocol design with two social IoT 

applications. Section 6 discusses the applicability, i.e., how 

one may apply the best protocol settings identified to 

achieve the desirable accuracy and maximize application 

performance at runtime. In Section 7, we survey related 

work to compare and contrast our protocol design with 

existing work. Finally in Section 8, we summarize the paper 

and outline future work. 

2 SYSTEM MODEL 

2.1 User-Centric Social IoT Environments 

We consider a user-centric social IoT environment with 

no centralized trusted authority. Each IoT device has its 

unique identity which can be achieved through standard 

techniques such as PKI. A device communicates with other 

devices through the overlay social network protocols, or the 

underlying standard communication network protocols 

(wired or wireless). Every device has an owner who could 

have many devices. Social relationships between owners is 

translated into social relationships between IoT devices as 

follows: Each owner has a list of friends (i.e., other 

owners), representing its social relationships. This 

friendship list varies dynamically as an owner makes or 

denies other owners as friends. If the owners of two nodes 

are friends, then it is likely they will be cooperative with 

each other. A device may be carried or operated by its 

owner in certain community-interest environments (e.g., 

work vs. home or a social club). Nodes belonging to a 

similar set of communities likely share similar interests or 

capabilities. 

Our social IoT model is based on social relationships 

among humans who are owners of IoT devices. We note 

that the device-to-device autonomous social relationship is 

also a potential for the social IoT paradigm. 

2.2 Attack Model 

A malicious node is dishonest and socially 

uncooperative in nature and can break the basic 

functionality of the social IoT system. A malicious node 

can perform the following trust-related attacks: 



 

 

1. Self-promoting attacks: a malicious node can promote its 

importance (by providing good recommendations for 

itself) so as to be selected as the service provider, but 

then it provides malfunctioned service. Our trust protocol 

deals with self-promoting attacks by considering honesty 

as a trust property to detect self-promoting attacks.  

2. Whitewashing attacks: a malicious node can disappear 

and rejoin the application to wash away its bad 

reputation. Our trust protocol deals with whitewashing 

attacks by remembering trust information of each 

identity, and by performing trust decay over time to 

account for node inactivity during the period in which a 

node disappears from the IoT system. 

3. Discriminatory attacks: a malicious node can 

discriminatively attack non-friends or nodes without 

strong social ties (without many common friends) 

because of human nature or propensity towards friends in 

social IoT systems. Our trust protocol deals with 

discriminatory attacks by considering cooperativeness 

and community-interest as trust properties.  

4. Bad-mouthing attacks: a malicious node can ruin the 

reputation of a well-behaved node by providing bad 

recommendations so as to decrease the chance of this 

good node being selected as a service provider. This is a 

form of collusion attacks, i.e., it can collaborate with 

other bad nodes to ruin the reputation of a good node. 

Our trust protocol deals with bad-mouthing attacks by 

considering honesty as a trust property. 

5. Ballot-stuffing attacks: a malicious node can boost the 

reputation of another bad node by providing good 

recommendations for it so as to increase the chance of 

this bad node being selected as a service provider. This is 

also a form of collusion attacks, i.e., it can collaborate 

with other bad nodes to boost the reputation of each 

other. Our trust protocol deals with ballot-stuffing 

attacks by considering honesty as a trust property. 

A collusion attack means that the malicious nodes in the 

system boost their allies and focus on particular victims in 

the system to victimize. Bad-mouthing and ballot-stuffing 

attacks both are a form of collusion attacks to ruin the 

reputation of (and thus to victimize) good nodes, and to 

boost the reputation of malicious nodes. A malicious node 

can perform Sybil and identity attacks, and in general can 

perform communication protocol attacks to disrupt IoT 

network operations. We assume such attacks will be 

handled by intrusion detection techniques [16, 31] and the 

attackers will be evicted from the system upon detection.  

3 ADAPTIVE TRUST MANAGEMENT  

Table I lists the parameters used in the paper. A design 

parameter is one that adaptive trust management can 

control to optimize performance. A derived parameter is 

one that is generated during runtime as a result of running 

the trust protocol. An input parameter is one that the 

operating environment dictates.  

The components of adaptive trust management for a 

social IoT system are shown in Figure 1. Our protocol 

addresses all aspects of trust management. The trust 

composition component addresses the issue of how to select 

multiple trust properties according to social IoT application 

requirements. The trust propagation and aggregation 

component addresses the issue of how to disseminate and 

combine trust information such that the trust assessment 

converges and is accurate. The trust formation component 

addresses the issue of how to form the overall trust out of 

individual trust properties and how to make use of trust in 

order to maximize application performance. Essentially 

adaptive trust management is achieved by (1) selecting the 

best trust propagation and aggregation parameter setting to 

achieve trust accuracy and convergence and (2) selecting 

the best trust formation parameter setting to maximize 

application performance, in response to an evolving IoT 

environment. 

Adaptive trust management must be distributed since a 

social IoT system frequently consists of free-will entities 

without a centralized mediator. Each node maintains its 

own trust assessment towards other nodes. A node is more 

likely to share common interests with those nodes it 

recently interacts with or it believes to be trustworthy. For 

an IoT device with a limited storage, it will only keep trust 

and recommendation information for a limited set of nodes 

which it is most interested in. In this paper we do not 

consider the use of caching to mitigate the limited storage 

issue. We refer the readers to [8] for a scalable caching 

storage management design to effectively utilize limited 

storage space without compromising trust accuracy and 

convergence properties. Adaptive trust management is 

interaction-based as well as activity-based, meaning that the 

trust value is updated dynamically upon an interaction 

event or activity. Two nodes involved in a direct interaction 

activity can directly observe each other and update their 

trust assessment. They also exchange their trust evaluation 

results toward other nodes as recommendations.  

Table 1: List of Parameters. 

Symbol Meaning Type 

𝑇𝑖𝑗
𝑋(𝑡) trust of i towards j in X at time t  derived 

𝐷𝑖𝑗
𝑋(𝑡) direct trust of i towards j in X at time t  derived 

𝑅𝑗𝑘
𝑋 (𝑡) recommendation from k toward j in X at t  derived 

𝑇𝑖𝑗(𝑡) overall trust or overall trustworthiness score 

of i towards j at time t  

derived 

𝛼 weight on direct trust w.r.t. experience design 

𝛽 weight on recommendation w.r.t. experience design 

NT number of IoT devices input 

NH number of owners input 

NG number of user communities input 

 average interaction inter-interval time  input 

 percentage of malicious nodes input 

c node compromise time period  input 



 

 

3.1 Trust Composition 

While there is a wealth of social trust metrics available 

[38], we choose honesty, cooperativeness, and community-

interest as the most striking metrics for characterizing 

social IoT systems, as illustrated in Figure 1 (2
nd

 level). 

These trust properties are considered orthogonal but 

complementary to each other to characterize a node. Each 

trust property is evaluated separately as follows: 

 The honesty trust property represents whether or not a 

node is honest. In an IoT system, a malicious node can 

be dishonest when providing services or trust 

recommendations. We select honesty as a trust property 

because a dishonest node can severely disrupt trust 

management and service continuity of an IoT 

application. In an IoT application, a node relies on direct 

evidence (upon interacting) and indirect evidence (upon 

hearing recommendations vs. own assessment toward a 

third-party node) to evaluate the honesty trust property of 

another node. 

 The cooperativeness trust property represents whether or 

not the trustee node is socially cooperative [28] with the 

trustor node. A node may follow a prescribed protocol 

only when interacting with its friends or nodes with 

strong social ties (with many common friends), but 

become uncooperative when interacting with other 

nodes. In an IoT application, a node can evaluate the 

cooperativeness property of other nodes based on social 

ties and select socially cooperative nodes in order to 

achieve high application performance. 

 The community-interest trust represents whether or not 

the trustor and trustee nodes are in the same social 

communities/groups (e.g. co-location or co-work 

relationships [3]) or have similar capabilities (e.g., 

parental object relationships [3]). Two nodes with a 

degree of high community-interest trust have more 

chances and experiences in interacting with each other, 

and thus can result in a better application performance. 

We note that while transaction importance or degree of 

friendship can complement or refine the above three trust 

properties, we will not consider them in this paper for 

simplicity. In Section 3.2 below we discuss in detail how a 

node evaluates other nodes in honesty, cooperativeness, and 

community-interest trust properties by combining first-hand 

direct observations (discussed in Section 3.2.1) and second-

hand recommendations (discussed in Section 3.2.2).  

3.2 Trust Propagation and Aggregation 

Adaptive trust management is a continuing process 

which iteratively aggregates past information and new 

information. The new information includes both direct 

observations (first-hand information) and indirect 

recommendations (second-hand information). The trust 

assessment of node i towards node j at time t is denoted by 

𝑇𝑖𝑗
𝑋(𝑡) where X = honesty, cooperativeness, or community-

interest. The trust value 𝑇𝑖𝑗
𝑋(𝑡) is a real number in the range 

of [0, 1] where 1 indicates complete trust, 0.5 ignorance, 

and 0 distrust. In IoT environments, nodes interact with 

each other when they detect the presence of each other, via 

IoT discovery protocols such as [33]. When evaluating 

𝑇𝑖𝑗
𝑋(𝑡), we adopt the following notations: node i is the 

trustor, node j is the trustee, node k is a recommender to 

provide its feedback about node j to node i. 

3.2.1 𝑻𝒊𝒋
𝑿(𝒕) Update When Node i Interacts with Node j 

When node i directly interacts with (or encounters) node 

j at time t, node i will update its trust assessment toward 

node j, 𝑇𝑖𝑗
𝑋(𝑡), as follows: 

𝑇𝑖𝑗
𝑋(𝑡) = (1 − 𝛼)𝑇𝑖𝑗

𝑋(𝑡 − ∆𝑡) + 𝛼𝐷𝑖𝑗
𝑋(𝑡) (1)  

Here, ∆𝑡 is the elapsed time since the last trust update. A 

trust update is trigged by interaction events. Thus, the value 

of ∆𝑡  is the time interval between two consecutive 

interactions. Node i will use its new trust assessment 

toward node j based on direct observation (i.e., 𝐷𝑖𝑗
𝑋(𝑡)) and 

its past trust toward node j (i.e.,𝑇𝑖𝑗
𝑋(𝑡 − ∆𝑡)) to update 𝑇𝑖𝑗

𝑋(𝑡). 

A parameter 𝛼 (0 ≤ 𝛼 ≤ 1) is used here to weigh these two 

trust values and to consider trust decay over time, i.e., the 

decay of the old trust value and the contribution of the new 

trust value. A larger 𝛼 means that trust evaluation will rely 

more on new direct observations.  

Below we detail how each IoT device calculates 𝐷𝑖𝑗
𝑋(𝑡)  

for X=honesty, cooperativeness, or community-interest. 

Honesty - 𝐷𝑖𝑗
ℎ𝑜𝑛𝑒𝑠𝑡𝑦(𝑡): Direct honesty trust refers to the 

belief of node i that node j is honest based on node i’s direct 

interaction experiences toward node j at time t. First, node i 

detects bad-mouthing/ballot-stuffing attacks by node j by 

comparing node j’s recommendation (provided to node i as 

a recommendation) toward another node, say, node q, with 

the trust value of node i toward node q itself. Node j’s 

recommendation toward q is just 𝐷𝑗𝑞
ℎ𝑜𝑛𝑒𝑠𝑡𝑦(𝑡 − ∆𝑡) if node j 

is an honest node not performing attacks; otherwise, it can 
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Figure 1: Components of adaptive trust management for a social IoT 

system: (1) trust composition – honesty, cooperativeness, and 

community-interest, (2) trust propagation and aggregation – combining 

first-hand (direct observations) and second-hand information 

(recommendations), (3) trust formation – forming the overall trust out 

of three individual trust properties, (4) adaptive trust management – 

adaptively adjusting parameter settings to improve trust evaluation 

accuracy and trust formation to maximize application performance. 

 



 

 

be 0 (or 1) if node j is a dishonest node performing bad-

mouthing attacks against (or ballot-staffing attacks for) 

node q. Node i‘s trust toward node q on the other hand is 

just 𝐷𝑖𝑞
ℎ𝑜𝑛𝑒𝑠𝑡𝑦(𝑡 − ∆𝑡) kept by node i. If the percentage 

difference relative to 𝐷𝑖𝑞
ℎ𝑜𝑛𝑒𝑠𝑡𝑦(𝑡 − ∆𝑡) is higher than a 

threshold, it is considered suspicious and thus a negative 

honesty experience. A high threshold reduces false 

negatives (misidentifying a bad node as a good node) but 

increases false positives (misidentifying a good node as a 

bad node), and vice versa. We set the threshold to 50% to 

balance false negatives with false positives. Second, node i 

detects self-promoting attacks by node j by detecting if 

node j promotes its importance by boosting its 

cooperativeness and/or community-interest trust (see below) 

so as to improve its chance of being selected as the service 

provider, but then provides a bad service. These direct 

positive/negative experiences collected are used to assess 

𝐷𝑖𝑗
ℎ𝑜𝑛𝑒𝑠𝑡𝑦(𝑡), computed by the number of positive 

experiences over the total experiences collected. 

Cooperativeness - 𝐷𝑖𝑗
𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(𝑡): This trust property 

provides the degree of cooperativeness of node j as 

evaluated by node i based on direct observations at time t 

upon encountering. We use the social friendship [28] 

among device owners to characterize the cooperativeness 

property. The rationale is that friends are likely to be 

cooperative toward each other. Each device keeps a list of 

its owner’s friends which may be updated dynamically by 

its owner. 𝐷𝑖𝑗
𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(𝑡) is computed as the ratio of 

common friends between i and j, i.e., 
|𝑓𝑟𝑖𝑒𝑛𝑑𝑠(𝑖) ∩ 𝑓𝑟𝑖𝑒𝑛𝑑𝑠(𝑗)|

|𝑓𝑟𝑖𝑒𝑛𝑑𝑠(𝑖) ∪ 𝑓𝑟𝑖𝑒𝑛𝑑𝑠(𝑗)|
, 

where 𝑓𝑟𝑖𝑒𝑛𝑑𝑠(𝑖) denotes the set of friends to the owner of 

node i. A node is included in its own friend list (i.e., 

𝑖 ∈ 𝑓𝑟𝑖𝑒𝑛𝑑𝑠(𝑖)) to deal with the case where two nodes are 

the only friends to each other. When node i and node j 

directly interact with each other, they exchange their friend 

lists. Node i can validate a friend in node j’s list if it is their 

common friend. Therefore, the direct observation of 

cooperativeness will be close to actual status.  

To preserve privacy, node i and node j with permission 

from their owners agree on a one-way hash function (with a 

session key) upon interacting while exchanging the friend 

lists. Thus, the friend lists exchanged are encrypted with a 

one-way hash function, so each party can only compare its 

(encrypted) list with the other party’s (encrypted) list to 

find matches of common friends, but cannot know the other 

party’s list. This way, only common friends will be 

identified while the identities of uncommon friends will not 

be revealed. Also, hashing is a very low cost operation and 

would not drain the battery of low-capacity IoT devices.  

Here we note that an honest node will submit its friend 

list faithfully (although with hashing to hide identity). A 

dishonest node, however, can perform self-promoting 

attacks to submit a fake friend list in order to boost its 

“cooperativeness” trust. This in turn can lead to its “honesty” 

trust greatly decreased due to the honesty detection 

mechanisms used in our protocol design. 

Community-Interest - 𝐷𝑖𝑗
𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦−𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑡): This trust 

property provides the degree of the common interest or 

similar capability of node j as evaluated by node i based on 

direct observations at time t upon encountering. Each 

device keeps a list of its owner’s communities/groups of 

interest which may be changed dynamically. 

𝐷𝑖𝑗
𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦−𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑡) is computed as the ratio of common 

communities of interests between nodes i and j, i.e., 
|𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦(𝑖)∩ 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦(𝑗)|

|𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦(𝑖)∪ 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦(𝑗)|
, where 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦(𝑖)  denotes 

the set of communities of interests to the owner of node i. 

When node i and node j directly interact with each other, 

with permission granted from their owners they also 

exchange their service and device profiles, so node i can 

validate whether node j and itself are in a particular 

community/group. Therefore, the direct observation of 

community-interest trust will be close to actual status. To 

preserve privacy, node i and node j agree on a one-way 

hash function (with a session key) upon interesting while 

exchanging the community lists so as not to reveal the 

identities of their uncommon communities. Again we note 

that an honest node will submit its community-interest list 

faithfully (although with hashing to hide identity). A 

dishonest node, however, can perform self-promoting 

attacks to submit a fake community-interest list in order to 

boost its “community-interest” trust. This in turn can lead 

to its “honesty” trust greatly decreased due to the honesty 

detection mechanisms used in our protocol design. 

Here we note that the friend-list/community-interest list 

exchange is not during the service request time from node i 

to node j, but during the encountering time of node i with 

node j for the purpose of assessing each other’s 

cooperativeness and community-interest trust values. 

3.2.2 𝑻𝒊𝒋
𝑿(𝒕) Update When Node i Interacts with Node k, 𝒌 ≠ 𝒋 

Whenever node i encounters node k,  𝑘 ≠ 𝑗,  who had 

prior interaction experience with node j, node k will serve 

as a recommender to provide its trust recommendation 

about node j, 𝑅𝑘𝑗
𝑋 (𝑡), to node i which will update 𝑇𝑖𝑗

𝑋(𝑡)as 

follows:    

𝑇𝑖𝑗
𝑋(𝑡) = (1 − 𝛾)𝑇𝑖𝑗

𝑋(𝑡 − ∆𝑡) + 𝛾𝑅𝑘𝑗
𝑋 (𝑡) (2)  

In this case, node i will not have direct interaction 

experience with node j and instead will use its past trust 

value 𝑇𝑖𝑗
𝑋(𝑡 − ∆𝑡)  and the new recommendation received 

from node k (second-hand information 𝑅𝑘𝑗
𝑋 (𝑡) where k is 

the recommender) whom it interacted to update 𝑇𝑖𝑗
𝑋(𝑡). The 

parameter γ is used here to weigh the new recommendation 

vs. past experience and to consider trust decay over time. 

Here we note that the recommendation 𝑅𝑘𝑗
𝑋 (𝑡) provided 

by node k to node i about node j depends on the status of a 

node. If node k is a good node, node k (being a good node) 

will faithfully use its trust evaluation towards node j in 

component X as the recommendation, i.e., 𝑅𝑘𝑗
𝑋 (𝑡) is simply 



 

 

equal to 𝐷𝑘𝑗
𝑋 (𝑡). If node k is a bad node, node k (being a bad 

node) can perform bad-mouthing attacks by recommending 

𝑅𝑘𝑗
𝑋 (𝑡) = 0 if node j is a good node, and can perform ballot-

stuffing attacks by recommending 𝑅𝑘𝑗
𝑋 (𝑡) = 1 if node j is a 

bad node.  

To defend against bad-mouthing and ballot-stuffing 

attacks from a recommender (node k), node i uses its direct 

trust toward node k, 𝐷𝑖𝑘
𝑋 (𝑡), to assess if node k is a 

trustworthy recommender in trust property X. Hence, we 

introduce another parameter 𝛽 ≥ 0 as follows: 

𝛾 =
𝛽𝐷𝑖𝑘

𝑋 (𝑡)

1 + 𝛽𝐷𝑖𝑘
𝑋 (𝑡)

 (3)  

Essentially 𝛽 is a user controllable parameter to specify 

the impact of a recommendation on 𝑇𝑖𝑗
𝑋(𝑡)  such that the 

weight 𝛾 assigned to 𝑅𝑘𝑗
𝑋 (𝑡) in Equation 2 is normalized to 

𝛽𝐷𝑖𝑘
𝑋 (𝑡) relative to 1 assigned to past information. Thus, the 

contribution of 𝑅𝑘𝑗
𝑋 (𝑡)  received from node k increases 

proportionally as either 𝐷𝑖𝑘
𝑋 (𝑡) or 𝛽 increases. 

3.2.3 Trust Parameters 𝜶 and 𝜷 

Our trust aggregation and propagation protocol 

described above has two parameters: 𝛼 and 𝛽. Parameter 𝛼 

is to tune the tradeoff between new direct trust vs. past 

information. Increasing 𝛼  will put more weight on new 

direct observations 𝐷𝑖𝑗
𝑋(𝑡). Parameter 𝛽  is to tune the 

tradeoff between new indirect recommendations vs. past 

information, taking into consideration of the trust toward 

the recommender. Increasing 𝛽  will put more weight on 

new recommendations 𝑅𝑘𝑗
𝑋 (𝑡).  A key concept of our 

adaptive trust management protocol is that instead of 

having fixed weight ratios α and 𝛽, we allow the weight 

ratios to be adjusted dynamically in response to changing 

network conditions to improve trust assessment accuracy 

and provide resiliency against slandering attacks such as 

bad-mouthing and ballot-stuffing attacks. 

3.3 Trust Formation 

𝑇𝑖𝑗
𝑋(𝑡)′s  where X = honesty, cooperativeness, and 

community-interest are separately assessed by node i. How 

to form an overall trust out of the three 𝑇𝑖𝑗
𝑋(𝑡)′𝑠 is a trust 

formation issue and depends on the trust requirement of the 

IoT application running on top of our trust management 

protocol. The goal of our adaptive trust management design 

in trust formation is to dynamically discover the best way to 

form trust out of identified trust components to maximize 

the application performance, in response to dynamically 

changing conditions. We will discuss and illustrate our 

adaptive trust formation design with two real-world social 

IoT service composition applications in Section 5. 

3.4 Cost Analysis 

Based on our trust propagation and aggregation protocol 

design, a node updates its trust toward other nodes upon 

encountering or interacting with another node. Two nodes 

involved in a direct interaction activity (as described in 

Section 3.2.1) can directly observe each other and update 

their trust assessments. Two nodes encountering each other 

(as described in Section 3.2.2) exchange their trust 

recommendations toward other nodes. The storage cost per 

node is therefore O(NTNX) where NT is the number of IoT 

devices, and NX is the number of trust properties (3 in our 

protocol design). This storage requirement can still be 

excessive for IoT devices with limited memory space. We 

refer the readers to a caching design in [8] as a possible 

solution to mitigate this problem without overly sacrificing 

trust accuracy and convergence properties. The 

communication overhead per node (from node i’s 

perspective) is O(NX∑ 𝜋𝑖𝑗
𝑁𝑇

𝑗=1
) where 𝜋𝑖𝑗  is the encountering 

rate of node i with node j which can be derived by 

analyzing the encounter or interaction pattern, e.g., a 

power-law distribution, as supported by the analysis of 

many real traces [25]. Essentially upon encountering node j, 

node i exchanges messages with node j for both direct trust 

assessment of node j of NX trust properties (i.e., through 

hashed friend and community-interest lists) and indirect 

trust assessment of other nodes in the system (i.e., through 

trust recommendations). In practice the message overhead 

is lower because one can combine several pieces of 

information into one message during transmission. 

4 PROTOCOL PERFORMANCE EVALUATION 

In this section, we evaluate our proposed adaptive trust 

management protocol based on ns3 simulation to validate 

the convergence, accuracy, and resiliency properties of our 

protocol design. The readers are referred to [6] for a formal 

proof. Later in Section 5, we will demonstrate the utility of 

our adaptive trust management protocol design with two 

real-world social IoT applications.  

4.1 Social IoT Environment Setup 

In our experimental setup the status of each node is 

changing dynamically. The input is specified by a set of 

input parameters in Table 1. We consider a hostile 

environment where the percentage of malicious nodes 

𝜆 ∈ [10, 90%] is randomly selected out of all IoT devices. 

The default value of 𝜆  is 30% and we will test the 

sensitivity of performance results with respect to 𝜆. A node 

selected to be in this “malicious” population is benign 

initially, but turns malicious after a period of time 𝑇𝑐 ∈
[0, 100 hrs] randomly generated is elapsed, after which it 

will perform attacks as described in Section 2. On the other 

hand, a node not selected in this “malicious” population 

remains benign throughout the simulation. With this setup, 

while the objective trust or ground truth of a good node 

remains constant, the objective trust or ground truth of a 

malicious node changes dynamically.  

We consider a social IoT environment with NT=50 

heterogeneous smart objects/devices with all of them 

providing various services. These devices are randomly 

distributed to NH=20 owners. The social cooperativeness 

relationship among the devices is characterized by a 

friendship relationship (matrix) [28] among device owners. 



 

 

That is, if the owners of devices i and j are friends, then 

there is a 1 in the ij position. While our protocol allows 

dynamic friend lists, the friend list kept by each device is 

simulated initially and remains the same throughout the 

simulation. Devices are used by their owners in one or more 

social communities or groups. A device can belong to up to 

NG=10 communities or groups. This is also simulated and 

remains fixed throughout the simulation. We assume that 

the encounter or interaction pattern follows a bounded 

power law distribution ([10mins, 2 days]) with the slope 

equal to 1.4, resulting in the average interaction-contact 

time T being 4 hours. The settings are close to those 

obtained from real traces [25]. The total simulation time is 

100 hours.  

The initial trust value of all devices is set to ignorance 

with a trust level of 0.5. Our intent is to show that an IoT 

device upon hostility changes can adaptively select trust 

protocol settings in terms of 𝛼 and 𝛽  to best tradeoff the 

trust convergence rate and trust fluctuation rate to obtain an 

acceptable mean absolute error (MAE) between the trust 

value obtained vs. ground truth. 

4.2 Effect of 𝜶 on Trust Evaluation 

We first investigate the effect of design parameter 𝛼 on 

trust evaluation. Recall that α is the weight associated with 

direct trust with respect to past experience in Equation 1. 

For sensitivity analysis of 𝛼,  we vary 𝛼  by selecting 

different values (0.1, 0.3, and 0.9) and set 𝛽 to 0 to isolate 

its effect. The percentage of malicious nodes 𝜆  is 30%. 

Here we only give the results for the honesty trust property 

evaluation. The other two trust properties follow the same 

trend.  

Figure 2(a) shows the effect of 𝛼  on honesty trust 

evaluation toward a “good” node whose ground truth status 

does not change as time increases. The ground truth 

honesty status for this good node is constant at 1. The dash 

lines show the empirical confidence intervals with 90% 

confidence. We can see that the trust evaluation approaches 

ground truth as time increases. Further, we observe that as 

the value of 𝛼 increases, the trust value converges to ground 

truth faster, but the trust fluctuation also becomes higher. 

Here we observe that the trust convergence time is 5 to 10 

hours because the average inter-arrival interaction time T 

following a bounded power law distribution is set to 4 

hours.   

Figure 2(b) shows the results of trust evaluation for 

honesty toward a “malicious” node randomly selected 

whose status goes from benign to malicious after 𝑇𝑐 = 50 is 

elapsed. We can see that after the status change, the trust 

evaluation converges towards the new ground truth status. 

In addition, as the value of 𝛼 increases, the trust evaluation 

converges to the new ground truth status faster, albeit with 

 

(a) Trust of a good node randomly picked. 

 

(b) Trust of a malicious node randomly picked. 

Figure 2: Effect of 𝜶 on honesty trust evaluation (a) toward a good node 

and (b) toward a malicious node which turns bad at 𝑻𝒄=50 hours. Trust 

converges in both cases. There is an inherent trade-off between trust 

convergence time vs. trust fluctuation. Specifically, as the value of 𝜶 

increases, the trust value converges to ground truth faster, but the trust 

fluctuation also becomes higher. 

 

(a) Trust of a good node randomly picked. 

 

(b) Trust of a malicious node randomly picked. 

Figure 3: Effect of 𝜷 on honesty trust evaluation (a) toward a good 

node and (b) toward a malicious node which turns bad at 𝑻𝒄=50 hours. 

Trust converges in both cases. There exists a trade-off between trust 

convergence time vs. trust fluctuation. As 𝜷  increases, the trust 

evaluation converges to the ground truth faster, but the trust 

fluctuation becomes higher. The effect of 𝜷  is not as significant 

compared to the effect of 𝜶. 

 



 

 

a higher fluctuation. This result validates the convergence, 

accuracy, and resiliency properties of our protocol design.  

4.3 Effect of 𝜷 on Trust Evaluation 

Next, we investigate the effect of design parameter 𝛽 on 

trust evaluation. Recall that β is related to γ by Equation 3, 

representing the weight associated with the indirect 

recommendation with respect to past experience in 

Equation 2. For sensitivity analysis of 𝛽,  we vary 𝛽  by 

selecting different values (0, 0.1, and 1), and set 𝛼 to 0.5 to 

isolate its effect. 

Figure 3(a) shows the effect of 𝛽  on honesty trust 

evaluation of a good node. Again, we can see that our trust 

evaluation approaches ground truth status as time increases. 

We also observe that as 𝛽  increases, the trust evaluation 

converges to the ground truth faster, but the trust 

fluctuation becomes higher. The reason is that using more 

recommendations (higher 𝛽)  helps trust convergence 

through effective trust propagation. However, one can see 

that the effect of 𝛽 is insignificant compared to the effect of 

𝛼. The reason is that very often in a social IoT environment, 

the chance of a trustor interacting with a recommender is 

higher than the chance of the trustor directly interacting 

with a trustee. As long as 𝛽 > 0, adaptive trust management 

is able to effectively aggregate trust using recommendations 

from a large number of recommenders, thus making the 

effect of further increasing the value of  𝛽  insignificant. 

Figure 3(b) shows the effect of 𝛽  on honesty trust 

evaluation of a malicious node randomly selected whose 

status goes from benign to malicious after 𝑇𝑐 = 50 hours is 

elapsed. Again, we see that after the ground truth status 

changes, our trust protocol quickly converges towards the 

new ground truth status. Initially using more 

recommendations (𝛽 > 0)  in trust evaluation helps trust 

convergence. However, after the status change, the 

convergence behavior is about the same regardless of 𝛽. 
This is partly because the effect of 𝛽  (Figure 3(b)) is 

insignificant compared to the effect of 𝛼 (Figure 2(b)) and 

partly because an honest recommender can adversely 

provide obsolete and inaccurate trust recommendations 

toward a malicious node, as it has not interacted with the 

malicious node since the malicious node’s status change. 

As the trustor will not exclude these inaccurate 

recommendations from good nodes, using more 

recommendations does not accelerate the pace of trust 

convergence. 

4.4 Adaptive Trust Management in Response to 

Dynamically Changing Hostility Conditions 

From Figures 2 and 3, one can see that the trust 

evaluation quickly converges and it is remarkably close to 

the ground truth status, demonstrating its resiliency against 

trust attacks. We further validate resiliency of our adaptive 

trust management protocol toward trust attacks in IoT 

environments with a varying degree of hostility. We 

consider five different hostile environments with the 

percentage of malicious nodes 𝜆  being 10%, 30%, 50%, 

70%, and 90%.  

Figures 4(a), 4(b), and 4(c) show trust evaluation results 

of a good node randomly picked toward another good node 

also randomly picked for honesty (ground truth trust = 1), 

cooperativeness (ground truth trust = 0.28), and 

community-interest (ground truth trust = 0.38), 

respectively. One can see that the trust value quickly 

converges and it is remarkably close to the ground truth 

status (marked with solid lines) with MAE less than 10% 

when 𝜆 ≤ 50%, demonstrating our protocol’s high 

resiliency to trust attacks. As 𝜆 increases, the MAE of trust 

evaluation inevitably increases because of more false 

recommendations from malicious nodes. Even when most 

nodes are malicious with 𝜆 going from 70 to 90%, the MAE 

only goes from 12 to 40%. This demonstrates our 

protocol’s high resiliency toward attacks even in extremely 

hostile environments.  

 
 

 
(a) Honesty trust 

 
(b) Cooperativeness trust 

 
(c) Community-Interest trust 

 

Figure 4: Effect of hostility on dynamic trust evaluation of a good node 

toward another good node. Our adaptive trust management protocol 

can react to changing hostility by dynamically choosing the best (𝜶,𝜷) 
values to tradeoff the trust convergence rate and trust fluctuation rate 

to obtain an acceptable MAE between the trust value obtained vs. 

ground truth. 



 

 

Here we note that given the knowledge of environment 

hostility (expressed in terms of 𝜆 ), our adaptive trust 

management protocol can react to changing hostility by 

dynamically choosing the best (𝛼, 𝛽) values to tradeoff the 

trust convergence rate and trust fluctuation rate to obtain an 

acceptable MAE between the trust value obtained vs. 

ground truth. We will discuss how one may apply the 

analysis results at runtime in Section 6.  

5 IOT APPLICATION PERFORMANCE 

To demonstrate the effectiveness of our proposed trust 

protocol for IoT systems, we consider two real-world social 

IoT applications [2, 3, 4] which require dynamic service 

composition and binding [19, 29]. Such social IoT 

applications running on top of our trust protocol aim to first 

compose a service plan (this is the service composition 

part) and then select the most trustworthy IoT nodes (this is 

the service binding part) for providing services requested 

such that the trustworthiness score representing the 

goodness of the service composition is maximized. We 

compare the performance of trust-based service 

composition with two baseline approaches: 

 Ideal Service Composition: it returns the maximum 

achievable trustworthiness score by always knowingly 

selecting service providers with the highest “ground truth” 

trustworthiness scores (based on the actual status). This 

scheme in practice is not achievable because we do not 

know ground truth status. 

 Random Service Composition: it selects service 

providers randomly without regard to trust. 

5.1 Smart City Air Pollution Detection 

We consider a smart city IoT application running on 

Alice’s smartphone for air pollution detection [4]. Alice 

tries to avoid stepping into high air pollution areas (in terms 

of the levels of carbon dioxide, PM10, etc.) for health 

reasons. Alice’s smartphone is a member of the air 

pollution awareness social network. She decides to invoke 

her smartphone to connect to sensor devices in an area she 

is about to step (or drive) into. Alice knows that many IoT 

devices will respond, so she needs to make a decision on 

which sensing results to take. She instructs her smartphone 

to accept results only from n=5 most “trustworthy” sensors 

and she will follow a trust-weighted majority voting result. 

That is, each yes or no recommendation is counted as 1 

weighted by Alice’s trust toward the recommender. If the 

total trust-weighted “yes” score is higher than the total 

trust-weighted “no” score, Alice will step into the area; 

otherwise, she will make a detour to avoid the area.  

This smart city air pollution detection application is 

essentially a simple trust-based service composition IoT 

application in which Alice will simply select n=5 IoT 

devices for which she trusts the most. Therefore, the 

trustworthiness score of this service composition 

application which it aims to maximize is simply the sum of 

the individual trustworthiness scores. Since this application 

involves a simple binary decision (yes or no), we consider a 

simple trust formation design as follows. If a selected 

service provider does not pass the minimum honesty trust 

threshold, the trustworthiness score is zero; otherwise, the 

trustworthiness score is determined by the social ties 

between the service provider and the service requester, i.e., 

a higher trustworthiness score is given if they have more 

common friends, or if they share more community interests. 

The rationale of using honesty trust to screen service 

providers is to avoid malicious service. The rationale of 

using cooperativeness and community interest trust to 

subsequently rank service providers is that trustee nodes 

with which a trustor node has good social ties can most 

likely provide good service in social IoT environments. 

Alice decides to set the minimum honesty trust threshold as 

0.5. With the reasons given above, her smartphone (as node 

i) estimates the trustworthiness score 𝑇𝑖𝑗(𝑡) toward each 

service provider (node j) as follows:  

𝑇𝑖𝑗(𝑡) =

{
 

 0, 𝑖𝑓 𝑇𝑖𝑗
ℎ𝑜𝑛𝑒𝑠𝑡𝑦(𝑡) ≤ 0.5

min(
𝑇𝑖𝑗
𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(𝑡),

𝑇𝑖𝑗
𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦−𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑡)

) , 𝑖𝑓 𝑇𝑖𝑗
ℎ𝑜𝑛𝑒𝑠𝑡𝑦(𝑡) > 0.5

 (4)  

Figure 5 compares trust-based service composition 

against two baseline service comparison methods (random 

and ideal). The experimental setup is the same as that in 

Section 4. The performance metric is the combined 

trustworthiness score for n=5 service providers selected. 

We consider 4 versions of trust-based service composition 

by selecting 4 different sets of design parameters: (𝛼, 𝛽) =

 

(a) Low hostility at 𝜆 =10% 

 

(b) High hostility at 𝜆 = 50% 

Figure 5: Performance comparison for the smart city air pollution 

detection application.  
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Ideal Service Composition

Trust-Based Service Composition (=0.5, =0)

Trust-Based Service Composition (=0.5, =0.2)

Trust-Based Service Composition (=0.5, =0.5)

Trust-Based Service Composition (=0.5, =1)

Random Service Composition
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(0.5, 0),  (𝛼, 𝛽) = (0.5, 0.2),  (𝛼, 𝛽) = (0.5, 0.5),  and 

(𝛼, 𝛽) = (0.5, 1)  for the purpose of testing the effect of 

(𝛼, 𝛽)on application performance. 

We see that as 𝜆  (the percentage of malicious nodes) 

increases, the combined trustworthiness score obtained by 

each protocol decreases because of fewer good service 

providers exist in the social IoT environment. For example, 

a service provider with the highest trustworthiness score 

when 𝜆  =10% might become malicious when 𝜆  =50%, 

making the combined trustworthiness score lower under 

ideal service composition. More importantly in all cases, 

trust-based service composition significantly outperforms 

random service composition and approaches the maximum 

achievable performance by ideal service composition.  

In Figure 5, all curves reach trust convergence although 

trust fluctuation is higher when β is higher because placing 

a higher weight on recommendations will make trust 

evaluation more sensitive to bad-mouthing/ballot-stuffing 

attacks. We see that there is a crossover point on the 

trustworthiness curves of two trust-based service 

composition methods. For example, before the crossover 

point, trust-based service composition under the setting of 

(𝛼, 𝛽) = (0.5, 0.2)  performs better, while after the 

crossover point, trust-based service composition under the 

setting of (𝛼, 𝛽) = (0.5, 0) performs better. The reason is 

that while using recommendations helps trust quickly 

converge, it also introduces trust bias because of bad-

mouthing and ballot-stuffing attacks. We observe that the 

crossover time point increases as the percentage of 

malicious nodes increases. Specifically, the crossover point 

is at 𝑡  = 12 hours for 𝜆 = 10% and 𝑡 = 26 hours for 𝜆  = 

50%. Thus, in a dynamic IoT environment in which the 

hostility (in terms of the percentage of malicious nodes) 

changes over time, adaptive trust-based service 

management is achieved by choosing the best design 

parameter settings (α, β) to maximize the service 

composition application performance. 

5.2 Augmented Map Travel Assistance 

Bob has never traveled to Washington DC so he is 

excited but also nervous about the quality of service he will 

receive during his visit. He is aware of the fact that DC is a 

smart city so he registers his smartphone to the travelers-in-

Washington-DC social network. He also downloads an 

augmented map social IoT application [2] to run on his 

smartphone, allowing his Near Field Communications 

(NFC) equipped smartphone to browse a tag-augmented 

DC map wherever he goes sightseeing. This tag-augmented 

map automatically connects Bob’s smartphone to IoT 

devices available upon encountering, which provide 

information, food, entertainment (e.g., ticket purchasing), 

and transportation services [2]. Bob instructs his 

smartphone to make selection decisions dynamically, so it 

can leverage new information derived from direct 

experiences as well as recommendations received from IoT 

devices it encounters. In response to a service request 

issued by Bob, his smartphone performs the following 

actions: 

 Formulate a service plan based on the results gathered. 

 Invoke necessary services to meet Bob’s service demand 

and requirements. 

The augmented map travel assistance application 

running on his smartphone composes a service workflow 

plan as shown in Figure 6 in response his service request 

“Fill me with the best grilled hamburger within 20 minutes 

under a $30 budget.” With the service plan formulated, 

Bob’s smartphone selects the best service providers out of a 

myriad of service providers to execute the service plan. The 

objective of the trust-based service composition application 

running on Bob’s smartphone is to select the most 

trustworthy IoT nodes for providing services specified in 

the flow structure subject to the time and budget constraints 

(20 minutes and 30 dollars) such that the overall 

trustworthiness score representing the goodness of the 

service composition is maximized.  

Since in this application Bob needs an overall 

trustworthiness score to tell him how much he can trust the 

service plan formulated, we consider a scaling trust 

formation model by which the trustworthiness score of node 

i toward node j is computed as: 

𝑇𝑖,𝑗(𝑡) = 𝑚𝑖𝑛 (1,  𝑇𝑖𝑗
ℎ𝑜𝑛𝑒𝑠𝑡𝑦(𝑡) ×

𝑇𝑖𝑗
𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(𝑡)

𝑇𝐴𝑉𝐺
𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(𝑡)

×
𝑇𝑖𝑗
𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦−𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑡)

𝑇𝐴𝑉𝐺
𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦−𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑡)

) 

(5)  

 

where 𝑇𝐴𝑉𝐺
𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(𝑡)  and 𝑇𝐴𝑉𝐺

𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦−𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑡)  are the 

average cooperative trust and community-interest trust 
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Figure 6: A service flow structure for the augmented map travel 

assistance application specifying the order of service execution for 

Bob’s service request “fill me with the best grilled hamburger within 

20 minutes and under a $30 budget.”  Here Si represents abstract 

service i which can be a piece of information, a taxi service, or a 

hamburger service, and will be provided by an IoT service provider 

that is selected by Bob’s smartphone. S1 and S2 are connected by a 

parallel structure (AND) meaning that they are services to be run 

concurrently (e.g., different information service providers about which 

hamburger shop within 20 minutes of taxi ride is the best). S3, S4 and S5 

are connected by a selection structure (OR) meaning that they are 

competitive services (e.g., different taxi companies) and only one will 

be chosen to execute. S6 (e.g., the hamburger shop selected) is to be run 

sequentially after the upper level service bindings are completed. 



 

 

values, respectively, toward all IoT nodes for which node i 

had interaction experiences or received recommendations. 

With Equation 5, node i scales the honesty trust of node j 

up or down, depending on node j’s cooperativeness trust 

and community-interest trust relative to the respective 

average trust value. The scaled honesty trust  𝑇𝑖𝑗
ℎ𝑜𝑛𝑒𝑠𝑡𝑦(𝑡) is 

the trustworthiness score of node i towards node j. 

In Figure 6, there are 6 atomic services connected by 

three types of workflow structures: sequential, parallel 

(AND), and selection (OR). Each service would have 

multiple service provider candidates. In this case, the 

overall trustworthiness score of this service composition 

application can be calculated recursively in the same way 

the reliability of a series-parallel connected system is 

calculated. Specifically, the trustworthiness score of a 

composite service (whose trustworthiness score is 𝑇𝑠) that 

consists of two subservices (whose trustworthiness scores 

are 𝑇1 and 𝑇2) depends on the structure connecting the two 

subservices as follows:  

 Sequential structure: 𝑇𝑠 = 𝑇1 × 𝑇2; 

 Selection structure (OR): 𝑇𝑠 = max (𝑇1, 𝑇2); 
 Parallel structure (AND): 𝑇𝑠 = 1 − (1 − 𝑇1) × (1 − 𝑇2). 

For the flow structure in Figure 6, the outermost 

structure is a sequential structure connecting (S1 S2), (S3 S4 

S5), and S6 out of which (S1 S2) is a parallel structure and 

(S3 S4 S5) is a selection structure. 

Figure 7 compares the trustworthiness score of the trust-

based service composition application against those under 

random service composition and ideal service composition. 

The experimental setup is the same as that in Section 4. 

Overall, the trend exhibited in Figure 7 is remarkably 

similar to that in Figure 5, demonstrating the tradeoff 

between the increase of convergence rate and the decrease 

of trust accuracy as 𝛽 increases.  

The overall trustworthiness score of the augmented map 

travel application (in Figure 7) is lower than that of the 

augmented map travel assistance application (in Figure 5). 

This is due to the fact that trust formation is application-

dependent, so these two social IoT applications have their 

own ways of computing the overall trustworthiness score. 

The overall trustworthiness score of the former application 

is computed as how the overall reliability of a system 

comprising series-parallel connected components would be 

computed based on reliability theory. The overall 

trustworthiness score of the latter application is simply 

computed as the sum of component trustworthiness scores 

since it only involves a binary decision (yes or no) based on 

trust-weighted majority voting. It is noteworthy that the 

absolute trustworthiness score obtained is not important. 

What is important is the performance of trust-based service 

composition relative to ideal service composition which 

yields the best application performance. From Figure 7, we 

once again observe that by selecting the best (𝛼, 𝛽) setting, 

trust-based service composition for the augmented map 

travel assistance application (with a service flow structure 

controlling the service execution) outperforms random 

service composition while approaching the best 

performance obtainable by ideal service composition. When 

there is insufficient time for a user to gather enough 

evidence, it can use a higher 𝛽  to intake more 

recommendations. For example, Figure 7 shows that 𝛽=0.2 

or 0.5 is a better choice for maximizing application 

performance than 𝛽=0 before t=10 hours when 𝜆=10% (in 

Figure 7(a)) and before t=20 hours when 𝜆=50% (in Figure 

7(b)). Conversely, once the user has gathered sufficient 

evidence and the trustworthiness score is converged, it is 

better to use a lower 𝛽 value to reduce the chance of taking 

in false recommendations launched by malicious nodes, 

especially in high hostility environments. 

6 APPLICABILITY 

The effectiveness of adaptive trust management relies 

on deploying the best protocol settings dynamically in 

response to changing environments. The analysis 

methodology proposed in the paper identifies the best 

protocol settings (in terms of the two design parameters 𝛼 

and 𝛽  listed in Table 1) to best tradeoff the trust 

convergence rate and trust fluctuation rate for achieving the 

desirable accuracy and maximizing application 

performance, when given a set of input parameter values 

(defined in Table 1) as input. The analysis is performed at 

design time.  

One way to apply the results for adaptive trust 

management is to build a lookup table at static time listing 

 

(a) Low hostility at 𝜆 =10% 

 

(b) High hostility at 𝜆 = 50% 

Figure 7: Performance comparison for the augmented map travel 

application.  
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Ideal Service Composition

Trust-Based Service Composition (=0.5, =0)

Trust-Based Service Composition (=0.5, =0.2)

Trust-Based Service Composition (=0.5, =0.5)
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the best 𝛼 and 𝛽 settings over a perceivable range of input 

parameter values. The lookup table as shown in Figure 8 

would store key-value pairs where the “keys” are 

combinations of input parameter values, and the “values” 

are the best 𝛼 and 𝛽 design parameter values for achieving 

the desirable accuracy and maximizing application 

performance under the input parameter values. Then, at 

runtime, upon sensing the environment changes in terms of 

input parameter values, a node can perform a simple table 

lookup operation augmented with extrapolation or 

interpolation techniques to determine and apply the best 𝛼 

and 𝛽  settings in response to dynamically changing 

conditions. The lookup time is O(1) and can be efficiently 

applied at runtime.  

 
Figure 8: Lookup Table Mechanism. The “sensed input parameters” 

on the left are input to be sensed at runtime. The “design parameters” 

on the right are output as a result of a table lookup operation. 

Depending on data granularity, a set of input parameter values may 

not directly map to a set of output parameter values. Extrapolation or 

interpolation techniques may be used to produce the matching output. 

7 RELATED WORK 

In this section, we survey recently proposed trust 

management protocols for IoT systems. We contrast and 

compare our work with existing work so as to differentiate 

our work from existing work and identify unique features 

and contributions of our trust protocol design and trust-

based service management design for IoT systems. 

There is little work on trust management in IoT 

environments for security enhancement, especially for 

dealing with misbehaving owners of IoT devices that 

provide services to other IoT devices in the system. Chen et 

al. [14] proposed a trust management model based on fuzzy 

reputation for IoT systems. However, their trust 

management model considers a very specific IoT 

environment populated with wireless sensors only, so they 

only considered QoS trust metrics like packet 

forwarding/delivery ratio and energy consumption for 

measuring trust of sensors. On the contrary, our work 

considers both QoS trust deriving from communication 

networks and social trust deriving from social networks 

which give rise to social relationships of owners of IoT 

devices in the social IoT environment. Saied et al. [36] 

proposed a context-aware and multiservice approach for 

trust management in IoT systems against malicious attacks. 

However it requires the presence of centralized trusted 

servers to collect and disseminate trust data, which is not 

viable in IoT environments. Relative to [36], our trust 

protocol is totally distributed without requiring any 

centralized trusted entity. 

Bao and Chen [5] proposed a trust management 

protocol considering both social trust and QoS trust metrics 

and using both direct observations and indirect 

recommendations to update trust in IoT systems. However, 

the issue of adaptively adjusting trust evaluation in 

response to dynamically changing conditions so as to cope 

with misbehaving nodes and maximize the performance of 

IoT applications running on top of the trust management 

was not addressed. Relative to [5] cited above, we not only 

consider multiple trust properties for social IoT 

environments, but also analyze the tradeoff between trust 

convergence speed and trust fluctuation to identify the best 

protocol parameter settings for trust propagation and 

aggregation to best exploit this tradeoff for minimizing trust 

bias. Furthermore, it addresses the issue of trust formation 

for application performance maximization using service 

composition as an application example.  

Very recently, Nitti et al. [32] considered social 

relationships of owners of IoT devices for trust 

management in social IoT systems. They proposed two 

models for trustworthiness management. Namely, a 

subjective model deriving from social networks, with each 

node computing the trustworthiness of its friends on the 

basis of its own experience and on the opinion of friendly 

recommenders, and an objective model deriving from P2P 

communication networks with each node storing and 

retrieving trust information towards its peers in a 

distributed hash table structure, so that any node can make 

use of the same information. Their objective model requires 

pre-trusted nodes be in place for maintaining the hash table, 

which is questionable in IoT environments. Their subjective 

model is similar in spirit to our trust model taking into 

consideration of the social relationships between owners of 

IoT devices. The fundamental difference is that our model 

of objective trust is based on ground truth or actual status, 

and our trust protocol dynamically adapts to changing 

environments by adjusting the best protocol settings to 

minimize trust bias (the difference between subjective trust 

and objective trust) and to maximize application 

performance.  

Security has drawn the attention in IoT research [14, 15, 

34, 35, 42]. Roman et al. [35] discussed threats to IoT, such 

as compromising botnets trying to hinder services and the 

domino effect between intertwined services and user 

profiling. Traditional approaches to network security, data 

and privacy management, identity management, and fault 

tolerance will not accommodate the requirements of IoT 

due to lack of scalability and not being able to cope with a 

high variety of identity and relationship types [35]. Possible 

solutions were proposed to each security problem, but no 

specific protocol or analysis was given. Ren [34] proposed 

a compromise-resilient key management scheme for 

heterogeneous wireless IoT. The proposed key management 

protocol includes key agreement schemes and key evolution 

policies (forward and backward secure key evolution). The 

author also designed a quality of service (QoS) aware 

Sensed input parameters 
  { NT , NH , NG , T , λ , TC } 

Design parameters 

  { α , β } 

Key Value 

.   .   . 

.   .   . 

Lookup table 



 

 

enhancement to the proposed scheme. However, the 

proposed scheme does not take social relationships among 

IoT identities into consideration. Chen and Helal 15 

proposed a device-centric approach to enhance the safety of 

IoT. They designed a device description language (DDL) in 

which each device can specify its safety concerns, 

constraints, and knowledge. Nevertheless, their approach is 

specifically designed for sensor and actuator devices, and 

does not consider social relationships among device 

owners. Zhou and Chao [42] proposed a media-aware 

traffic security architecture for IoT. The authors first 

designed a multimedia traffic classification, and then 

developed this media-aware traffic security architecture to 

achieve a good trade-off between system flexibility and 

efficiency. A limitation of their work is that they only 

considered direct observations to traffic without 

considering indirect recommendations. 

Relative to the security designs/mechanisms cited 

above, our approach is to use trust to implement security 

against malicious attacks. We note that our trust system can 

work orthogonally with these security designs/mechanisms 

to further enhance security of social IoT systems. 

8 CONCLUSION 

In this paper, we developed and analyzed an adaptive 

trust management protocol for social IoT systems and its 

application to service management. Our protocol is 

distributed and each node only updates trust towards others 

of its interest upon encounter or interaction events. The 

trust assessment is updated by both direct observations and 

indirect recommendations, with parameters 𝛼  and 𝛽 being 

the respective design parameters to control trust 

propagation and aggregation for these two sources of 

information to improve trust assessment accuracy in 

response to dynamically changing conditions. We analyzed 

the effect of α and β on the convergence, accuracy, and 

resiliency properties of our adaptive trust management 

protocol using simulation. The results demonstrate that (1) 

the trust evaluation of adaptive trust management will 

converge and approach ground truth status, (2) one can 

tradeoff trust convergence speed for low trust fluctuation, 

and (3) adaptive trust management is resilient to 

misbehaving attacks. We demonstrated the effectiveness of 

adaptive trust management by two real-world social IoT 

applications. The results showed our adaptive trust-based 

service composition scheme outperforms random service 

composition and approaches the maximum achievable 

performance based on ground truth. We attributed this to 

the ability of dynamic trust management being able to 

dynamically choose the best design parameter settings in 

response to changing environment conditions. 

There are several future research areas. We plan to 

further test our adaptive trust management protocol’s 

accuracy, convergence and resiliency properties toward a 

multitude of dynamically changing environment conditions 

under which a social IoT application can automatically and 

autonomously adjust the best trust parameter settings 

dynamically to maximize application performance. Another 

direction is to explore statistical methods to exclude 

recommendation outliers to further reduce trust fluctuation 

and enhance trust convergence in our adaptive trust 

management protocol design.  
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